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Abstract. We discuss a metric description of the divergence of a (projectively) Anosov
flow in dimension 3, in terms of its associated expansion rates and give metric and contact
geometric characterizations of when a projectively Anosov flow is Anosov. We then study
the symmetries that the existence of an invariant volume form yields on the geometry
of an Anosov flow, from various viewpoints of the theory of contact hyperbolas, Reeb
dynamics, and Liouville geometry, and give characterizations of when an Anosov flow is
volume preserving, in terms of those theories. We finally use our study to show that the
bi-contact surgery operations of Salmoiraghi [Surgery on Anosov flows using bi-contact
geometry. Preprint, 2021, arXiv:2104.07109; and Goodman surgery and projectively
Anosov flows. Preprint, 2022, arXiv:2202.01328] can be applied in an arbitrary small
neighborhood of a periodic orbit of any Anosov flow. In particular, we conclude that the
Goodman surgery of Anosov flows can be performed using the bi-contact surgery oper-
ations of Salmoiraghi [Goodman surgery and projectively Anosov flows. Preprint, 2022,
arXiv:2202.01328].

Key words: Anosov dynamics, contact geometry, divergence, Reeb vector field, surgery
operation
2020 Mathematics Subject Classification: 37D20, 53E50 (Primary); 37C10, 53D35
(Secondary)

1. Introduction
For almost two decades after the introduction of Anosov flows in the early 1960s [1, 2], the
only known examples of Anosov flows on three-dimensional closed manifolds were based
on either the suspension of Anosov diffeomorphisms of 2-torus or the geodesic flows on
the unit tangent space of hyperbolic surfaces. All such examples are orbit equivalent to
an algebraic volume-preserving flow by their natural construction and a lot of interesting
properties of Anosov flows were derived, assuming the existence of such invariant volume
forms. However, the first examples of Anosov flows, which are not orbit equivalent to a
volume-preserving one, were constructed in 1980 by Franks and Williams [22]. Since then,
understanding the relation between the existence of an invariant volume form and various
aspects of Anosov dynamics has been sought from different viewpoints. In particular, from
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a topological viewpoint, such a property is associated with the transitivity of an Anosov
flow [5] and from a measure theoretic viewpoint, they correspond to ergodic Anosov flows
[2, 38]. Moreover, many other dynamical aspects of such flows, including the regularity
theoretical aspects, are well studied in the literature (for instance, see [35, 37]).

Our goal in this paper, is to study the relation between the divergence of a flow and
Anosovity in the context of a larger class of dynamics, namely the class of projectively
Anosov flows, and using the notion of expansion rates of the invariant bundles. These
quantities measure the infinitesimal change of the length of vectors in the stable and
unstable directions, and facilitate a geometric understanding of Anosov flows. In particular,
they play a significant role in the more recent contact and symplectic geometric theory of
Anosov flows [33, 39, 45]. Therefore, our study provides new perspective on the class of
volume preserving Anosov flows, in terms of those geometries.

It is worth mentioning that although projectively Anosov flows have been previously
studied in various contexts, such as foliation theory [6, 15, 18, 40], Riemannian geometry
[11, 12, 34, 42], hyperbolic dynamics [4, 31, 43, 44], and Reeb dynamics [32], their
primary significance for us is that they serve as a bridge between Anosov dynamics
and contact and symplectic geometry [39] (see §2.2), eventually yielding a complete
characterization of Anosov flows in terms of such geometries [33]. We remark that such
flows are also referred to in the literature, using other names including conformally Anosov
flows or flows with dominated splitting.

Assumptions. In this paper, unless stated otherwise, we assume that M is a closed
connected oriented three manifold and X is a non-vanishing C1+ vector field, that is, a
C1 vector field with Hölder continuous derivatives. We denote the C1+ flow generated
by X by φt . It is noteworthy that there are other vector fields and flows involved in this
paper, for instance the Reeb vector fields of Theorems 1.6 and 1.8, for which we do not
assume any regularity and in fact, are often only C0 (also see Remark 5.2). We also assume
the (projectively) Anosov flows to have transversely orientable invariant bundles. This
is always achieved, possibly after lifting to a double cover of M. Moreover, we call any
geometric quantity, which is differentiable in the direction of the flow, X-differentiable.
The reader should consult [41] for the basics of the theory of flows on manifolds, and [19]
for the fundamentals of hyperbolic flows.

We begin our study with a natural description of the divergence of a projectively Anosov
flow in terms of its associated expansion rates of the invariant bundles, encapsulated in the
following two theorems.

THEOREM 1.1. Let X be the generator of a projectively Anosov flow on M and � be some
volume form which is X-differentiable. There exists a metric on M, such that divX� =
rs + ru, where rs and ru are the expansion rates of the stable and unstable directions,
respectively, measured by such a metric.

THEOREM 1.2. Let X be the generator of a projectively Anosov flow and ‖.‖ some
X-differentiable norm on T M induced by a metric. Also, let rs and ru be the expansion
rates of the stable and unstable bundles, measured by ‖.‖. Then:
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(a) there exists a volume form � on M, which is X-differentiable and divX� = rs + ru;
(b) for any ε > 0, there exists a C1 volume form �ε, such that |divX�ε − (rs + ru)| < ε.

Although the above description of the divergence is hardly surprising, it accommodates
the use of such a relation from the viewpoint of differential and contact geometry. One
immediate corollary is the following.

COROLLARY 1.3. Any projectively Anosov flow preserving some C0 volume form is
Anosov. In particular, any contact projectively Anosov flow (that is, when a projectively
Anosov flow preserves a transverse contact structure) is Anosov.

Although the above corollary is well known in the dynamical systems literature (for
instance, see [3]), it seems that this fact is unexpectedly left obscured in some other areas of
research, most importantly when such flows appear in the Riemannian geometry literature.
While contributing meaningfully to the related subjects, one can find many interesting
results on the Riemannian geometry of contact projectively Anosov flows, ignoring that
they are in fact Anosov (for instance, see [11, 12]).

It is well known that many important properties of (projectively) Anosov flows are
independent of the norm involved in their definition. However, there are natural volume
forms for such a setting, induced from the underlying contact structures of these flows (see
§2.2). It turns out that we can characterize the Anosovity of a projectively Anosov flow in
terms of the divergence of the flow being bounded by these volume forms in an appropriate
sense (see Remark 4.1).

THEOREM 1.4. Let X be the generating vector field for a projectively Anosov flow. Then,
the following are equivalent:
(1) X is Anosov;
(2) there exists a positive contact form α+, such that for some ξ−, the pair (ξ−, ξ+ :=

ker α+) is a supporting bi-contact structure and −α+ ∧ dα+ < (divX�α+)�α+ <

α+ ∧ dα+;
(3) there exists a negative contact form α−, such that for some ξ+, the pair (ξ− :=

ker α−, ξ+) is a supporting bi-contact structure and α− ∧ dα− < (divX�α−)�α− <

−α− ∧ dα−.

Remark 1.5. We remark that Theorems 1.1–1.4 and Corollary 1.3 above hold for any
C1 flow (without the assumption of Hölder continuity for its derivative). However, for
Theorem 1.4 in that case, we would need the approximation techniques developed in [33]
to deal with C0 weak stable and unstable bundles, since the Hölder continuity of the
derivatives of the flow is needed to ensure such invariant plane fields are C1, which is
used in the proof of Theorem 1.4 for simplicity.

Using our description of the divergence of an Anosov flow, we next study the geometric
consequences of the existence of an invariant volume form for an Anosov flow from
various viewpoints. More precisely, Theorem 1.2 shows the symmetry of expansion and
contraction in the unstable and stable directions, respectively, in the case of volume
preserving Anosov flows and furthermore, thanks to the differentiability of the weak
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stable and unstable bundles in this case [30, 35], such symmetry behaves well when
translating the metric description of Anosov flows to the contact geometric one. We study
such symmetry from the view point of the theory of contact hyperbolas, Reeb dynamics,
and Liouville geometry, giving various characterizations of volume preserving Anosov
flows.

