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Orbital L-functions for the Space of Binary
Cubic Forms
Takashi Taniguchi and Frank Thorne

Abstract. We introduce the notion of orbital L-functions for the space of binary cubic forms and in-
vestigate their analytic properties. We study their functional equations and residue formulas in some
detail. Aside from their intrinsic interest, the results from this paper are used to prove the existence of
secondary terms in counting functions for cubic fields. This is worked out in a companion paper.

1 Introduction

The theory of prehomogeneous vector spaces was initiated by M. Sato in early 1960s.
A finite dimensional representation of complex algebraic group (G,V ) is called a
prehomogeneous vector space if there exists a Zariski open orbit. One arithmetic sig-
nificance of this is, that if (G,V ) is defined over a number field, then there exist zeta
functions associated to (G,V ) which have analytic continuations and satisfy func-
tional equations. This was discovered by M. Sato and T. Shintani [24] and numerous
number-theoretic applications have been given (see, e.g., [3, 10, 15, 25–27, 31, 32].)

Let (G,V ) be the space of binary cubic forms:

G := GL2, V := {x(u, v) = x1u3 + x2u2v + x3uv2 + x4v3}.

The discriminant Disc(x(u, v)) = x2
2x2

3 + 18x1x2x3x4 − 4x1x3
3 − 4x3

2x4 − 27x2
1x2

4 is
relatively invariant under the action of G, i.e., Disc(gx) = (det g)2 Disc(x). We denote
by V ∗ the dual representation of G, which is similar to V but has a slightly different
integral structure.

This (G,V ) is an interesting example of a prehomogeneous vector space, and the
associated zeta functions were studied extensively by Shintani [25]. He introduced
the Dirichlet series

ξ±(s) :=
∑

x∈SL2(Z)\V (Z)
±Disc(x)>0

| Stab(x)|−1

|Disc(x)|s

associated to the positive and negative subsets of V (Z), and the similarly associated
ξ∗±(s) to V ∗(Z). (Here | Stab(x)| is the order of the stabilizer of x in SL2(Z).) Then he
established their notable analytic properties.
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Orbital L-functions 1321

Theorem 1.1 (Shintani) The four Dirichlet series ξ±(s) and ξ∗±(s) have holomorphic
continuations to the whole complex plane except for simple poles at s = 1, 5/6, and
we have explicit formulas for their residues. Moreover, these Dirichlet series satisfy the
functional equation(

ξ+(1− s)
ξ−(1− s)

)
=

33s−2

2π4s
Γ(s)2Γ

(
s− 1

6

)
Γ
(

s +
1

6

) (sin 2πs sinπs
3 sinπs sin 2πs

)(
ξ∗+(s)
ξ∗−(s)

)
.

The purpose of this paper is to study L-functions corresponding to Shintani’s zeta
functions, extending Datskovsky and Wright’s work [2]. Let us briefly explain our
formulation. We fix a positive integer N. For any a ∈ Z, the usual partial zeta
function ζ(s, a) is defined by the formula ζ(s, a) =

∑
n∈a+NZ,n>0 n−s. Extending this

idea, for any a ∈ V (Z) we define the partial zeta function by

ξ±(s, a) :=
1

[SL2(Z) : Γ(N)]

∑
x∈Γ(N)\(a+NV (Z))
±Disc(x)>0

| Stab(x)|−1

|Disc(x)|s
.

Here Γ(N) is the principal congruence subgroup of SL2(Z), and now | Stab(x)| de-
notes the size of the group of stabilizers of x in Γ(N). Since ξ±(s, a ′) counts the
same orbits if a ′ ≡ a (mod N), it is natural to regard a of ξ±(s, a) as an element of
V (Z/NZ) rather than of V (Z). We can easily check that ξ±(s) =

∑
a∈V (Z/NZ) ξ±(s, a),

as expected.
Recall that the group G(Z/NZ) acts on V (Z/NZ). We may now define the orbital

L-function by

ξ±(s, χ, a) :=
∑

g∈G(Z/NZ)

χ(det g)ξ±(s, ga)

for a Dirichlet character χ modulo N. We hope the analogy to the Dirichlet L-
function L(s, χ) =

∑
t∈(Z/NZ)× χ(t)ζ(s, t) is clear.1 This orbital L-function seems

to be a natural class of L-functions in the theory of prehomogeneous vector spaces,
and we focus on this ξ±(s, χ, a). We note that certain L-functions are introduced and
studied in detail in the extensive works of Datskovsky and Wright [2, 29], and our
orbital L-functions are closely related to theirs.

In this paper we prove three main results. The first one establishes fundamental
analytic properties for our zeta functions.

