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Geometric Perspective on Piecewise
Polynomiality of Double Hurwitz Numbers

Renzo Cavalieri and Steffen Marcus

Abstract. We describe double Hurwitz numbers as intersection numbers on the moduli space of curves
Mg,n. Using a result on the polynomiality of intersection numbers of psi classes with the Double
Ramification Cycle, our formula explains the polynomiality in chambers of double Hurwitz numbers
and the wall-crossing phenomenon in terms of a variation of correction terms to the ψ classes. We
interpret this as suggestive evidence for polynomiality of the Double Ramification Cycle (which is only
known in genera 0 and 1).

1 Introduction

This article investigates the piecewise polynomiality of double Hurwitz numbers (see
Section 2.1 for background) from a geometric perspective. The combinatorial as-
pects of this theory have been extensively studied in [GJV05, SSV08, CJM11], where
the chambers of polynomiality and inductive wall crossing formulae are explicitly
described. However, double Hurwitz numbers arise naturally from geometry as the
degree of a zero dimensional cycle: the pullback of a point via the branch map from
a compactification of a Hurwitz space to the corresponding moduli space of branch
divisors. It is therefore a natural question whether one could use this cycle to extract
information about intersection theory on some classical moduli spaces. Further cor-
roborating this question is the analogous case of simple Hurwitz numbers, counting
covers of P1 with one point of specified special ramification. Here the celebrated
ELSV formula [ELSV01], which expresses these numbers as tautological intersection
numbers on the moduli spaces of curves, has at the same time explained the com-
binatorial properties of the Hurwitz numbers and provided a wealth of remarkable
geometric consequences. One among all, the ELSV formula is a key ingredient to
Okounkov and Pandharipande’s proof of Witten’s conjecture [OP06]. The fact that
double Hurwitz numbers share simlar combinatorial properties has led Goulden,
Jackson, and Vakil to conjecture the existence of an ELSV formula for double Hur-
witz numbers in the form of an intersection of tautological classes on some (family
of) compactification(s) of the Picard Stack [GJV05, Conjecture 3.5]. To this day no
such formula has been found.

Received by the editors October 15, 2013; revised June 2, 2014.
Published electronically August 6, 2014.
Research of R.C. supported by NSF grant DMS-1101549, NSF RTG grant 1159964 .
AMS subject classification: 14N35.
Keywords: double Hurwitz numbers, wall crossings, moduli spaces, ELSV formula.

749

https://doi.org/10.4153/CMB-2014-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-031-6


750 R. Cavalieri and S. Marcus

In this article we take a different approach and express the double Hurwitz num-
ber as an intersection of tautological classes on Mg,n (Proposition 5.1). We inter-
pret the double Hurwitz zero dimensional cycle essentially as the top intersection of

xiψ̃i , a psi class on the moduli space of rubber relative stable maps to P1. We then
pushforward this expression to the moduli space of curves via the stabilization mor-
phism, obtaining a formula in terms of tautological intersections on Mg,n. There are
a few fundamental facts that combine to show that our formula explains the chamber
structure and piecewise polynomiality of double Hurwitz numbers (Corollary 5.2).
First, psi classes on spaces of relative stable maps equal the pullback of psi classes on
the moduli spaces of curves plus some chamber dependent boundary corrections.
Therefore, the projection formula gives us the double Hurwitz number as intersec-
tion numbers of psi classes and cycles c∆ supported on chamber-dependent bound-
ary strata ∆. For a given ∆ in Mg,n such that the dual graph has genus l, the cycle c∆

is obtained as follows. There is a finite collection of boundary strata in the space of
maps whose pushforward is supported on ∆. Such a collection is parameterized by
the lattice points of an l-dimensional polytope P∆ whose faces are given by homo-
geneous linear equations in the entries of x. From each such boundary stratum we
pushforward the restriction of the virtual fundamental class [Mg(P1; x)]vir. When
doing so, ghost automorphisms in the boundary of the space of relative stable maps
give a contribution for each node of ∆ that is a linear factor in the coordinates of x
and of the ambient lattice for P∆. If we assume that the pushforward of the virtual
class of the moduli space of rubber relative stable maps of a given genus g is a polyno-
mial class of degree 2g, then some elementary bookkeeping shows that the coefficient
of ∆ is a polynomial class of degree 4g − 3 + n.