To begin with, we study volume preserving Anosov flows in terms of the theory of
contact hyperbolas, developed by Perrone [42] (see §5.1 for definitions), as an analog of
the theory of contact circles by Geiges and Gonzalo [26, 25]. Moreover, we will see that
these conditions are, in fact, equivalent to a purely Reeb dynamical description of volume
preserving Anosov flows.

THEOREM 1.6. Let φt be a projectively Anosov flow on M. Then, the following are
equivalent:
(1) the flow φt is a volume preserving Anosov flow;
(2) there exists a supporting bi-contact structure (ξ−, ξ+) and contact forms α− and α+

for ξ− and ξ+, respectively, such that (α−, α+) is a (−1)-Cartan structure;
(3) there exists a supporting bi-contact structure (ξ−, ξ+) and Reeb vector fields Rα−

and Rα+ for ξ− and ξ+, respectively, such that Rα− ⊂ ξ+ and Rα+ ⊂ ξ−.

To the best of our knowledge, the only known examples of taut contact hyperbolas,
except an explicit example constructed on T

3, are achieved using the symmetries of
Lie manifolds, giving examples which are compatible with algebraic Anosov flows
[42]. However, Theorem 1.6 shows that we can also construct examples of taut contact
hyperbolas on hyperbolic manifolds, thanks to the construction of an infinite family of
contact Anosov flows on hyperbolic manifolds by Foulon and Hasselblatt [21], as well as
many examples on toroidal manifolds [10]. We note that it is not known if any specific
manifold can admit infinitely many distinct Anosov flows, while there are at most finitely
many contact Anosov flows on any manifold up to orbit equivalence [9]. This gives a partial
answer to the classification problem posed in the final remark of [42].

COROLLARY 1.7. There exist infinitely many hyperbolic manifolds which admit a
(−1)-Cartan structure (and in particular, a taut contact hyperbola).

Moreover, we study volume preserving Anosov flows from the perspective of Liouville
geometry. The construction of exact symplectic 4-manifold for a general Anosov 3-flow
is done by the author in [33]. However, we observe that such construction is significantly
simplified in the presence of an invariant volume form (the case previously studied by
Mitsumatsu [39]). In fact, after a canonical reparameterization of a volume preserving
Anosov flow, we show that we can improve the relation between such flows and both the
underlying Reeb dynamics of Theorem 1.6 as well as the Liouville geometry associated
with the corresponding exact symplectic 4-manifold. We call such reparameterization the
Liouville reparameterization of a volume preserving Anosov flow (see §5.2 for definitions).

THEOREM 1.8. Let X be the generating vector field of a volume preserving Anosov flow.
If XL is the generating vector field for the Liouville reparameterization of the flow, the
following hold:
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(1) the flow generated by XL preserves the transverse plane field 〈Rα− , Rα+〉, where Rα−
and Rα+ are the Reeb vector fields of Theorem 1.6(2);

(2) the pair (M , XL) can be extended to a Liouville structure ([−1, 1] × M , Y ), such
that ([−1, 1] × M , Y )|{0}×M = (M , XL).

Remark 1.9. It is important to note that in the above theorem, the plane field generated by
Rα− and Rα+ is only continuous in the general case, and is C1 if and only if the Liouville
reparameterization generated by XL is contact or a suspension flow (this is done for C2

flows in [20], but a similar proof should work in the C1+ category). In particular, this
gives a bi-contact geometric way of distinguishing which Anosov flows are contact or a
suspension flow. They are exactly the ones where the constructed Reeb vector fields Rα−
and Rα+ in Theorem 1.8 are C1.

At the end, we discuss the applications of our study to the surgery theory of Anosov
flows. Surgery theory has been a very important part of the geometric theory of Anosov
flows from the early days. Various Dehn-type surgery operations, including Handel and
Thurston [29], Goodman [28], Fried [23], or Foulon and Hasselblatt [21] surgeries,
have helped the construction of new examples of Anosov flows, answering historically
important questions. These include the first examples of Anosov flows on hyperbolic man-
ifolds [28], the construction of infinitely many contact Anosov flows on hyperbolic
manifolds [21], or the first (non-trivial) classification of Anosov flows on hyperbolic
manifolds [49].

Recently, Salmoiraghi [45, 46] has introduced two novel bi-contact geometric surgery
operations of (projectively) Anosov flows, which contribute toward the contact geo-
metric theory of Anosov flows (see [13, 33, 39], for instance) and the related surgery
theory, reconstructing the previously known surgery operations of Foulon and Hassel-
blatt and Handel and Thurston. These surgeries are applied in the neighborhood of a
Legendrian-transverse knot, that is, a knot which is Legendrian (tangent) for one of the
underlying contact structures in the supporting bi-contact and transverse for the other
one (see §2.2). One of these surgery operations is done by cutting the manifold along
an annulus tangent to the flow and the other is based on a transverse annulus. However, the
relation to Goodman surgery, which is one of the most significant surgery operations on
Anosov flows and is applied in the neighborhood of a periodic orbit of such a flow, relies on
one condition. That requires being able to push a periodic orbit to a Legendrian-transverse
knot. Salmoiraghi observes that this is possible for the unit tangent space of hyperbolic
surfaces [45] and, furthermore, shows that if such a condition is satisfied, the Goodman
surgery can be reconstructed using the bi-contact surgery on a transverse annulus (in
fact, he generalizes such an operation to projectively Anosov flows) [46]. We show that
such a condition can be satisfied for any Anosov flow by choosing a norm which yields
constant divergence on a given periodic orbit of the flow, giving an affirmative answer to
the question posed in [45]. This takes us one step closer to a contact geometric surgery
of Anosov flows, unifying the previously introduced operations (it is noteworthy that the
equivalence of Fried and Goodman surgeries has been recently shown for transitive Anosov
flows [47], which is conjecturally true in the general case, and hence results in the use of
the term Goodman–Fried surgery in the literature).
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THEOREM 1.10. Let φt be an Anosov flow. Given any periodic orbit γ0, there exists
a supporting bi-contact structure (ξ−, ξ+ = ker α+) such that we have Rα+ ⊂ ξ− in
a regular neighborhood of γ0. Therefore, there exists an isotopy {γt }t∈[0,1], which is
supported in an arbitrary small neighborhood of γ0, and γt is a Legendrian-transverse
knot for any 0 < t ≤ 1.

COROLLARY 1.11. The bi-contact surgeries of Salmoiraghi [45, 46] can be applied in an
arbitrary small neighborhood of a periodic orbit of any Anosov flow. In particular, the
bi-contact surgery of [46] reconstructs the Goodman surgery.

In §2, we review some basic notions in Anosov dynamics and the expansion rates,
as well as their connection to contact geometry. In §3, we describe the divergence of a
(projectively) Anosov flow in terms of its associated expansion rates. In §4, we discuss
some useful interplays between the contact geometry of Anosov flows and various volume
forms on a three manifold, giving a contact geometric characterization of Anosovity based
on divergence. In §5, we study the symmetries that the existence of an invariant volume
form implies on the geometry of an Anosov flow from various viewpoints of the theory
of contact hyperbolas, Reeb dynamics, and Liouville geometry. Finally, §6 is devoted to
discussing the applications of our study to bi-contact surgeries.

2. Background
In this section, we bring the necessary background for the main results. First, we review
some basics about Anosov flows in dimension 3 and their generalization to projectively
Anosov flows. Then, we discuss the connection of such flows to contact geometry. This is
not, by any means, a thorough treatment and one should consult references like [8, 19, 24]
on these subjects for a more complete perspective.