Theorem 1.2 For any congruence N, the orbital L-functions ξ±(s, χ, a) and the par-
tial zeta functions ξ±(s, a) have meromorphic continuations to whole complex plane
and satisfy certain functional equations. They are holomorphic except for possible sim-
ple poles at s = 1 and s = 5/6, and their residues are described in terms of certain sums
over the G(Z/NZ)-orbit of a ∈ V (Z/NZ). We have explicit formulas of those residues
in various cases. In particular, we have residue formulas when a ∈ V (Z) detects cubic
rings maximal at all primes dividing N, or when N is cube free.

1As we will see in Lemma 3.3 (iii), strong approximation for SL2 implies that the action of SL2(Z/NZ)
on (the space of) partial zeta functions is trivial. Hence it is enough to work with one-dimensional rep-
resentations χ ◦ det of GL2(Z/NZ); we can isolate each ξ±(s, a) by the orthogonality of characters on
(Z/NZ)×.
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1322 T. Taniguchi and F. Thorne

Hence, in principle we can understand the contributions of an arbitrary subset
X ⊂ V (Z) to the zeta function, as long as X is defined by a finite number of con-
gruence conditions in V (Z). We note that the first statement in this theorem is due
to F. Sato [22]. This theorem is a combination of various results in this paper, and
we give the proof in Remark 8.21. This result implies that there is a bias for the class
numbers of integral binary cubic forms in arithmetic progressions, which seems to
have been missed in the literature. We prove it in Theorem 9.2.

For a function f on V (Z/NZ), its finite Fourier transform f̂ is defined by

f̂ (b) := N−4
∑

a∈V (Z/NZ)

f (a) exp
(

2π
√
−1 · [a, b]

N

)
, b ∈ V ∗(Z/NZ),

where [∗, ∗] is the canonical pairing between V and V ∗. Our second result is explicit
formulas of the Fourier transforms of certain functions on V (Z/p2Z).

Theorem 1.3 (Theorems 6.3, 6.4) Let p be a prime not equal to 2 and 3. We have
explicit formulas of the Fourier transforms of Φp and Φ ′p, where these are functions over
V (Z/p2Z) detecting nonmaximal and nonmaximal-or-totally-ramified cubic rings at p,
respectively.

See Theorems 6.3 and 6.4 for the exact formulas. These Fourier transforms occur
in the explicit formulas for the zeta and L-functions dual to ξ±(s, a) and ξ±(s, χ, a),
and Theorem 1.3 allows us to write down these explicit formulas. This leads to an
improved analytic understanding of ξ±(s, a) and ξ±(s, χ, a).

Remark 1.4 Fouvry and Katz [7] have proved related bounds for such Fourier
transforms, in a vastly more general context. As an application involving the space of
binary cubic forms, they proved that there are infinitely many primes p ≡ 1 (mod 4)
for which p + 4 is squarefree and 3 - h(p + 4).

Their bounds are stated only for exponential sums modulo p, and even if their
methods could be used for sums over V p2 it seems unlikely that their bounds would
be sharp in the cases of our interest. That said, Fouvry and Katz’s work predicts the
phenomenon, observed in Theorems 6.3 and 6.4, that the Fourier transforms of Φp

and Φ ′p are larger on the more singular orbits.

Theorem 1.2, in combination with explicit results such as Theorem 1.3, has fruit-
ful arithmetic applications. To explain our motivation, we quote the main results of
our companion paper [28]. Our primary purpose in proving Theorems 6.3 and 6.4
is to obtain the following density theorems.

Theorem 1.5 ([28])

(i) The number of cubic fields K with 0 < ±Disc(K) < X is

N±3 (X) =
C±

12ζ(3)
X + K±

4ζ(1/3)

5Γ(2/3)3ζ(5/3)
X5/6 + O(X7/9+ε),

where C+ = K+ = 1 and C− = 3,K− =
√

3.
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(ii) For a quadratic field F, let Cl3(F) denote the 3-torsion subgroup of the ideal class
group of F. Then

∑
[F:Q]=2

0<±Disc(F)<X

# Cl3(F) =
3 + C±

π2
X+K±

8ζ(1/3)

5Γ(2/3)3

∏
p

(
1− p1/3 + 1

p(p + 1)

)
X5/6+O(X18/23+ε),

where the product in the secondary term is over all primes.

These secondary terms in Theorem 1.5 were also proved in independent work of
Bhargava, Shankar, and Tsimerman [1]. Their paper studies the space (G,V ) geo-
metrically, and does not apply the theory of the associated zeta or L-functions.

We generalize this theorem to count these discriminants in arbitrary arithmetic
progressions as well. In this case we discover a curious bias in the secondary term.
For example, when the modulus m is not divisible by 4 we prove the following.

Theorem 1.6 ([28]) Suppose m is a positive integer with 4 - m and a ∈ Z arbitrary.