The polynomiality of the pushforward of the virtual class of relative stable maps
is not just wishful thinking. In recent years such a class has been studied intensely
by several groups of mathematicians from different areas, perhaps due to Eliash-
berg’s request for a working understanding of the double ramification cycle Hg(x) :=
stab∗[Mg(P1; x)]vir, which should play a key role in symplectic field theory [EGH00].
In [Hai11], Hain showed that the restriction of Hg(x) to Mct

g,n (curves of compact
type) is a homogeneous polynomial of degree 2g (sometimes called the Hain class).
Grushevski and Zakharov [GZa, GZb] further extend this class to a larger partial
compactification of Mg,n, including curves with one loop in the dual graph; the
class is still a polynomial of degree 2g, but it is no longer homogeneous. Finally
Buryak, Shadrin, Spitz, and Zvonkine [BSSZ] study the intersections of Hg(x) with
monomials in psi classes, obtaining results that are consistent with the polynomiality
assumption—in particular allowing us to prove that the coefficient of ∆ is a poly-
nomial class of degree 4g − 3 + n with no additional assumption. These authors
also use, in an essential way, the comparison of psi classes among the various moduli
spaces in question. We remark that polynomiality of the double ramification cycle
holds trivially in genus 0 and is true in genus 1. In this case the correction between
the Hain class and the double ramification cycle is very suggestively just the class λ1,
with constant coefficient 1.

Analyzing the chamber dependence of our formula for double Hurwitz numbers,
we establish an intersection theoretic formula for the wall crossings (Theorem 5.3).
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We show that it is controlled by the pushforward of a specific divisor in the moduli
space of relative stable maps that we call the wall-crossing divisor. In the rational
case, a considerably simpler geometric wall-crossing formula is expressed (Proposi-
tion 5.4) in terms of a unique irreducible divisor D (Figure 5).

The paper is organized as follows. Section 2 contains basic definitions and back-
ground information needed to build up diagram (2.1), which plays a key role in this
work. In Section 3 we provide technical vanishing lemmas for the pushforwards of
boundary loci in M

∼
g (P1; x) through the stabilization morphism. In Section 4 we

compare pullbacks and pushforwards of the various cotangent line bundle classes
along these maps. Most of the results in Section 4 are already found in [Ion02],
[BSSZ], but we present some streamlined proofs in algebro-geometric language. In
Section 5 we bring everything together to provide the geometric realization of double
Hurwitz numbers and their wall crossings.

2 Setup

In this section we quickly recall the necessary background in double Hurwitz theory
and explain the objects involved in the central diagram (2.1) inspiring Theorem 5.2.

2.1 Double Hurwitz Numbers

Fix n ∈ Z>0 a positive integer and let

x ∈ Zn
0 =

{
x ∈ Zn

∣∣ ∑
i

xi = 0
}

be an n-tuple of integers summing to zero. Denote by x0 and x∞ the tuples given
by the positive and negative components of x respectively. Double Hurwitz numbers
Hg(x) are invariants giving a (automorphism-weighted) count of the genus g cov-
ers of P1 with ramification profiles over 0 and ∞ prescribed by x0 and x∞. These
numbers determine a function

Hg : Zn
0 −→ Q

on the integral lattice of zero-sum n-tuple of integers. Goulden, Jackson, and Vakil
[GJV05, Theorem 2.1] show that Hg(x) is piecewise polynomial of degree 4g − 3 + n.
A complete combinatorial description of this piecewise polynomiality behavior is
given by Shadrin, Shapiro, and Vainshtein [SSV08] in genus 0 and by Cavalieri, John-
son, and Markwig [CJM11] in full genera. For I ranging among the proper subsets
of {1, . . . , n}, the hyperplanes

WI =
{∑

i∈I
xi = 0

}
form walls in Rn defining the chambers of polynomiality c as the connected com-
ponents of the complement. Explicit wall-crossing formulae in [SSV08, CJM11]
are modular and inductive, in the sense that they describe the variation of a Hur-
witz polynomial across a wall in terms of products of double Hurwitz numbers with
smaller invariants.
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2.2 Curves

The Deligne–Mumford compactification Mg,n of the moduli space of curves parame-
terizes families of stable projective genus g algebraic curves with n marked points and
has dimension 3g−3 + n. Stability is defined to be ampleness of the log canonical di-
visor ωC +

∑
i pi . Much of the intersection theory of this moduli space is captured by

the tautological ring R∗(Mg,n) ⊂ CH∗(Mg,n), a naturally defined subring containing
most of the known geometrically defined Chow classes. These include the cotangent
line bundle classes

ψi ∈ R1(Mg,n), i = 1, . . . , n

the Chern classes of the Hodge bundle

λ j ∈ R j(Mg,n), j = 1, . . . , g

and the various boundary strata.