2.1. (Projectively) Anosov flows and the associated expansion rates. Anosov flows in
dimension 3 are non-singular flows, whose action on the tangent space of the ambient man-
ifold exhibits exponential expansion and contraction in two distinct transverse directions.

Definition 2.1. Let φt be the flow generated by the non-vanishing C1 vector field X. We
call φt Anosov if there exists a continuous invariant splitting T M 	 Ess ⊕ Euu ⊕ 〈X〉,
such that for some positive constant C and a norm ‖.‖, we have

‖φt∗(u)‖ ≤ e−Ct‖u‖ and ‖φt∗(v)‖ ≥ eCt‖v‖
for any u ∈ Ess and v ∈ Euu. We call Ess and Euu strong stable and unstable directions,
respectively.

The classical examples of such flows are the geodesic flows on the unit tangent bundle
of hyperbolic surfaces and the suspension of Anosov diffeomorphisms of torus. However,
various surgery operations on Anosov flows have yielded many more examples, including
infinitely many examples on hyperbolic manifolds. These include surgeries of Handel and
Thurston [29], Fried [23], Goodman [28], Foulon and Hassleblatt [21], and more recently,
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the bi-contact geometric surgeries introduced by Salmoiraghi [45, 46], which manage to
reproduce, up to orbit equivalence, the previous operations in many cases.

Remark 2.2. We remark that the Anosovity of a non-singular flow can be determined
by its action on the normal bundle of the direction of the flow. More precisely, a flow
φt , generated by the non-vanishing vector field X, induces a flow on T M/〈X〉 via
π : T M → T M/〈X〉, usually called the induced Poincaré linear flow. It is a classical
result in dynamical systems by Doering [17] that a flow is Anosov if and only if the
induced Poincaré linear flow admits a hyperbolic splitting. That is, there exists a continuous
splitting of the normal bundle T M/〈X〉 	 Es ⊕ Eu, which is invariant under the induced
Poincaré linear flow and with respect to some norm, the action of such a flow on Eu and
Es is exponentially expanding and contracting, respectively.

One important generalization of Anosov flows, which bridges Anosov dynamics to
contact geometry, is the following.

Definition 2.3. Let φ̃t be the Poincaré linear flow as in Remark 2.2. We call φt projectively
Anosov if there exists a continuous invariant splitting T M/〈X〉 	 Es ⊕ Eu, such that for
some positive constant C and a norm ‖.‖, we have

‖φ̃t∗(v)‖/‖φ̃t∗(u)‖ ≤ eCt‖v‖/‖u‖
for any u ∈ Es and v ∈ Eu. We call Es and Eu stable and unstable directions, respectively.

In other words, a flow is projectively Anosov if its induced Poincaré linear flow admits
a dominated splitting. That is, a continuous and invariant splitting into two line bundles
on which the action of the flow is relatively expanding in one direction with respect to the
other.

Abusing notation, we also refer to π−1(Es) and π−1(Eu), which are a priori C0

two-dimensional sub bundles of T M , by Es and Eu, respectively, and call them the weak
stable and unstable bundles, respectively (see Remark 2.5).

In the case where a projectively Anosov flow is Anosov, the weak stable and unstable
bundles are known to be C1 [30]. It is worth mentioning that that unlike the Anosov case
(as discussed in Remark 2.2), in the case of projectively Anosov flows, the splitting of the
normal bundle T M/〈X〉 cannot necessarily be lifted to the tangent space T M [40].

Although it is not a priori obvious if such a class of dynamics is strictly larger than the
class of Anosov flows, we know that projectively Anosov flows are abundant. See [18, 39]
for examples on torus bundles, [13] for non-Anosov examples on hyperbolic manifolds,
and [7] for a more general construction.

To build the bridge from the above definitions to the world of differential and contact
geometry, it is very useful for us to measure the infinitesimal expansion or contraction of
the length of vectors in the invariant bundles. Note that without loss of generality, we can
assume the norm involved in the definition of (projectively) Anosov flows is C∞.

Definition 2.4. Using the above notation and considering T M/〈X〉 	 Es ⊕ Eu, let
ẽs ∈ Es and ẽu ∈ Eu be the unit vectors with respect to some X-differentiable norm ‖.‖
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on T M/〈X〉. We call

rs := ∂

∂t
ln ‖φ̃t∗(ẽs)‖

∣
∣
∣
∣
t=0

and ru := ∂

∂t
ln ‖φ̃t∗(ẽu)‖

∣
∣
∣
∣
t=0

the expansion rates of the stable and unstable directions, respectively, with respect to ‖.‖.

We remark that similar notions have been previously used in the study of various aspects
of Anosov flows [14, 30, 48].

Remark 2.5. Note that the norm used in the definition of expansion rates is defined on
the normal bundle T M/〈X〉. However, it is easy to describe these quantities based on the
tangent bundle T M . First, given a norm on T M/〈X〉, consider some metric on this vector
bundle, which induces the norm. Notice that given any transverse C1 plane field η, there
exists a natural isomorphism η 	 T M/〈X〉 via the projection π : T M → η 	 T M/〈X〉.
Therefore, a Riemannian metric on T M/〈X〉 induces a Riemannian metric on η, which
can be naturally extended to T M by letting ‖X‖ = 1 and X ⊥ η, where ‖.‖ is the norm
on T M induced from such a metric. If ẽs ∈ Es ⊂ T M/〈X〉 and ẽu ∈ Eu ⊂ T M/〈X〉 are
the unit vector fields, their image es ∈ π−1(Es) ∩ η and eu ∈ π−1(Eu) ∩ η, under the
isomorphism, are unit vector fields with respect to the norm induced on T M . It is easy to
compute

LXes = −rses + qsX and LXeu = −rueu + quX,

where qs and qu are real functions, depending on our choice of η. Note that we will have
qs = qu = 0 when η is preserved by X (see §3 of [33] for a more thorough discussion).
Since we are assuming η to be C1, this only happens for an Anosov flow when it is contact
or a suspension flow [20].

Note that this remark also justifies the abuse of notation we adopted in the beginning of
this section, that is, referring to π−1(Es) by Es (and similarly for Eu). To be clearer, the
correspondence between the metrics on T M and T M/〈X〉 discussed above allows us to
talk about the unit vector es ∈ Es and, therefore, the expansion rate of the stable direction
unambiguously, whether we consider Es ⊂ T M or Es ⊂ T M/〈X〉. The same holds for
eu ∈ Eu and the expansion rate of the unstable direction.

Remark 2.6. Alternatively, one can characterize the expansion rates in terms of differential
forms. Consider a metric on T M/〈X〉 and define α̃s as a differential form on T M/〈X〉
by letting ker α̃s = Eu ⊂ T M/〈X〉 and α̃s(ẽs) = 1, where ẽs ∈ Es ⊂ T M/〈X〉 is a unit
vector field with respect to the chosen metric. Similarly, define α̃u and easily compute

LXα̃s = rs α̃s and LXα̃u = ruα̃u,

where rs and ru are the expansion rates of the stable and unstable directions with respect
to such a metric.

As we will see in the remainder of the paper, it is usually desirable to work with
differential forms on T M . Therefore, we can define αs := π∗α̃s and αu := π∗α̃u, where
π : T M → T M/〈X〉 	 η is the natural projection, and note that

LXαs = rsαs and LXαu = ruαu.
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In fact, the above expressions can be taken as the definition of the expansion rates
rs and ru. More precisely, if we take the unit vector fields es ∈ Es ∩ η ⊂ T M and
eu ∈ Eu ∩ η ⊂ T M , induced after choosing a transverse plane field η as in Remark 2.5,
and define the differential form αs by letting ker αs = Eu ⊕ 〈X〉 and αs(es) = 1, this
matches the definition above. The same holds for αu. This means that, as in Remark 2.5,
the choice of the transverse plane field η does not affect the geometry of expansion in terms
of differential forms on T M .