(i) The number of cubic fields K with

0 < ±Disc(K) < X and Disc(K) ≡ a (mod m)

is

N±3 (X; m, a) = C±1
(

m, (m, a)
)

X + K±1 (m, a)X5/6 + O(X7/9+εm8/9).

The constant C±1 depends only on m and the greatest common divisor (m, a) of m
and a, but K±1 may be different for different values of a, even when m and (m, a)
are fixed, if there exist any nontrivial cubic characters modulo m/(m, a).

(ii) We have∑
[F:Q]=2

0<±Disc(F)<X
Disc(F)≡a mod m

# Cl3(F) = C±2
(

m, (m, a)
)

X + K±2 (m, a)X5/6 + O(X18/23+εm20/23),

where C±2 and K±2 have the same properties as C±1 and K±1 , respectively.

We refer to [28] for more explicit and general statements, including an explicit
evaluation of the constants C±i ,K

±
i , as well as associated numerical data. When 4 | m

the statements change slightly (the discriminant of any field is ≡ 0, 1 (mod 4)), but
we treat this case as well.

Concerning Theorem 1.6, Datskovsky and Wright [2] proved that certain L-func-
tions may have a pole if the character is cubic but are otherwise entire, and this is the
origin of subtle behaviours of K±i . In Section 8 we refine their significant residue for-
mulas [2] for ξ±(s, χ, a), and in particular we complete all the cases where a detects
cubic rings maximal at all primes dividing N. These formulas are used in [28] to ob-
tain the explicit formulas for K±i . In Section 9, we briefly discuss how Theorem 1.6
relates to these residue formulas.
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Besides these arithmetic applications, our explicit construction of L-functions is
also motivated by work of Ohno and Nakagawa. In 1997, Ohno [16] conjectured the
remarkably simple relations ξ∗+(s) = ξ−(s) and ξ∗−(s) = 3ξ+(s), and these relations
were proved by Nakagawa [15]. As a consequence, Shintani’s functional equation in
Theorem 1.1 takes the following self-dual form.

Theorem 1.7 (Ohno–Nakagawa) Let θ±(s) :=
√

3ξ+(s)± ξ−(s) for each sign. Then

∆±(1− s)θ±(1− s) = ∆±(s)θ±(s),

where

∆+(s) :=
( 2433

π4

) s/2
Γ
( s

2

)
Γ
( s

2
+

1

2

)
Γ
( s

2
− 1

12

)
Γ
( s

2
+

1

12

)
,

∆−(s) :=
( 2433

π4

) s/2
Γ
( s

2

)
Γ
( s

2
+

1

2

)
Γ
( s

2
+

5

12

)
Γ
( s

2
+

7

12

)
.

If we put ∆(s) =
( ∆+(s) 0

0 ∆−(s)

)
T =

( √
3 1√
3 −1

)
and ξ(s) =

( ξ+(s)
ξ−(s)

)
, then the

formula is
∆(1− s) · T · ξ(1− s) = ∆(s) · T · ξ(s).

Although the formulas ξ∗+(s) = ξ∗−(s) and ξ∗−(s) = 3ξ+(s) are very simple, Nakagawa’s
proof is quite technical; in particular, he used class field theory in a sophisticated
manner. Analogous formulas were proved by Ohno, the first author, and Wakatsuki
[17, 18] for zeta functions associated with other integral models for (G,V ), leading
to similar functional equations.

In this paper we will prove the following.

Theorem 1.8 (Theorem 7.6) For a positive integer m, let

ξm,±(s) :=
∑

x∈SL2(Z)\V (Z)
m|Disc(x)
±Disc(x)>0

| Stab(x)|−1

|Disc(x)|s
, ξm(s) :=

(
ξm,+(s)
ξm,−(s)

)
,

and for a square free integer N, write

θN (s) :=
∑
m|N

µ(m)mξm(s).

With this notation, θN (s) satisfies the functional equation

N2(1−s)∆(1− s) · T · θN (1− s) = N2s∆(s) · T · θN (s).

Here µ(m) is the Möbius function. In Theorem 7.6, we also describe the residues
of θN (s). The case N = 1 is Theorem 1.7, and we will in fact reduce the proof of this
theorem to Ohno–Nakagawa’s original formula. In the proof, we use Mori’s explicit
formulas [14] for certain orbital Gauss sums over Z/pZ.
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As the terminology “orbital L-function” indicates, understanding the G(Z/NZ)-
orbit structure of a ∈ V (Z/NZ) is fundamental for the analysis of ξ±(s, χ, a). We
pursue the theory from this viewpoint. As we noted earlier, our L-functions are
closely related to those studied by Datskovsky and Wright [2]. Although our work
overlaps with theirs to some extent, our orbital L-functions have elementary and ex-
plicit descriptions, and we hope we have developed the theory to a point where it is
quite usable in applications.