2.3 Losev-Manin Spaces

One may alter the stability condition by assigning weights {ai}n
i=1 to the marked

points and requiring ωC +
∑

i ai pi to be ample. This produces a moduli space
Mg,n(a1, . . . , an) of weighted stable curves ([Has03]) with various new combinato-
rial properties. In genus 0, assigning weight one to two points denoted 0 and∞ and
giving an infinitesimally small weight ε to the remaining r others results in such a
space, also known as the Losev–Manin space ([LM00]). We work with its quotient
by the symmetric group action forgetting the ordering of the r “shadow” points:

Mbr :=
[
M0,2+r(1, 1, ε, . . . , ε)/Sr

]
.

There is a natural contraction morphism c : M0,n → M0,2+r(1, 1, ε, . . . , ε) and the
cotangent line bundle classes ψ̂0 and ψ̂∞ at the fully weighted special points pullback
via c to the corresponding ordinary ψ classes on M0,n.

2.4 Relative Maps to P1

The moduli space

Mg(P1; x) := Mg(P1; x0[0], x∞[∞])

of relative stable maps ([GV05]) to P1 parameterizes degree d stable maps relative
to the points 0 and∞ with prescribed ramification given by x0 and x∞ respectively.
We consider the variant of this space M

∼
g (P1; x) in which the target is an unparam-

eterized or “rubber” P1. Closed points in this space are branched degree d maps
f : C → T to a semi-stable chain T of projective lines with the appropriate ramifi-
cation over the two special points, which lie on the external components of T. The
pre-images of the relative divisors 0 and ∞ are considered marked. For each such
marked point i we have a cotangent line bundle class that we denote ψ̃i . This moduli
space admits a virtual fundamental class of dimension 2g − 3 + n.
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2.5 The Central Diagram

The relative stable maps space M
∼
g (P1; x) admits a natural stabilization morphism

stab : M
∼
g (P1; x)→Mg,n,

defined by sending a relative stable map f : C → T to the Deligne–Mumford stabi-
lization C of the source curve. In [FP05, Theorem 1], Faber and Pandharipande show
that the pushforward

Hg(x) := stab∗[M
∼
g (P1; x)]vir

is a tautological class of codimension g. In [GV03] this is called the double Hurwitz
class. More recently the name double ramification cycle has been adopted in [GZa,
GZb, BSSZ] for the cycle naturally representing Hg(x).

The space M
∼
g (P1; x) also admits a natural branch morphism

br : M
∼
g (P1; x)→Mbr,

defined by sending a map f : C → T to the expanded target T with the branch divisor
away from 0 and∞ marked by the r = 2g − 2 + n lightly weighted markings. The
double Hurwitz number Hg(x) is the degree of the branch morphism:

Hg(x) =

∫
[M

∼
g (P1;x)]vir

br∗([pt]).

We use the diagram

(2.1) Mbr M
∼
g (P1; x)

stab //broo Mg,n

to espress Hg(x) as an intersection number on Mg,n as:

(2.2) Hg(x)[pt] = stab∗(br∗([pt])).

3 Vanishing of Boundary Loci

We now provide a statement about the vanishing of boundary loci in M
∼
g (P1; x). Let

∆̃g,k denote an irreducible codimension k boundary stratum in M
∼
g (P1; x), described

generically by a relative stable map to a k-th expansion T of P1 (see Figure 1), and let
∆̃vir

g,k denote the class obtained by capping it with the virtual fundamental class of the
moduli space of maps.

We introduce notation for concepts illustrated in Figure 1. For a fixed locus ∆̃g,k,

denote by ( fη : Cη → T) ∈ ∆̃g,k the generic relative stable map characterizing ∆̃g,k,
and let π : Cη → Cη be its Deligne–Mumford stabilization. Recall that Cη is a nodal
pre-stable curve, Cη := stab( fη) is a nodal stable curve, and T is an unparameterized
chain of k projective lines.