Not surprisingly, the (relative) exponential expansion for (projectively) Anosov flows
can be easily characterized in terms of such expansion rates (see [33] for more details and
proofs).

PROPOSITION 2.7. Let X be a projectively Anosov vector field and rs and ru, the expansion
rates of stable and unstable directions, respectively, with respect to any Riemannian metric
satisfying the metric condition of Definition 2.3, which is X-differentiable. Then,

ru − rs > 0.

While Proposition 2.7 expresses the relative expansion in the unstable direction with
respect to the stable direction, the following proposition realizes when we have absolute
expansion and contraction in those directions, which by Doering’s result [17] yields
Anosovity (see Remark 2.2).

PROPOSITION 2.8. Let X be a projectively Anosov vector field and rs and ru. Then X is
Anosov if and only if, with respect to some Riemannian metric, we have

ru > 0 > rs .

2.2. Relation to (bi-)contact geometry. Recall that a C1 1-form α is a contact form
on M if α ∧ dα is a non-vanishing volume form on M. If α ∧ dα > 0 (compared to the
orientation on M), we call α a positive contact form and otherwise, a negative one. We call
the C1 plane field ξ := ker α a (positive or negative) contact structure on M. Notice that by
the Frobenuis theorem, contact structures can be thought of as maximally non-integrable
C1 plane fields, that is, the extreme opposite of foliations.

For example, ξstd := ker dz − ydx (ξstd := ker dz + ydx) is called the standard pos-
itive (negative) contact structure on R

3, while ξn := ker {cos 2πnzdx − sin 2πndy} on
T

3 = R
3/Z3 gives an infinite family of distinct positive (negative) contact structures, when

n ∈ Z > 0 (n < 0).
Although we do not go toward the topological aspects of contact structures in this paper,

it is worth mentioning that positive (negative) contact structures do not have any local
invariant, thanks to the Darboux theorem that states that any two positive (negative) contact
structures are locally contactomorphic (that is, locally look like the standard model on
R

3). Furthermore, Gray’s theorem shows that any homotopy of a contact structure through
contact structures is induced by an isotopy of the ambient manifold.

Associated to any contact structure, there is an important class of flows, which we will
use in this paper. Given any contact form α for a contact structure ξ := ker α, there exists

https://doi.org/10.1017/etds.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.70


On Anosovity, divergence, and bi-contact surgery 3297

a unique vector field Rα , satisfying

dα(Rα , .) = 0 and α(Rα) = 1.

Such a vector field is called a Reeb vector field and it is easy to check LRαα = 0.
This implies LRαα ∧ dα = 0. In particular, Reeb vector fields are volume preserving.
Furthermore, Reeb vector fields preserve ξ , and are transverse to the underlying contact
structure. It is easy to observe that conversely, given a contact structure, any transverse
vector field preserving the contact structure ξ is a Reeb vector field for an appropriate
choice of contact form.

A natural and well-studied interplay of contact geometry and Anosov dynamics happens
when a Reeb vector field is Anosov, that is, the case of contact Anosov flows (see for
instance [21]). However, in this paper, we are interested in a more general relation between
the two theories, thanks to the following proposition, first observed by Mitsumatsu [39]
and Eliashberg and Thurston [18], which characterizes projectively Anosov flows in terms
of contact geometry. We remind the reader that, as mentioned in the introduction of the
paper, we are assuming the underlying manifold to be oriented and the invariant bundles
for the projectively Anosov flows to be transversely orientable.

PROPOSITION 2.9. Let X be a non-vanishing C1 vector field on M. Then, X generates a
projectively Anosov flow if and only if there exist positive and negative contact structures,
ξ+ and ξ−, respectively, which are transverse and X ⊂ ξ+ ∩ ξ−.

In other words, considering a projectively Anosov flow, the bi-sectors of Es and Eu can
be seen to be a pair of positive and negative contact structures, possibly after a perturbation
to make them C1. And conversely, any vector field directing the intersection of such
transverse pair is projectively Anosov.

We note that the above proposition also shows that the (periodic) orbits of a projectively
Anosov flows are Legendrian (knots), that is, tangent, for both of the underlying contact
structures.

Using Proposition 2.9, we can easily give examples of non-Anosov projectively
Anosov flows. For instance, (ξm := ker {dz + ε(cos 2πmzdx − sin 2πmdy)}, ξn :=
ker {dz + ε′(cos 2πnzdx − sin 2πndy)}) is a pair of positive and negative transverse
contact structures, whenever m < 0 < n are integers and ε �= ε′. Therefore, any flow,
whose generating vector field lies in the intersection ξm ∩ ξn, is a projectively Anosov flow
on T

3 = R
3/Z3 by Proposition 2.9. Note that there are no Anosov flows on T

3.
We call such pair of transverse negative and positive contact structures (ξ−, ξ+) a

bi-contact structure, supporting the underlying projectively Anosov flow. It turns out that
by enriching a bi-contact structure with additional contact geometric structures, one can
also characterize Anosov flows purely in terms of contact geometry [33].

3. Divergence and the expansion rates
In this section, we show that the divergence of a projectively Anosov flow with respect to
the (a priori C0) volume form, which is induced from any norm satisfying the relevant
definition, can naturally be characterized in terms of the expansion rates of the stable
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and unstable directions. We then give approximation results for volume forms with higher
regularity.

THEOREM 3.1. Let X be the generator of a projectively Anosov flow on M and � be some
volume form which is X-differentiable. There exists a metric on M, such that divX� =
rs + ru, where rs and ru are the expansion rates of the stable and unstable directions,
respectively, measured by the metric.

Proof. Choose a C∞ transverse plane field η and let αX be a C1 1-form such that
αX(η) = 0 and αX(X) = 1. Furthermore, choose some contact form α̃+, so that
(ξ−, ξ+ := ker α̃+) is a supporting bi-contact structure for X, for some negative contact
structure ξ−.

We can write α̃+ = α̃u − α̃s , where α̃u|Es = α̃s |Eu = 0. Notice that α̃u and α̃s are C0

1-forms, which are X-differentiable, since α̃+ is C1 and the projection resulting in such
decomposition is X-differentiable.

Since α̃s ∧ α̃u ∧ αX is a volume form on M, there exists a positive function f :
M → R

+, such that |�| = |αs ∧ αu ∧ αX|, where αs = f α̃s and αu = f α̃u.
Finally, we can define the norm ‖.‖ with ‖X‖ = ‖es‖ = ‖eu‖ = 1, where es ∈ Es ∩ η,

eu ∈ Eu ∩ η, |αs(es)| = |αu(eu)| = 1, and (es , eu, X) is a an oriented basis for T M .
Notice that by construction, ‖.‖ is X-differentiable.

Letting rs and ru be the expansion rates of the stable and unstable directions,
respectively, we can compute

(LX�) (es , eu, X) = −�([X, es], eu, X) − �(es , [X, eu], X) = (rs + ru) �(es , eu, X),

completing the proof.

COROLLARY 3.2. Any projectively Anosov flow preserving some C0 volume form is
Anosov. In particular, any contact projectively Anosov flow is Anosov.

Proof. Note that any preserved C0 volume form is X-differentiable (LX� = 0). Therefore,
Theorem 3.1 and Proposition 2.7 imply rs < 0 < ru, which guarantees Anosovity.

In Theorem 3.1, we show that given a volume form, we can find a norm on T M such
that the sum of its associated expansion rates equals the divergence of our volume form.
The following theorem yields the inverse construction. That is, given a norm on T M , we
can construct a volume form whose divergence is given by the sum of the expansion rates
induced by our metric.