Although we focus on the particular example of the space of binary cubic forms,
the definitions and basic properties studied in Sections 3 and 4 are applicable to gen-
eral irreducible regular prehomogeneous vector spaces with a fixed integral model.
Also, our arguments in Sections 5, 6 and 8, regarded as arguments over Zp, general-
ize to the integer ring of other local fields, and a version of Theorem 1.3 holds over
an arbitrary local field with residue characteristic not 2 or 3. In a forthcoming pa-
per (joint with Manjul Bhargava), this will be used to improve the error term in the
function counting cubic extensions of any base number field, previously studied by
Datskovsky and Wright [3].

We also discuss some related results and problems. When a Dirichlet series ξ(s) =∑
an/ns is given, it is natural to twist by a Dirichlet character χ, yielding the L-

function ξ(s, χ) =
∑

anχ(n)/ns. L-functions of this type associated to prehomo-
geneous vector spaces have been previously discussed in the literature; see, e.g., [11,
20–22]. For our case of the space of binary cubic forms, we discuss this ξ(s, χ) in
Section 9. Since this ξ(s, χ) is expressed in terms of linear combinations of orbital
L-functions of the form ξ(s, χ2, a), in principle our theory contains the theory of
ξ(s, χ). However, there are some rich stories involving ξ(s, χ) for which we do not
yet have good analogues for ξ(s, χ, a). Among others, we mention the significant
work of Denef and Gyoja [6], who proved an explicit formula for a certain Gauss
sum. As a result, the functional equation of ξ(s, χ) turns out to have a nice simple
form, as observed in [22]. Their work is notable because the formula is proved for a
general prehomogeneous vector space. In this direction, although we obtain explicit
formulas of orbital Gauss sums

W (χ, a, b) :=
∑

g∈G(Z/NZ)

χ(det g) exp
(

2π
√
−1 · [ga, b]

N

)
for some special a ∈ V (Z/NZ), b ∈ V ∗(Z/NZ), it would be very interesting to fur-
ther investigate the general case.

We also remark on the secondary pole of zeta functions for “cubic cases”. What
principle underlies the fact that the space of binary cubic forms (G,V ) describes the
family of cubic extensions? In 1992, Wright and Yukie [31] clarified that this is be-
cause the component group of the generic stabilizer is isomorphic to S3, the permu-
tation group of degree 3, and they studied the relationship of this fact to geometric
interpretations of rational orbits. Among 29 types of irreducible regular prehomo-
geneous vector spaces classified by M. Sato and Kimura [23], 4 of them share this
property, and hence they should be regarded as “cubic cases”. One such cubic case is
the representation (GL2×GL2

3,Aff2⊗Aff3⊗Aff3), and the global theory for a non-
split form of this representation was given by the first author [27]. Interestingly, as
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with the (G,V ) studied in this paper, the secondary pole of the zeta function does
not vanish under a twist by cubic characters. It is likely that this property is shared
for all cubic case zeta functions, and ultimately this would reflect phenomena similar
to Theorem 1.6.

This paper is organized as follows: in Section 2 we introduce the space of binary
cubic forms V and its dual space V ∗, with natural actions of G = GL2. We also
recall the Delone–Faddeev correspondence. In Section 3 we introduce the orbital L-
functions ξ(s, χ, a) and the orbital Gauss sums W (χ, a, b). In Section 4 we discuss
the functional equations. These functional equations were obtained by F. Sato [22]
in a general setting and we apply his result. We also introduce zeta functions ξ(s, f )
associated to GN -relative invariant functions f , and express them in terms of orbital
L-functions.

Later sections develop the more specific theory for (G,V ). Let p be a prime. In
Section 5, we give orbit descriptions over Z/pZ and Z/p2Z which have arithmetic
meanings. In Section 6, we discuss the orbital Gauss sums over Z/pZ and Z/p2Z in
detail. Over Z/pZ, this was studied by S. Mori [14] and we recall his result. After that,
we compute various orbital Gauss sums over Z/p2Z for p 6= 2, 3, which is the main
technical contribution of this paper, and we prove Theorem 1.3 as a consequence.

In Section 7, we study “divisible” zeta functions and prove Theorem 1.8.

In Section 8, we study the residues of the orbital L-functions ξ(s, χ, a). With a
natural choice of the test function Φa, Wright’s adelic zeta function [29] gives an
integral expression for ξ(s, χ, a). Using the residue formula in [29], we compute the
residues of ξ(s, χ, a) for the cases of our interest. The method as well as many of these
results are due to Datskovsky and Wright [2], and our results refine theirs as needed
for our application to Theorem 1.6. These computations lead to an explicit version of
Theorem 1.2. In Section 9, we apply these results to prove residue formulas for ξ(s, χ)
(Theorem 9.1) and we prove that class numbers of binary cubic forms are biased in
arithmetic progressions (Theorem 9.2). We also compare our results to Theorem 1.6.