Call an irreducible component C ′ ∈ Cη trivial if it is contracted by π. Non-
contracted irreducible components are called non-trivial. The trivial components
are precisely those that map via fη as a Galois cover to a single component of T, fully
ramified over 2 branch points. Similarly, for each node p ∈ Cη in the stabilization,
we call the pre-images π−1(p) non-trivial nodes of Cη . Notice that a non-trivial node
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0 ∞

x0 x∞

Figure 1: The generic relative stable map of an irreducible codimension k boundary stratum

∆̃g,k of M
∼
g (P1; x). The target chain of rational curves has k + 1 components.

can either be an isolated node or a chain of trivial components that stabilize to a
node. A node p ∈ Cη is called trivial if it is not a non-trivial node (see Figure 2 for
a labeling of such parts). Denote by γ the number of non-trivial components of Cη

and δ the number of non-trivial nodes. We are also concerned with the number l
of minimal cycles in Cη , that is, the first betti number of its dual graph. The euler
characteristic of the dual graph immediately gives the relation

(3.1) 1− l = δ − γ.

0 ∞

trivial nodes

trivial components non-trivial components

non-trivial nodes

Figure 2: A diagram labeling trivial and non-trivial nodes and components.

In this section we give a combinatorial condition for the vanishing of the pushfor-
ward stab∗ ∆̃vir

g,k. We warm up by recalling the statement in genus 0.
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Lemma 3.1 ([BCM13]) Let ∆̃0,k ⊂ M
∼
0 (P1; x) be a boundary stratum described

generically as having an expanded target T with k nodes, as in Figure 1. Then
stab∗[∆̃0,k] 6= 0 if and only if δ = k.

Proof In this case, dim(M
∼
0 (P1; x)) = dim(M0,n) = n− 3, thus stab∗[∆̃0,k] 6= 0 if

and only if stab(∆̃0,k) is a locus of codimension k. By the well-known combinatorial
description of the boundary strata of M0,n, the stabilization Cη must have precicely k
nodes, i.e., δ = k.

Note that since a genus 0 pre-nodal curve is of compact type, we must have l = 0
and (by (3.1)) γ = k+1 non-trivial components, one for each irreducible component
in the expanded target T.

Lemma 3.2 Let ∆̃g,k ⊂ M
∼
g (P1; x) be a boundary stratum described generically as

having an expanded target T with k components, as in Figure 1. Then stab∗[∆̃vir
g,k] 6= 0

if and only if δ = l + k.

Proof For each i = 1, . . . , γ, let Ci be the collection of non-trivial components of
Cη , gi their respective genus, and Ti the irreducible component of T onto which Ci

surjects via fη . For each i, the map fη restricted to Ci describes the generic point
of a moduli space M

∼
gi

(P1; xi) of relative maps to Ti
∼= P1, where xi is the vector

of integers recording the ramification profile of this restriction over the two special
points of Ti . The locus ∆̃g,k maps to a fiber product of moduli spaces
(3.2)

∆̃g,k p
//

stab

��

M :=

∏
stabi||

M
∼
g1

(P1; x1)×M1 M
∼
g2

(P1; x2)×M2 · · · ×Mγ−1 M
∼
gγ (P1; xγ)

Mg,n,

where the Mi are zero dimensional moduli spaces of maps of non-trivial nodes along
which our maps glue to form the objects of M

∼
g (P1; x). Diagram (3.2) is natural

with respect to virtual classes, hence we have that stab∗(∆̃vir
g,k) factors through the

map p. It is immediate that p has positive dimensional fibers unless there is precisely
one non-trivial component over each component of the expanded target. A neces-
sary condition for stab∗(∆̃vir

g,k∆̃
) 6= 0 is then that γ = k + 1. Equation (3.1) now

immediately implies that δ = l + k.
Note that the dimension of stab(∆̃vir

g,k) is

k+1∑
i=1

(2gi − 3 + l(xi)) = 2(g − l)− 3γ +
γ∑

i=1
l(xi) = 2g − 3 + n,

where the last equality follows from

γ∑
i=1

l(xi) = n + 2δ,
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since the parts of the tuples xi corresponding to non-trivial nodes are counted twice,
once for each of the two non-trivial components branching at that node, and the rest
correspond exactly to the original ramification data x.