THEOREM 3.3. Let X be the generator of a projectively Anosov flow and ‖.‖ some
X-differentiable norm on T M , induced by a metric. Also, let rs and ru be the expansion
rates of the stable and unstable bundles measured by ‖.‖. Then:
(a) there exists a volume form � on M, which is X-differentiable and divX� = rs + ru;
(b) for any ε > 0, there exists a C1 volume form �ε , such that |divX�ε − (rs + ru)| < ε.

Proof. (a) Choose a C∞ transverse plane field η. Through η, the norm involved in the
definition of the expansion rates will induce a norm ‖.‖ on T M (see Remark 2.5). Define
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es ∈ Es ∩ η and eu ∈ Eu ∩ η so that ‖es‖ = ‖eu‖ = 1 and (es , eu, X) is an oriented basis
for T M . Finally, define the 1-forms αs , αu, and αX so that αs |Eu = αu|Es = αX|η = 0 and
αs(es) = αu(eu) = αX(X) = 1.

Letting � := αs ∧ αu ∧ αX, it is easy to see divX� = rs + ru, as in Theorem 3.1.
(b) Let � be the volume form constructed in part (a) and �∞ be any C∞ volume form

on M. There exist an X-differentiable function f : M → R
+ such that � = f �∞. Notice

that

LX� = (X · f )�∞ + fLX�∞ = (divX�)�.

As in Lemma 4.3 in [33], there exists a C1 function f ε such that |f ε − f | and
|X · f ε − X · f | are arbitrary small. Therefore, letting �ε := f ε�∞ and computing

LX�ε = (X · f ε)�∞ + f εLX�∞ = (divX�ε)�ε ,

we confirm that divX�ε can be taken to be arbitrary close to divX� = rs + ru.

4. A contact geometric characterization of Anosovity based on divergence
In this section, we show that we can use the volume forms, naturally coming from the
underlying contact structures (see §2.2), to give necessary and sufficient conditions for
Anosovity of a projectively Anosov flow, which is independent of the metric and uses the
expansion rates.

The following remark shows that a given contact form for one of the underlying contact
structures of a projectively Anosov flow induces a natural volume form, as well as a norm,
with respect to which we can compute the expansion rates.

Remark 4.1. Notice that if (ξ− := ker α−, ξ+ := ker α+) is a supporting bi-contact
structure for a projectively Anosov flow, α+ (α−) naturally defines two volume forms on M,
one being the contact volume form, that is, α+ ∧ dα+ (α− ∧ dα−). Additionally, we can
uniquely write α+ = αu − αs (α− = αu + αs), where αu and αs are continuous 1-forms,
such that ker αu = Es ⊂ T M , ker αs = Eu ⊂ T M , αs(es) > 0, and αu(eu) > 0. Here,
es ∈ Es ∩ η and eu ∈ Eu ∩ η for some C1 transverse plane field η, such that (es , eu, X)

is an oriented basis for T M . This induces the positive volume form �α+ := αs ∧ αu ∧ αX

(�α− := αs ∧ αu ∧ αX), where αX is any 1-form satisfying αX(X) = 1.
Furthermore, α+ (α−) defines a norm on T M/〈X〉 using the above argument and the

natural one-to-one correspondence between the differential forms on T M/〈X〉 and the
differential forms on T M whose kernels include X.

Notice that the definition of �α+ (�α−) above does not depend on the choice of η (see
Remark 2.6) and the oriented basis (es , eu, X). In particular, choosing an oriented basis of
the form (eu, es , X) only changes our convention for splitting α+ (α−), that is, we would
need to write α+ = αu + αs (α− = αu − αs) in that case. However, these choices will not
effect the constructed positive volume form �α+ (�α− ).

Here, we bring two lemmas, which will simplify the computations in the proof of
Theorem 4.4.
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LEMMA 4.2. Let α+ and α− be positive and negative contact forms such that (ξ− :=
ker α−, ξ+ := ker α+) is a supporting bi-contact structure for the projectively Anosov flow
generated by X. Moreover, let �α+ (�α−) be the volume form, and r+

u and r+
s (r−

u and r−
s )

be the expansion rates induced by α+ (α−), as in Remark 4.1. Then,

α+ ∧ dα+ = (r+
u − r+

s )�α+ (α− ∧ dα− = −(r−
u − r−

s )�α−).

Proof. Let es ∈ Es and eu ∈ Eu be the unit vector fields on T M , defined as in Remark 2.5.

α+ ∧ dα+ = {α+(es)dα+(eu, X) − α+(eu)dα+(es , X)}�α+

= {−α+(es)α+([eu, X]) + α+(eu)α+([es , X])}�α+ = (r+
u − r+

s )�α+ .

Similar computation for α− finishes the proof.

Note that Theorem 3.1 also yields the following lemma.

LEMMA 4.3. With the notation of Lemma 4.2,

LX�α+ = (r+
u + r+

s )�α+ (LX�α− = (r−
u + r−

s )�α−).

In other words,

divX�α+ = r+
u + r+

s (divX�α− = r−
u + r−

s ).

In the following, the flow being C1 suffices. However, the proof in that generality would
require subtle approximation techniques of [33] since we cannot assume C1-regularity
of the weak stable and unstable bundles, when the derivative of the flow is not Hölder
continuous. For the sake of simplicity, we assume the flow to be C1+.

THEOREM 4.4. Let X be the generating vector field for a projectively Anosov flow. Then,
the following are equivalent:
(1) X is Anosov;
(2) there exists a positive contact form α+ such that for some ξ−, the pair (ξ−, ξ+ :=

ker α+) is a supporting bi-contact structure and −α+ ∧ dα+ < (divX�α+)�α+ <

α+ ∧ dα+;
(3) there exists a negative contact form α− such that for some ξ+, the pair (ξ− :=

ker α−, ξ+) is a supporting bi-contact structure and α− ∧ dα− < (divX�α−)�α− <

−α− ∧ dα−.

Proof. We prove the equivalence of items (1) and (2). Showing the equivalence of items
(1) and (3) is similar.

Assume item (2) and let r+
u and r+

s be the associated expansion rates for some
projectively Anosov flow supported by (ξ−, ξ+) induced by α+, as in Remark 4.1. Using
Lemmas 4.2 and 4.3, we can translate the condition on α+ to

r+
s − r+

u < r+
s + r+

u < r+
u − r+

s .

This yields r+
s < 0 and r+

u > 0, implying the Anosovity of X.
Now, we prove the other implication using a similar idea as above. Without loss of

generality, we assume the norm satisfying the Anosovity condition rs < 0 < ru to be C1.
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Define the 1-forms αu and αs by letting αu|Es = αs |Eu = 0 and αu(eu) = αs(es) = 1,
where es ∈ Es ∩ η ⊂ T M and eu ∈ Eu ∩ η ⊂ T M are unit vector fields (see Remarks
2.5 and 2.6 and notice that any choice of η induces an appropriate metric on T M , with
respect to which the expansion rates are as desired) and (es , eu, X) is an oriented basis.
Therefore, the expansion rates induced by the C1 positive contact form α+ := αu − αs

(as in Remark 4.1) are the same as rs and ru, and therefore satisfying rs < 0 < ru,
or equivalently, rs − ru < rs + ru < ru − rs . Lemmas 4.2 and 4.3 yield item (2) (it is
noteworthy that the above construction of α+ does not depend on the choice of the oriented
basis (es , eu, X), that is, if we use an oriented basis of the form (eu, es , X), we would need
to define α+ = αu + αs).

5. Invariant volume forms, (−1)-Cartan structures, and Liouville reparameterization
In this section, we study the symmetries that the existence of an invariant volume form
implies on the geometry of a volume preserving Anosov flow. This gives us various
characterizations of an Anosov flow being volume preserving, in terms of the theory of
contact hyperbolas, the Reeb dynamics of the supporting contact structures, and Liouville
geometry.