Notation

For a finite set X, we denote its cardinality by |X|. For a variety V defined over Z and
a ring R, the set of R-rational points is denoted by VR (rather than V (R)). The trivial
Dirichlet character is denoted by 1. Our notation mostly matches the companion
paper [28], but there are a few exceptions: the dual vector space V ∗ and the zeta
function ξ∗(s) for V ∗ in this paper are denoted by V̂ and ξ̂(s) in [28], respectively.
Also, ξm(s) in this paper denotes the m-divisible zeta function, while ξq(s) in [28]
denotes the q-nonmaximal zeta function. We hope this does not confuse the reader.

2 The Space of Binary Cubic Forms and Cubic Rings

In this section, we introduce the space of binary cubic forms V and its dual space
V ∗, with natural actions of G = GL2. We regard G, V , and V ∗ as defined over Z.
After discussing their basic properties, we recall the Delone–Faddeev correspondence
relating cubic forms to cubic rings.
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Let G = GL2 and

V = {x(u, v) = x1u3 + x2u2v + x3uv2 + x4v3 | x1, x2, x3, x4 ∈ Aff}.

We identify V with the four dimensional affine space Aff4 via x(u, v) = x1u3 +x2u2v+
x3uv2 + x4v3 ↔ x = (x1, x2, x3, x4). We consider the following twisted action of G
on V :

(g · x)(u, v) =
1

det g
x(αu + γv, βu + δv), x ∈ V, g =

(
α β
γ δ

)
∈ G.

We note that the scalar matrices act on V by the usual scalar multiplication. In terms
of coordinates, the action is given by

t (g · x) =
1

αδ − βγ


α3 α2β αβ2 β3

3α2γ α2δ + 2αβγ β2γ + 2αβδ 3β2δ
3αγ2 βγ2 + 2αγδ αδ2 + 2βγδ 3βδ2

γ3 γ2δ γδ2 δ3




x1

x2

x3

x4

,
g =

(
α β
γ δ

)
.

We usually omit · from g · x and write gx instead. Let

P(x) = x2
2x2

3 + 18x1x2x3x4 − 4x1x3
3 − 4x3

2x4 − 27x2
1x2

4,

which is the discriminant of x(u, v). Then P(gx) = (det g)2P(x).
The dual representation V ∗ is the space of linear forms on V . In the dual coordi-

nate system on V ∗, we express elements of V ∗ as y = (y1, y2, y3, y4). We denote the
canonical pairing of V and V ∗ by [x, y], so that [x, y] = x1 y1 +x2 y2 +x3 y3 +x4 y4. We
define the left action of G on V ∗ via [x, g ∗ y] = [(det g)g−1 · x, y]. Then the scalar
matrices also act by the usual scalar multiplication on V ∗. In terms of coordinates,
we have

t (g ∗ y) =
1

αδ − βγ


δ3 −3γδ2 3γ2δ −γ3

−βδ2 αδ2 + 2βγδ −(βγ2 + 2αγδ) αγ2

β2δ −(β2γ + 2αβδ) α2δ + 2αβγ −α2γ
−β3 3αβ2 −3α2β α3




y1

y2

y3

y4

,
g =

(
α β
γ δ

)
.

We usually omit ∗ from g ∗ y and write g y instead. Let

P∗(y) = 3y2
2 y2

3 + 6y1 y2 y3 y4 − 4y1 y3
3 − 4y3

2 y4 − y2
1 y2

4.

Then P∗(g y) = (det g)2P∗(y).
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We recall an embedding of V ∗ into V which is compatible with the action of G.
Let

ι : V ∗ 3 (y1, y2, y3, y4) 7→ (y4,−3y3, 3y2,−y1) ∈ V.

Then we have ι(g ∗ y) = g · ι(y). Hence if 3 is not a zero divisor in a ring R, we can
realize V ∗R as a GR-submodule of VR. Moreover, if 3 is invertible in R then we can
identify V ∗R with VR in terms of ι. We use this identification in Section 6. Under this
identification, the bilinear form on V induced by the pairing [∗, ∗] is given as

(2.1) [x, x ′] = x4x ′1 −
1

3
x3x ′2 +

1

3
x2x ′3 − x1x ′4, x, x ′ ∈ V,

and this satisfies [gx, gx ′] = (det g)[x, x ′]. We also note that P
(
ι(y)

)
= 27P∗(y).

We now recall the so-called Delone–Faddeev correspondence, which gives a ring-
theoretic interpretation of rational orbits of (G,V ). This was originally discovered
by Levi in certain cases, was described in the textbook of Delone and Faddeev [5],
and was then proved by Gan, Gross and Savin [8] in full generality.