To conclude our proof, it suffices to observe that stab∗(∆̃vir
g,k) is a double Hurwitz

class on each of the factors of the strata that support it, and is therefore non-zero as
the double Hurwitz classes are not.

4 Comparisons Lemmas

This section contains the technical lemmas needed to compare and evaluate the var-
ious ψ classes appearing in diagram (2.1).

Lemma 4.1 Denote by ψ̂0 ∈ R1(Mbr) the psi class corresponding to one of the two
points with weight one. Then

ψ̂
2g−3+n
0 =

1

r!
[pt].

Proof Consider the contraction morphism

c : M0,r+2 →M0(1, 1, ε, . . . , ε).

Since the point 0 has weight 1, we have that c∗(ψ̂0) = ψ1. Therefore the top intersec-
tion of the ψ class on the weighted curves space is equal to the top intersection of a ψ
class on an (ordinary) M0,n, which is 1[pt]. The 1/r! factor comes from the fact that
the branch space we consider is a Sr quotient of M0(1, 1, ε, . . . , ε).

The following Lemma is just an adaptation to our context of [Ion02, Lemma 1.17].

Lemma 4.2 Let ψ̃i ∈ R1(M
∼
g (P1; x)) correspond to a ramification point of order xi

mapping to 0. Then br∗(ψ̂0) = xiψ̃i .

Proof Consider the commutative diagram

U
∼
g (x)

$$
f

��
Ubr

%%

M
∼
g (P1; x)

br
��

si

hh

Mbr,
s0

^^

where U
∼
g (x) and Ubr are the respective universal curves, and the maps si and s0 are

the sections for the respective marked points. We then have the following chain of
equalities:

br∗(ψ̂0) = − br∗ s∗0 (0) = −s∗i f ∗(0) = −s∗i (xisi) = xiψ̃i .
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0 ∞

xi

Figure 3: The map parameterized by a generic point of an irreducible boundary divisor
D ⊂ M

∼
g (P1; x), and the corresponding expanded target. The corresponding divisor Ti in

the Losev-Manin space is naturally a product of two other Losev-Manin spaces via the mor-
phism gluing the weight 1 points • and ?; the natural projections are used to define the classes

ψ̂•, ψ̂? via pullback. These classes are supported on Ti , and corresponding to the psi classes “at
the shadows of the node”.

Lemma 4.3 Let ψ̃i ∈ R1(M
∼
g (P1; x)) correspond to a ramification point of order

xi , and let ψi ∈ R1(Mg,n) be the psi class for the same mark after forgetting the map.
Denote by Di the divisor parameterizing maps where the i-th mark is supported on a
trivial component. Then

ψ̃i = stab∗ ψi +
1

xi
Di .

Proof Consider the commutative diagram

U
∼
g (x)

Stab //

��

Ug,n

��
M
∼
g (P1; x)

s̃i

TT

stab // Mg,n

si

TT

where U
∼
g (x) and Ug,n are the respective universal curves, and the maps s̃i and si

are the sections for the respective marked points. Denote by Ei ⊂ U
∼
g (x) the locus

of the contracted rational bubbles supporting the i-th mark. We observe that Ei

intersects the image of the section s̃i on the locus Zi parameterizing the xi-twisted
nodes where the trivial components attach to the rest of the curve; Zi is a Zxi gerbe
over Di . Abusing notation and denoting by si (resp. s̃i) both a section and its image,
we have

ψ̃i = −s̃i
∗(s̃i) = −s̃i

∗(Stab∗(si)− Ei) = stab∗(ψi) +
1

xi
Di .
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Lemma 4.4 With all notation as in Lemma 4.3, let D be an irreducible component of

Di and let ψ̂•, ψ̂? be the classes introduced and explained in Figure 3. Then

(4.1) ψ̃i |D = − 1

xi
br∗(ψ̂•).

Proof Consider the restriction of the exceptional locus E|π∗(D) → D. It is a pro-
jective bundle with fibers P1, and we can identify the locus of nodes Z with the 0
section, and the image of s̃i with the infinity section of this bundle. Denoting by N0

and N∞ the respective normal bundles, it is a fact that c1(N0) = −c1(N∞). Then
formula (4.1) follows immediately from Lemma 4.2.

5 Geometric Wall Crossing

Fix a genus g and ramification data x in a chamber of polynomiality c. Our first result
is a formula computing the double Hurwitz number (i.e., 0-dimensional cycle) Hg(x)
as an intersection number on the moduli space of curves .