In what follows, by a volume preserving Anosov flow, we mean one which preserves
a continuous volume form. However, it is known that for a Ck flow, the Ck version of
the Livshitz regularity theorem implies any such continuous volume form to be Ck [16,
19, 36].

We first note that Es and Eu are C1 plane fields when X is a C1+ Anosov flow
(see [19, 30, 35]). This is an important fact in what follows, since it helps us pre-
serve the metric symmetries of a volume preserving Anosov flow when translating to
the framework of contact geometry (for Anosov flows of lower regularity, one would
require the approximation techniques of [33], which do not automatically respect such
symmetry).

Let eu ∈ Eu ⊂ T M be a unit vector field with respect to a metric satisfying the
Anosovity condition and let αu be a 1-form, such that αu|Es = 0 and αu(eu) = 1. Possibly
after a perturbation, we can assume αu to be C1 and we have ru := αu([eu, X]) > 0.
That is, the induced expansion rate of the unstable direction is positive (see Remarks 2.5
and 2.6).

Let � be a continuous (and therefore, C1) positive volume form which is invariant under
the flow, and define αs := �(., eu, X). Note that αs is a C1 1-form whose kernel is Es .
Since divX� = 0, by Theorem 3.1, we have rs := αs([es , X]) = −ru < 0.

Now, define α+ := αu − αs and notice that α+ is a positive contact form, since its
induced expansion rates satisfy ru − rs = 2ru = −2rs > 0. Similarly, define the negative
contact structure α− = αu + αs . Therefore, for any volume preserving Anosov flow,
we have a supporting bi-contact structure (ξ− := ker α− = ker αu + αs , ξ+ := ker α+ =
ker αu − αs), which captures the symmetry of an invariant volume form.

Furthermore, by solving dα+(Rα+ , X) = dα−(Rα− , X) = 0, one can easily show
that

Rα+ ⊂ 〈eu − es , X〉 = ξ− and Rα− ⊂ 〈eu + es , X〉 = ξ−.
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5.1. Taut contact hyperbolas and a Reeb dynamical characterization. As it can be seen
in the discussion above, additional geometric symmetry can be observed in the case of
volume preserving Anosov flows. In this section, we describe this extra structure in terms
of the theory of contact hyperbolas developed by Perrone [42], following the similar theory
of contact circles by Geiges and Gonzalo [25, 26].

A contact hyperbola on M is a pair of positive and negative contact forms (α1, α2)

such that αa := a1α1 + a2α2 is also a contact form for any a := (a1, a2) ∈ H
1
r , where

H 1
r = {(a1, a2)|a2

1 − a2
2 = r} for r ∈ {−1, 1}. Furthermore, a contact hyperbola is called

taut if αa ∧ dαa = rα1 ∧ dα1 (or equivalently, αa ∧ dαa = −rα2 ∧ dα2) for any a ∈ H
1
r .

It is easy to show [42] that (α1, α2) is a taut contact hyperbola if and only if

α1 ∧ dα1 = −α2 ∧ dα2 and α1 ∧ dα2 = −α2 ∧ dα1.

Notice that if (α1, α2) is a taut contact hyperbola, then ker α1 and ker α2 form a
bi-contact structure if transverse, with any flow directing the intersection of them being
projectively Anosov. It is known that the converse is not true, that is, there are projectively
Anosov flows which do not come from a contact hyperbola.

As it is seen above, for a volume preserving Anosov flow, the supporting bi-contact
structure (ker α− = ker {αu + αs}, ker α+ := ker {αu − αs}) exists, where αu|Es =
αs |Eu = 0, and the induced positive volume forms and the expansion rates satisfy �α− =
�α+ = αs ∧ αu ∧ αX (for any 1-form αX with αX(X) = 1) and r+

s = r−
s = −r+

u = −r−
u ,

respectively (see Remarks 2.5 and 2.6). By Lemma 4.2, we have

α+ ∧ dα+ = (r+
u − r+

s )�α+ = (r−
u − r−

s )�α− = −α− ∧ dα−.

Moreover, the discussion in the beginning remarks of this section shows that Rα+ ⊂ ξ−
and Rα− ⊂ ξ+, yielding

α+ ∧ dα− = −α− ∧ dα+ = 0.

Therefore, (α−, α+) is a taut contact hyperbola in this case. In fact, it satisfies the
stronger condition of α+ ∧ dα− = −α− ∧ dα+ = 0. A taut contact hyperbola with this
property is called a (−1)-Cartan structure [42]. It turns out that not only can this be
improved to a geometric characterization of volume-preserving flows, it will also give us a
characterization purely in terms of the underlying Reeb flows.

THEOREM 5.1. Let φt be a projectively Anosov flow on M. Then, the following are
equivalent:
(1) the flow φt is a volume preserving Anosov flow;
(2) there exists a supporting bi-contact structure (ξ−, ξ+) and contact forms α− and α+

for ξ− and ξ+, respectively, such that (α−, α+) is a (−1)-Cartan structure;
(3) there exists a supporting bi-contact structure (ξ−, ξ+) and Reeb vector fields Rα−

and Rα+ for ξ− and ξ+, respectively, such that Rα− ⊂ ξ+ and Rα+ ⊂ ξ−.

Proof. The above discussion shows that item (1) implies item (2). We can also conclude
item (3) from item (2), by noticing that α− ∧ dα+ = −α+ ∧ dα− = 0 yields Rα− ⊂ ξ+
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and Rα+ ⊂ ξ−. Therefore, the only remaining part is to show that a projectively Anosov
flow is volume preserving, with the assumptions of item (3).

We first note that any projectively Anosov flow with Rα− ⊂ ξ+ and Rα+ ⊂ ξ− is
Anosov, thanks to Theorem 6.3 of [33]. Let α− and α+ be the contact forms in item (3). As
in Remark 4.1, we consider the expansion rates rs and ru, induced from the decomposition
α+ = αu − αs . Notice that we can write α− = f αu + gαs for positive X-differentiable
functions f , g > 0. One can easily check by solving dα+(Rα+ , X) = 0 and using the fact
that α+(Rα+) = 1 (or as it is done in §6 of [33]), we can write (q+ being a real function)

Rα+ = 1
ru − rs

(−rseu − rues) + q+X, (1)

and from α−(Rα+) = 0, we get

g = −f rs

ru
. (2)

Also, using α+(Rα−) = 0 and α−(Rα−) = 1, we can write (q− being a real function)

Rα− = 1
f + g

(eu + es) + q−X. (3)

However, we have

0 = dα−(Rα− , X) = dα−(es + eu, X) = −X · α−(es , eu) − α−([es + eu, X])

⇒ X · f + X · g + grs + f ru = 0. (4)

Using equation 2 in the above, we get

X · f + X · g + (f + g)(rs + ru) = 0,

which yields

rs + ru = −X · (f + g). (5)

Finally, to show that the flow is volume preserving, it suffices to define � := ef +g�α+

and use Lemma 4.2 and equation (5) to compute

divX� = X · (f + g)ef +g�α+ + ef +g(divX�α+)�α+

= ef +g(X · (f + g) + rs + ru)�
α+ = 0.

Remark 5.2. It is noteworthy that the above proof shows that in fact, for a volume
preserving Anosov flow, we have a function worth of pairs of Reeb vector fields satisfying
item (3) of Theorem 5.1. This is useful, in particular, when we require higher regularity
of the underlying contact geometry. More precisely, the contact forms in Theorem 5.1(2)
are, except in the case of algebraic Anosov flows, only C1. Therefore, their Reeb vector
fields can be only assumed to be C0 in general (this is due to the result of Ghys [27], which
asserts that except in the case of algebraic Anosov flows, the weak stable and unstable
bundles cannot be C2). However, if we let go of the symmetry of the contact forms in
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Theorem 5.1(2), we can achieve higher regularity of the underlying contact geometry in
the following sense.