Let R be an arbitrary (commutative) ring. A finite R-algebra S is called a cubic ring
over R if S is free of rank 3 as an R-module.

Theorem 2.1 (Levi; [5], [8]) There is a canonical discriminant-preserving bijection
between the set of orbits GR\VR and the set of isomorphism classes of cubic rings over R.
If x ∈ VR corresponds to a cubic ring S over R, then the group of stabilizers GR,x of x in GR

is isomorphic to AutR(S), the group of automorphisms of S as an R-algebra. Moreover if
x ∈ VR is of the form x(u, v) = u3 + bu2v + cuv2 + dv3, then the corresponding cubic
ring is R[X]/(X3 + bX2 + cX + d). Also if x is of the form x(u, v) = v(u2 + cuv + dv2),
then the corresponding cubic ring is R× R[X]/(X2 + cX + d).

The proof of this theorem is well known. We simply recall the construction here.
For x = (x1, x2, x3, x4) ∈ VR, the corresponding cubic ring is the R-module R1 ⊕
Rω⊕Rθ with the commutative multiplicative structure so that 1 is the multiplicative
identity and that

ω2 = −x1x3 − x2ω + x1θ, θ2 = −x2x4 − x4ω + x3θ, ωθ = −x1x4.

For more details, see [8] for example.

3 Orbital L-functions and Orbital Gauss Sums

In this section, we introduce the notion of orbital L-functions and orbital Gauss sums,
and discuss their most basic properties. Further analytic properties are studied in
later sections.

Let N be a positive integer. We put

GN := GZ/NZ = GL2(Z/NZ), VN := VZ/NZ
∼= VZ/NVZ.

Then GN acts on VN . For a ∈ VN , let GN,a := {g ∈ GN | ga = a}, the group of
stabilizers. For each a ∈ VN , a + NVZ is invariant under the action of the principal

https://doi.org/10.4153/CJM-2013-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-027-0


Orbital L-functions 1329

congruence subgroup Γ(N) := ker
(

SL2(Z) → SL2(Z/NZ)
)

of SL2(Z). Let χ be
a Dirichlet character whose conductor m = m(χ) is a divisor of N. As usual, we
regard χ as a character modulo N via the reduction map (Z/NZ)× → (Z/mZ)×.

For a congruence subgroup Γ of SL2(Z) and a Γ-invariant subset X of VZ, we put

ξ±(s,X,Γ) :=
1

[SL2(Z) : Γ]

∑
x∈Γ\X
±P(x)>0

|Γx|−1

|P(x)|s

where Γx = {γ ∈ Γ | γx = γ}, and

ξ(s,X,Γ) :=

(
ξ+(s,X,Γ)
ξ−(s,X,Γ)

)
.

We put
ξ(s) := ξ

(
s,VZ, SL2(Z)

)
.

This is the zeta function introduced and studied by Shintani [25]. As a generalisation,
we introduce the following.

Definition 3.1 We define

ξ(s, a) := ξ
(

s, a + NVZ,Γ(N)
)
,

ξ(s, χ, a) :=
∑

g∈GN

χ(det g)ξ(s, ga).

We call ξ(s, a) a partial zeta function and ξ(s, χ, a) an orbital L-function for the space
of binary cubic forms.

Remark 3.2 We will observe in Propositions 4.6 and 4.7 that we can define ξ(s, χ, a)
in terms of only SL2(Z) and not Γ(N).

For these zeta functions, the following basic properties hold.

Lemma 3.3

(i) For g ∈ GN , ξ(s, χ, ga) = χ(det g)−1ξ(s, χ, a).
(ii) We have

∑
a∈VN

ξ(s, a) = ξ(s).
(iii) If g ∈ SL2(Z/NZ), then ξ(s, ga) = ξ(s, a).

Proof These are not too difficult to verify from the definitions. Alternatively, one can
apply Proposition 3.3 of [17] as follows: (i) immediately follows from the definition,
while (ii) follows from [17, Proposition 3.3 (1) and (4)]. For (iii), first note that
the canonical map SL2(Z) → SL2(Z/NZ) is surjective. Take any lift γ ∈ SL2(Z) of
g ∈ SL2(Z/NZ), then γ(a + NVZ) = ga + NVZ by definition. By [17, Proposition 3.3
(2)], we have

ξ(s, ga) = ξ
(

s, ga + NVZ,Γ(N)
)

= ξ
(

s, γ(a + NVZ),Γ(N)
)

= ξ
(

s, γ(a + NVZ), γΓ(N)γ−1
)

= ξ
(

s, a + NVZ,Γ(N)
)

= ξ(s, a).

Note that Γ(N) is a normal subgroup of SL2(Z).
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We put

T :=

{
t =

(
1 0
0 t1

) ∣∣∣ t1 ∈ GL1

}
∼= GL1

and TN = TZ/NZ
∼= (Z/NZ)×. Then since G = SL2 oT, we can write ξ(s, χ, a) as

(3.1) ξ(s, χ, a) =
|GN |
|TN |

∑
t∈TN

χ(det t)ξ(s, ta).