Proposition 5.1 The following equality of zero dimensional cycles in Mg,n holds:

(5.1) Hg(x)[pt] =

r!
2g−3+n∑

k=0

(
2g − 3 + n

k

)
x2g−3+n−k

i ψ
2g−3+n−k
i stab∗

(
(Dc

i )
k ∩ [M

∼
g (P1; x)]vir

)
.

Proof Recall diagram (2.1) and formula (2.2). An application of Lemmas 4.1, 4.2
and 4.3 provides the chain of equalities:

br∗[pt] ∩ [M
∼
g (P1; x)]vir 4.1

=r! br∗(ψ̂2g−3+n) ∩ [M
∼
g (P1; x)]vir

4.2
=r!(xiψ̃i)

2g−3+n ∩ [M
∼
g (P1; x)]vir

4.3
=r!(xi stab∗ ψi + Dc

i )
2g−3+n ∩ [M

∼
g (P1; x)]vir

in the Chow ring of M
∼
g (P1; x) for any i-th marked pre-image of 0. Pushing for-

ward via the stabilization morphism, expanding, and applying the projection for-
mula yields

Hg(x)[pt]

= r! stab∗
(

(xi stab∗ ψi + Dc
i )

2g−3+n ∩ [M
∼
g (P1; x)]vir

)
= r! stab∗

( 2g−3+n∑
k=0

(
2g − 3 + n

k

)
(xi stab∗ ψi)

2g−3+n−k(Dc
i )

k ∩ [M
∼
g (P1; x)]vir

)
= r!

2g−3+n∑
k=0

(
2g − 3 + n

k

)
(xiψi)

2g−3+n−k stab∗
(

(Dc
i )

k ∩ [M
∼
g (P1; x)]vir

)
.

(5.2)

Corollary 5.2 Hg(x) is a piecewise polynomial function of degree 4g − 3 + n.
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Proof In [BSSZ], it was shown that top intersections of psi classes with Hg(x) be-
have as if Hg(x) were a Chow valued (possibly piecewise) polynomial of degree 2g.

Using this fact, we show that for every k, stab∗((Dc
i )

k ∩ [M
∼
g (P1; x)]vir) in chamber c

“is” a polynomial class of degree 2g + k, by which we mean it intersects monomials
in psi classes as if it were. Then the corollary follows from the the fact that this class
is intersected with (xiψi)2g−3+n−k. Consider an irreducible boundary stratum ∆g,k

of codimension k in Mg,n. With the notation of Section 3, δ denotes the number of
nodes and l the combinatorial genus of the dual graph; ∆g,k is the (possibly empty)

image of a collection of irreducible boundary strata ∆̃g,k,m1,...,ml
, indexed by an l-tuple

of integers parameterized by the lattice points of a polytope whose faces are given by
linear functions of the xi ’s. Each irreducible component ∆̃g,k,m1,...,ml

pushes forward
to a class that is a polynomial of degree 2

∑
gi +δ in the x’s and in the m’s, considered

as variables. Adding all such contributions over the lattice points of the constraining
polytope shows that the coefficient of ∆g,k is a polynomial of degree 2

∑
gi + δ + l in

the x variables. Now we invoke the relation δ = l + k from Lemma 3.2 and recall that
g =

∑
gi + l, to conclude the proof.

As a consequence of formula (5.2) we obtain an intersection theoretic formula for
the wall crossings. We briefly recall (see [SSV08,CJM11] for a more thorough defini-
tion) that by wall crossing we mean the difference of the double Hurwitz polynomials
corresponding to two adjacent chambers.

Theorem 5.3 Consider two adjacent chambers c1 and c2, separated by a wall

WI =
{∑

i∈I
xi = 0

}
.

Assume that x ∈ c2(where
∑

i∈I xi > 0) and denote by DWI
i = Dc2

i − Dc1
i

1 ∈
M
∼
g (P1; x) the wall-crossing divisor. Then the wall-crossing formula WCI(x) is a poly-

nomial whose coefficients are classes supported on the pushforward of DWI
i .