Let φt be a volume preserving Anosov flow and α+ a C∞ contact form, which
C1-approximates αu − αs and α+(X) = 0 (αu and αs are as in the above theorem).
Note that Rα+ is C∞ and ξ− := 〈Rα+ , X〉 is a C∞ negative contact structure if the
C1-approximation of αu − αs is small enough. Now, a negative contact form for ξ− is
of the form α− := f αu + gαs , and to have Rα− ⊂ ξ+ := ker α+, it suffices to choose any
f and g satisfying equation (2), where rs and ru are the expansion rates associated with
α+ (as in Remark 4.1). We note that although ξ− is C∞, the contact form α− can only be
assumed to be C1 in general.

COROLLARY OF THE PROOF 5.3. In Theorem 5.1(3), the supporting bi-contact structure
(ξ−, ξ+), as well as at least one of Rα+ or Rα− , can be chosen to be C∞.

Theorem 5.1 gives examples of (−1)-Cartan structures and taut contact hyperbolas
whenever we have volume preserving flows, including the case of algebraic Anosov
flows, and more interestingly, we get new examples on hyperbolic manifolds using the
examples of contact Anosov flows on those manifolds [21]. The construction also yields
new examples of (−1)-Cartan structures on any manifold supporting a transitive Anosov
flow, many of which are not contact [5, 10].

COROLLARY 5.4. There exist infinitely many hyperbolic manifolds which admit a
(−1)-Cartan structure (and, in particular, a taut contact hyperbola).

5.2. From the viewpoint of Liouville geometry. In [33], we have shown how from an
Anosov flow X on a 3-manifold M, we can construct two Liouville pairs, (α−, α+) and
(−α−, α+), where (ξ− := ker α−, ξ+ := ker α+) is a supporting bi-contact structure for X.
That is, ω1 := dα1 and ω2 := dα2 are exact symplectic structures on [−1, 1]t × M , where
α1 := (1 − t)α− + (1 + t)α+ and α2 := (1 − t)α− − (1 + t)α+.

Recall that (W , dα) is an exact symplectic 4-manifold if W is an oriented 4-manifold
(with boundary) and dα is an exact symplectic structure on W, that is, dα ∧ dα > 0. For
any exact symplectic manifold (W , dα), there exists a unique vector field Y, such that
ιY dα = α, or equivalently LY dα = dα. Such a vector field is called a Liouville vector
field if it points in the outward direction on ∂W , and the pair (W , Y ) is called a Liouville
structure. We note that this is the case for an exact symplectic manifold constructed from
Anosov 3-flows above, since it is a symplectic filling for the contact manifold (M , ξ+) ∪
(−M , ξ−).

The relation between the associated Liouville vector field and the underlying Anosov
vector field is more subtle in the general case of C1 Anosov flows. However, for C1+
volume preserving Anosov flows, such a connection becomes very straightforward thanks
to the symmetries implied by the existence of an invariant volume form and the fact that in
this case, the weak stable and unstable bundles are C1 [30, 35].

In what follows, we let (α− = αu + αs , α+ = αu − αs) be the (−1)-Cartan structure of
Theorem 5.1 (in particular, �α+ = αs ∧ αu ∧ αX is a positive volume form for any 1-form
αX with αX(X) = 1). We have the 1-form α1 = (1 − t)α− + (1 + t)α+ = 2αu − 2tαs on
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[−1, 1]t × M , and compute

dα1 ∧ dα1 = {2dαu − 2dt ∧ αs − 2tdαs} ∧ {2dαu − 2dt ∧ αs − 2tdαs}
= −4dt ∧ αs ∧ dαu = 4rudt ∧ �α+ ,

implying that ([−1, 1]t × M , dα1) is an exact symplectic manifold. Similarly, we can show
dα2 ∧ dα2 = −4rsdt ∧ �α− , yielding another exact symplectic structure on [−1, 1]t ×
M . Notice that with the above assumptions, we have ru = −rs > 0 and �α+ = �α− .
However, the fact that the weak stable and unstable bundles are C1 in this case, thanks
to the Hölder continuity of the derivatives of the flow, plays a crucial role in preserving the
symmetry when going from a metric description of the underlying Anosov flow to a contact
geometric one, and hence, significantly simplifying the construction of the above Liouville
pairs, compared to Anosov flows of lower regularity studied in [33]. We also remark that
unless X is an algebraic Anosov flow [27], the (−1)-Cartan structure is a priori only C1,
and therefore, the 2-forms dα1 and dα2 above are exact symplectic structures, only in the
C0 sense.

Now, if we define the vector field Y1 := (1/ru)X + 2t∂t , we can compute

ιY1dα1 = 2
ru

ιXdαu − 4tαs − 2t

ru
ιXdαs = 2αu − 4tαs + 2tαs = α1.

Therefore, Y1 is the Liouville vector field for ([−1, 1]t × M , dα1). Notice that a similar
computation helps us compute the Liouville vector field of ([−1, 1]t × M , dα2). It can be
seen [48] that the 1-forms αu and αs can be chosen such that ru and rs are C1. In that case,
it is noteworthy and surprising that although the constructed symplectic structures above
are a priori only C0, their corresponding Liouville vector fields are C1.

Now, we can consider the vector field XL := (1/ru)X, which generates a reparam-
eterization of the original flow. Its associated expansion rates are r ′

u = ru/ru = 1 and
r ′
s = rs/ru = −1 (see Remark 3.18 of [33]) and we have Y1|{0}×M = XL. We call such

XL the Liouville reparameterization of a volume preserving Anosov 3-flow (in the sense
of [48], this is the synchronization of the flow with respect to both stable and unstable
directions, simultaneously).

The following theorem proves that the Liouville reparameterization of a volume
preserving Anosov flow has even a closer relation to the underlying Reeb dynamics of
Theorem 5.1.

THEOREM 5.5. Let X be the generating vector field of a volume preserving Anosov flow.
If XL is the generating vector field for the Liouville reparameterization of the flow, the
following hold:
(1) the flow generated by XL preserves the transverse plane field 〈Rα− , Rα+〉, where Rα−

and Rα+ are the Reeb vector fields of Theorem 1.6(2);
(2) the pair (M , XL) can be extended to a Liouville structure ([−1, 1] × M , Y ), such

that ([−1, 1] × M , Y )|{0}×M = (M , XL).

Proof. The above argument yields item (2). To prove item (1), let (α− = αu + αs , α+ =
αu − αs) be the (−1)-Cartan structure of part (2) in Theorem 5.1. We have

LXL
α+ = LXL

(αu − αs) = αu + αs = α−.
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Similarly, one can show LXL
α− = α+. Define the 1-form αXL

by letting αXL
(XL) = 1

and αXL
(〈Rα− , Rα+〉) = 0. The goal is to prove LXL

αXL
= 0. Note that by construction,

αXL
is differentiable along the flow and (LXL

αXL
) ∧ αXL

= 0.
Also, by plugging the basis (Rα− , Rα+ , XL), we can observe

dα+ = αXL
∧ α− and dα− = αXL

∧ α+,

which implies

(LXL
αXL

) ∧ α− = LXL
(αXL

∧ α−) − αXL
∧ LXL

α−
= LXL

dα+ − αXL
∧ α+ = d(LXL

α+) − αXL
∧ α+ = dα− − dα− = 0.

Similarly, we have (LXL
αXL

) ∧ α+ = 0. This yields LXL
αXL

= 0, completing the
proof.