Since TN is an abelian group, by the orthogonality of characters we have the follow-
ing.

Proposition 3.4 We have

ξ(s, a) = |GN |−1
∑
χ

ξ(s, χ, a).

Here χ runs through all the Dirichlet characters of conductors dividing N.

Hence the study of partial zeta functions is equivalent to that of orbital L-func-
tions. Since orbital L-functions are theoretically more natural to study, we concen-
trate on these for the rest of this paper.

We put V ∗N = V ∗Z/NZ
∼= V ∗Z/NV ∗Z . Then GN acts on V ∗N also. We define the zeta

functions for the dual ξ∗(s, b), ξ∗(s, χ, b) for each b ∈ V ∗N in exactly the same way;
letting

ξ∗±(s,Y,Γ) :=
1

[SL2(Z) : Γ]

∑
y∈Γ\Y
±P∗(y)>0

|Γy |−1

|P∗(y)|s
, ξ∗(s,Y,Γ) :=

(
ξ∗+(s,Y,Γ)
ξ∗−(s,Y,Γ)

)
,

we define

ξ∗(s, b) := ξ∗
(

s, b + NV ∗Z ,Γ(N)
)
,

ξ∗(s, χ, b) :=
∑

g∈GN

χ(det g)ξ∗(s, gb).

They satisfy the same properties in Lemma 3.3. Namely,
∑

b∈V∗N
ξ∗(s, b) = ξ∗(s),

ξ∗(s, gb) = ξ∗(s, b) for g ∈ SL2(Z/NZ), and ξ∗(s, χ, gb) = χ(det g)−1ξ∗(s, χ, b).
Here we put ξ∗(s) = ξ∗

(
s,V ∗Z ,Γ(1)

)
.

We note that ξ∗(s,Y,Γ) = 27sξ
(

s, ι(Y ),Γ
)

where ι : V ∗Z → VZ is the embedding

introduced in Section 2. The factor 27s comes from the relation P
(
ι(y)

)
= 27P∗(y)

for y ∈ Y ⊂ V ∗Z . Also if Y is defined by congruence conditions modulo N in V ∗Z , then
ι(Y ) is determined by congruence conditions modulo 3N in VZ. Hence it is possible
to write ξ∗(s, b) (and hence ξ∗(s, χ, b)) in terms of linear combinations of ξ(s, a).

We conclude this section with the definition of the orbital Gauss sum. For a ∈
VN , b ∈ V ∗N , we put 〈a, b〉 := exp(2πi[a, b]/N). If we emphasize the dependence
on N, we write 〈a, b〉N also.
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Definition 3.5 For a ∈ VN , b ∈ V ∗N we define

W (χ, a, b) :=
∑

g∈GN

χ(det g)〈ga, b〉 =
∑

g∈GN

χ(det g)〈a, gb〉

and call it the orbital Gauss sum.

The second equality holds because [a, gb] = [(det g)g−1a, b]. If we emphasize
the dependence on N, we write WN (χ, a, b) also. The following immediately follows
from the definition.

Lemma 3.6 For g1, g2 ∈ GN ,

W (χ, g1a, g2b) = χ(det g1)−1χ(det g2)−1W (χ, a, b).

In particular, if χ ◦ det is nontrivial either on GN,a or GN,b, then W (χ, a, b) = 0.

The significance of this character sum will be clarified in the next section. In par-
ticular, this appears in the functional equation satisfied by ξ(s, χ, a) and ξ∗(s, χ−1, b).

4 Functional equation

In this section we discuss the functional equation of the zeta functions. To begin, we
recall Shintani’s functional equation [25].

Theorem 4.1 (Shintani) Let

M(s) :=
33s−2

2π4s
Γ(s)2Γ

(
s− 1

6

)
Γ
(

s +
1

6

) (sin 2πs sinπs
3 sinπs sin 2πs

)
.

Then
ξ(1− s) = M(s) · ξ∗(s).

An extension necessary for us was given by F. Sato [22] in a general setting. We
recall his formula and apply it to our orbital L-functions. Let C(VN ) and C(V ∗N ) be
the space of C-valued functions on VN and V ∗N , respectively.

Definition 4.2 For f ∈ C(VN ), f ∗ ∈ C(V ∗N ) we define the associated zeta functions
as follows:

ξ(s, f ) :=
∑

a∈VN

f (a)ξ(s, a), ξ∗(s, f ∗) :=
∑

b∈V∗N

f ∗(b)ξ∗(s, b).