Proof By applying formula (5.2), we have

WCI(x) = r! stab∗
((

(xi stab∗ ψi + Dc2
i )2g−3+n

− (xi stab∗ ψi + Dc1
i )2g−3+n

)
∩[M

∼
g (P1; x)]vir

)
= r! stab∗

( 2g−3+n∑
k=0

(2g−3+n
k

)
(xi stab∗ ψi)

2g−3+n−k

×
(

(Dc2
i )k − (Dc1

i )k
)
∩ [M

∼
g (P1; x)]vir

)
= r!

2g−3+n∑
k=0

k−1∑
m=0

(2g−3+n
k

)( k
m

)
(xiψi)

2g−3+n−k

× stab∗
(

(Dc1
i )m(DWI

i )k−m ∩ [M
∼
g (P1; x)]vir

)
.

(5.3)

1D
c1
i is a divisor defined in moduli spaces corresponding to x ∈ c1. We define it for x ∈ c2 by

considering only the irreducible components that exist when evaluated at x. Specifically, this means that
all ghost automorphism weights of non-trivial nodes remain positive.
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Since the second summation terminates at k − 1, formula (5.3) is supported on
stab∗(D

WI
i ).

An Example in Genus 0

In this example we exhibit a wall crossing in the polynomiality of genus 0 five pointed
double Hurwitz numbers using the above formulas. Our path begins in the totally
negative chamber, where x1 and x2 are positive; x3, x4, and x5 are negative; x1 is very
large; and x2 is very small:

x3, x4, x5 < −ε, x1 � 0, ε > x2 > 0.

Denote this chamber by c1. We will cross the wall W{x2,x5} given by x2 + x5 = 0,
i.e., moving from c1, where x2 + x5 < 0 to the adjacent chamber c2, where x2 +
x5 > 0, allowing |x2| to overtake |x5|. As described in [SSV08], the double Hurwitz
polynomials take the form:

c1: H0(x) = 3!x2
1

c2: H0(x) = 3!x1(x1 + x2 + x5)

with the wall crossing given by the polynomial contribution

WC(x){x2,x5} = 3(x2 + x5)2x1.

In the chamber c1, the divisor Dc1
1 is empty, so Formula (5.1) reduces easily to

H0(x) = 3!x2
1, since only the k = 0 term in the sum contributes. Crossing the wall

W{x2,x5} to c2, the divisor Dc2
1 is non-empty and takes the form of Figure 4. Notice

that, after an inconsequential replacement of I with Ic, Dc1
1 is an example of the more

general form of a genus 0 wall-crossing divisor depicted in Figure 5. This is because
in c1 the divisor is empty, so the c2 divisor alone controls the wall crossing.

Formula 5.1 determines our double Hurwitz polynomial in c2 to be the intersec-
tion

H0(x) = 3!
(

x2
1 + 2x1ψ1 stab∗Dvir + stab∗(D

2
vir)
)
,

where Dvir := Dc2
1 ∩ [M

∼
0 (P1; x)]vir. We are left with the task of computing the two

intersections ψ1 stab∗(Dvir) and stab∗(D2
vir) on M0.n.

For the first, note that stab∗(Dvir) = (x2 + x5)D(1, 3, 4 | 2, 5). The polynomial
factor is provided by the multiplicity at the non-trivial node. Evaluating the psi class
results in a contribution of (x2 + x5)[pt.].

The second requires computing the self-intersection of Dc2
i . The normal bundle

of Dc2
i contributes − br∗ ψ̂• − br∗ ψ̂? to the excess intersection, but only − br∗ ψ̂?

remains, since ψ̂• is supported on a rational curve with three special points (0, the
node, and the single branch point on this component of the expanded target). As in
the proof of Lemma 3.2, our divisor maps to a fiber product of relative stable map
spaces determined by the non-trivial components in Figure 4. This is natural with
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0 ∞

x1

x2

x3

x4

x5

Figure 4: A generic map in the chamber 2 divisor Dc2
1 .

respect to virtual classes. The resulting intersection becomes

stab∗(− br∗(ψ̂?)Dvir)

= stab∗
(
−(x2 + x5) br∗(ψ̂?) ∩

[
M
∼
0 (P1; x1, x2 + x5, x3, x4))

] vir
)

4.2
= stab∗

(
−(x2 + x5)(x1ψ̃1) ∩

[
M
∼
0 (P1; x1, x2 + x5, x3, x4))

] vir
)

4.3
= stab∗

(
−x1(x2 + x5) stab∗ ψ1 ∩

[
M
∼
0 (P1; x1, x2 + x5, x3, x4))

] vir
)

= −x1(x2 + x5).