6. Applications to bi-contact surgeries
In this section, we discuss the implications of our work in the surgery theory of Anosov
flows. Theorem 5.1 shows that for volume preserving Anosov flows, the Reeb vector fields
associated with the supporting bi-contact structure (ξ− = ker α−, ξ+ = ker α+) can be
contained in one another. In this case, if we push a periodic orbit of the flow γ0, which is a
Legendrian knot for both ξ− and ξ+, along one of these Reeb vector fields, say Rα+ , it stays
Legendrian for ξ+ (since Rα+ preserves ξ+) and it immediately becomes transverse to ξ−
(since Rα+ is a Legendrian vector field for ξ−). We call such a knot a Legendrian-transverse
knot.

In [45, 46], Salmoiraghi develops two flavors of bi-contact surgery operations in
a neighborhood of a Legendrian-transverse knot. One of these operations is applied
by cutting the manifold on an annulus, which is tangent to the flow and contains the
Legendrian-transverse knot, and then glueing back using a Dehn twist [45]. The other
operation is applied to a transverse annulus containing such a knot [46]. Moreover, he
shows that using the coordinates coming from the above argument on the Reeb vector field,
one can reconstruct the classical Goodman surgery in the neighborhood of a periodic orbit
of an Anosov flow using the bi-contact surgery of [46]. However, notice that in the above
argument, it suffices for the Reeb vector field of just one of the contact structures to be
contained in the other contact structure only in a small neighborhood of the periodic orbit
on which one wants to apply the Goodman surgery. In the following, we show that this is
possible for any (possibly non volume preserving) Anosov flow. The main idea is to show
that one can assume that the flow has constant divergence along a fixed periodic orbit.

THEOREM 6.1. Let φt be an Anosov flow. Given any periodic orbit γ0, there exists
a supporting bi-contact structure (ξ−, ξ+ = ker α+) such that we have Rα+ ⊂ ξ− in
a regular neighborhood of γ0. Therefore, there exists an isotopy {γt }t∈[0,1], which is
supported in an arbitrary small neighborhood of γ0, and γt is a Legendrian-transverse
knot for any 0 < t ≤ 1.

Proof. As discussed above, it is enough to show that there exists a tubular neighborhood
N(γ0) and a pair of contact forms α+ and α− such that (ker α−, ker α+) is a supporting

https://doi.org/10.1017/etds.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.70


On Anosovity, divergence, and bi-contact surgery 3307

bi-contact structure for X and α−(Rα+) = 0. It is easy to show that this would have been
possible if the associated expansion rates were constant. The idea of the proof is to find an
appropriate norm which satisfies this condition on γ0 and use the openness of the contact
condition. To do so, we need an approximation technique similar to the one used in the
main theorem of [33]. The only caveat is that we need our approximation not to affect the
preassigned norm on γ0.

Let T be the period of γ0, and λ
γ0
u and λ

γ0
s be the eigenvalues of the return map along

γ0 corresponding to the unstable and stable directions, respectively. We can choose a
X-differentiable norm on T M/〈X〉|γ0 such that the induced expansion rates ru|γ0 and rs |γ0

are constants satisfying eruT = λ
γ0
u and ersT = λ

γ0
s . We can then extend such a norm to

some X-differentiable norm on T M/〈X〉 	 Es ⊕ Eu in a neighborhood of γ0. Let N(γ0)

be a possibly smaller neighborhood, on which rs < 0 < ru.
We define the 1-forms α̃u and α̃u by letting α̃u(E

s) = α̃s(E
u) = 0 and α̃u(eu) =

α̃s(es) = 1, where es ∈ Es and eu ∈ Eu are the unit vectors with respect to our norm.
We can C0-approximate α̃u and α̃u by C∞ 1-forms ᾱu and ᾱu, and find X-differentiable
functions fu and fs such that fuᾱu(eu) = fsᾱs(es) = 1. Using the following lemma, we
can approximate these functions with appropriate C1 functions to serve our goal.

LEMMA 6.2. If f is X-differentiable and η-Hölder continuous and γ is a periodic orbit of
X (a C1 flow on n-dimensional closed manifold M), then for any ε > 0, there exists a C1

function f̄ such that f |γ = f̄ |γ , and we have |f − f̄ | < ε and |X · f − X · f̄ | < ε.

Proof. Let Nδ(γ ) be a sufficiently small tubular neighborhood of γ , on which the function
d(x), measuring the distance of x ∈ M from γ , is C1, that is, Nδ = {x ∈ M|d(x) < δ}. Let
d̄(x) be any C1 function on M, where d̄(x) = d(x) on Nδ/2(γ ) ⊂ Nδ(γ ) and d̄(x) �= 0
everywhere.

Now, we can write f (x) = f γ (x) + d̄η/2(x)g(x), where f γ (x) is any C1 extension of
f |γ on M and g(x) is a well-defined, continuous and X-differentiable function on M\γ .
We extend g to M by letting g(γ ) = 0.

CLAIM 6.3. The function g is continuous and X-differentiable on Nδ(γ ).

Proof. Notice

lim
d(x)→0

g(x) = lim
d(x)→0

f (x) − f γ (x)

dη/2(x)
= lim

d(x)→0

f (x) − f γ (x)

dη(x)
dη/2(x) = 0.

The last equality follows from f being η-Hölder continuous. Therefore, g is a continuous
function on Nδ(γ ) (in fact, it is η/2-Hölder continuous). Moreover, g is X-differentiable in
this neighborhood, since we have X · g|γ = 0.

Now, we use Lemma 4.2 of [33] to find a C1 function ḡ, where |g − ḡ| and |X · g − X ·
ḡ| are arbitrary small. In fact, if we define f̄ := f γ0 + d̄η/2ḡ, we can find an approximation
of g such that f̄ is the desired C1 function. This completes the proof of Lemma 6.2.

Let f̄s and f̄u be the approximations of fs and fu as in Lemma 6.2. As in [33], we can
define the C1 contact forms α+ with e′

s ∈ Es ⊂ T M , e′
u ∈ Eu ⊂ T M , r ′

u, and r ′
s induced
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by α+, as in Remark 4.1, such that when restricted to γ0, we have α+(eu) = f̄uᾱu(eu) =
fuᾱu(eu) = 1 and similarly α+(es) = 1, which yields es = e′

s , eu = e′
u, rs = r ′

s , and ru =
r ′
u (we refer the reader to [33] for the the technical details of the approximations used in

the definition. It is enough for us to know that the induced unit vectors and expansion rates
from these approximating contact forms are arbitrary close to the ones we started with,
while agreeing on γ0). As in equation (1), we have Rα′+ = 1/(r ′

u − r ′
s){−r ′

ue
′
s − r ′

se
′
u} +

q+X for some real function q+. Let ξ ′− := 〈Rα+ , X〉.
CLAIM 6.4. There exists a regular neighborhood N(γ0) on which ξ ′− is a negative contact
structure.

Proof. Choose a 1-form α− such that ξ ′− := ker α− and α−(e′
s + e′

u) > 0. Compute

dα−(Rα+ , X) = 1
r ′
u − r ′

s

α−([X, −r ′
ue

′
s − r ′

se
′
u])

⇒ dα−(Rα+ , X)|γ0 = r ′
sr

′
u

r ′
u − r ′

s

α−(e′
s + e′

u) < 0,

where in the last equality, we have used the fact that, by construction, we have X · r ′
s =

X · rs = X · r ′
u = X · ru = 0 on γ0. Thanks to the openness of the contact condition, ξ ′− is

a negative contact structure in some tubular neighborhood N(γ0).

We can extend ξ ′|N(γ0) to some negative contact structure ξ− on M such that the
supporting bi-contact structure (ξ−, ξ+ = ker α+) has the desired properties.

COROLLARY 6.5. The bi-contact surgeries of Salmoiraghi [45, 46] can be applied in an
arbitrary small neighborhood of a periodic orbit of any Anosov flow. In particular, the
bi-contact surgery of [46] reconstructs the Goodman surgery.
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