Thus in chamber c2 we deduce that

H0(x) =3!
(

x2
1 + 2x1ψ1 stab∗Dvir + stab∗(D

2
vir)
)

=3!
(

x2
1 + 2x1(x2 + x5)− x1(x2 + x5)

)
=3!x1(x1 + x2 + x5),

as expected. Notice that computing the polynomial wall-crossing contribution of
Theorem 5.3 in this way produces the expected result as well:

WC{x2,x5}(x) =3!
(

2x1ψ1 stab∗Dvir + stab∗(D
2
vir)
)

=3!
(

2x1(x2 + x5)− x1(x2 + x5)
)

= 3!x1(x2 + x5).

5.1 A Genus Zero Curiosity

We conclude our investigation with an intriguing observation in genus 0. Here, every
time one crosses a wall WI = {

∑
i∈I xi = 0}, the wall-crossing divisor DWI

i contains
exactly one irreducible component D that does not pushforward to 0 via stab, de-
picted in Figure 5. The divisor D has no transverse part to its self intersection, and

therefore D2 = −D(br∗(ψ̂•) + br∗(ψ̂?)). Together with Lemma 4.4, this gives the
impression that one may easily obtain a geometric proof of the combinatorial for-

mula for the wall crossing ([SSV08]), by using D as the only variation of the ψ̃ class
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0 ∞

xi

𝛿

X I

X
Ic

Figure 5: The special irreducible component D of the genus 0 wall-crossing divisor DWI
i for a

proper subset I of {1, . . . , n} containing i. This component exists only when
∑

j∈I x j < 0.
The two non-trivial components meet at the solitary non-trivial node with multiplicity δ =
−
∑

j∈I x j .

across the wall. This approach is incorrect; pushforward does not commute with in-
tersection, and hence the other irreducible components of DWI

i can and in fact do
contribute to higher powers of DWI

i . However, if one ignores all such contributions,
the final result is only incorrect up to sign. We have no conceptual explanation of
this phenomenon, but we take it to mean that there are interesting and potentially
useful vanishing statements hidden in the intersections that constitute the geometric
wall-crossing formula (5.3). We make this precise in the following proposition.

Proposition 5.4 Let g = 0 and consider two adjacent chambers c1 and c2, separated
by a wall WI = {

∑
i∈I xi = 0}. Assume that x ∈ c2 = {

∑
i∈I xi < 0} and let

D be the irreducible divisor depicted in Figure 5, with r1 and r2 being the number of
simple ramification on each component of a cover in D. We define the “naive” psi class

in chamber c1 as
˜̃
ψi := ψ̃i − D. Then

(5.4) r! stab∗((xiψ̃i)
r−1 − (xi

˜̃
ψi)

r−1) = (−1)r1−1WCI(x).

Proof We evaluate the intersection in parenthesis in the left hand side of (5.4):

(xiψ̃i)
r−1 − (xiψ̃i − D)r−1 = −

r−1∑
k=1

(
r − 1

k

)
(−1)kDk(xiψ̃i)

r−1−k

=
r−1∑
k=1

(
r − 1

k

)
(−1)r−1−k(br∗(ψ̂•) + br∗(ψ̂?))k−1D br∗(ψ̂•)

r−1−k

=
( r−1∑

k=r2

(
r − 1

k

)(
k− 1

r2 − 1

)
(−1)r−1−k

)
D br∗(ψ̂•)

r1−1 br∗(ψ̂?)
r2−1.

(5.5)
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The second equality in (5.5) is a combination of the non-transverse intersection Dk

and Lemma 4.4. The last equality follows from analyzing the terms of appropriate
degree in the expansion of the binomial. We make the claim that the summation of
those combinatorial coefficients is just a fancy way of saying (−1)r1−1. Then, multi-
plying (5.5) by r! and pushing forward via stab, we obtain

(−1)r1−1δ

(
r − 1r1

H

)
0

(xI + δ)H0(xIc − δ) = (−1)r1−1WCI(x).

To prove the claim, it suffices to observe that the summation in parenthesis in
(5.5) equals

r2

(
r − 1

r2

)∫ 1

0
t r2−1(t − 1)r1−1dt.

Integrating by parts r1 − 1 times evaluates this integral at (−1)r1−1.
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