This is the most general class of the zeta functions from our viewpoint and this
class contains partial zeta functions and orbital L-functions as special cases. Our
main interest is the orbital L-function but the functional equation is described most

naturally for this class. For f ∈ C(VN ), we define its Fourier transform f̂ ∈ C(V ∗N )
by

f̂ (b) = N−4
∑

a∈VN

f (a)〈a, b〉.
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By the Fourier inversion formula, we have f (a) =
∑

b∈V∗N
f̂ (b)〈−a, b〉.

By [22, Theorem Q], we have the following functional equation.

Theorem 4.3 (F. Sato) We have

ξ(1− s, f ) = N4sM(s) · ξ∗(s, f̂ ).

Sketch of Proof For the convenience of the reader, we give a brief review of Sato’s
proof. Let S(VR) be the space of Schwarz–Bruhat functions on VR. We let G+

R =
{g ∈ GR | det g > 0} and denote by dg∞ a fixed Haar measure on it. We define the
(vector valued) local zeta function

Γ∞(Φ∞, s) :=(∫
G+

R

|P(g∞x+)|s∞Φ∞(g∞x+) dg∞,

∫
G+

R

|P(g∞x−)|s∞Φ∞(g∞x−) dg∞
)
,

(4.1)

where Φ∞ ∈ S(VR). Here x± ∈ V±R = {x ∈ VR | ±P(x) > 0} is arbitrary.
As in the proof of [26, Theorem 5], we can take Φ∞ ∈ S(VR) such that Φ∞

vanishes on {x ∈ VR | P(x) = 0} and Φ̂∞ vanishes on {y ∈ V ∗R | P∗(y) = 0}, where

we put Φ̂∞(y) =
∫

VR
Φ(x) exp(−2πi[x, y]) dx. For x ∈ VZ, y ∈ V ∗Z , let f (x) =

f (x mod N) and f̂ (y) = f̂ (y mod N). Then by the standard unfolding method2 (see
the proof of Proposition 8.2 for details),∫

G+
R/Γ(N)

| det g∞|2s
∞

∑
x∈VZ

f (x)Φ∞(g∞x) dg∞ = Γ∞(Φ∞, s)ξ(s, f ).

On the other hand, by the Poisson summation formula,∑
x∈VZ

f (x)Φ∞(g∞x) = | det g∞|−2
∞

∑
y∈V∗Z

f̂ (y)Φ̂∞
(

(det g∞)−1g∞y/N
)
.

The rest of argument is standard in the theory of prehomogeneous vector spaces and
we omit the details.

Hence the study of the Fourier transform f̂ is fundamental for further analysis of
the functional equation.

Let N = N1N2, where N1 and N2 are coprime integers. For f i ∈ C(VNi ) for
i = 1, 2, we define f 1 × f 2 ∈ C(VN ) by

( f 1 × f 2)(a) = f 1(a mod N1) f 2(a mod N2), a ∈ VN .

We use the similar notation for the dual space. We note that the Fourier transform

( f 1× f 2)∧ of f 1× f 2 does not coincide with f̂ 1× f̂ 2 in general. Instead, we have the
following. For t ∈ (Z/NZ)×, let ft (a) = f (ta).

2Though we use another integral expression for ξ(s, χ, a) to compute residue formulas in Section 8, we
find this more convenient for proving the functional equation.
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Lemma 4.4 With the notation above, we have

( f 1 × f 2)∧ = ( f 1
N2

)∧ × ( f 2
N1

)∧.

Proof Let f = f 1 × f 2. Then

f ∧(b) = N−4
1 N−4

2

∑
a∈VN1N2

f (a)〈a, b〉N1N2 .

By the Chinese remainder theorem, the set of a ∈ VN1N2 is equal to the set of N2a1 +
N1a2 for a1 ∈ V1, a2 ∈ V2. Therefore, the quantity above is

N−4
1 N−4

2

∑
a1∈VN1

∑
a2∈VN2

f (N2a1 + N1a2)〈N2a1 + N1a2, b〉N1N2

= N−4
1 N−4

2

∑
a1∈VN1

∑
a2∈VN2

f 1(N2a1) f 2(N1a2)〈N2a1, b〉N1N2〈N1a2, b〉N1N2 .

We have 〈N2a1, b〉N1N2 = 〈a1, b〉N1 and 〈N1a2, b〉N1N2 = 〈a2, b〉N2 , where we reduce b
modulo N1 and N2, respectively, and the result follows.

Let N =
∏

Ni where Ni and N j are coprime for i 6= j and f i ∈ C(VNi ). Then by
the repeated use of this lemma, we have(∏

f i
)∧ =

∏
( f i

N/Ni
)∧,

where
∏

f i ∈ C(VN ) is defined similarly.
We now introduce the following space of functions on VN , which are our main

interest.

Definition 4.5 We define

C(VN , χ) := { f : VN → C | f (ga) = χ(det g) f (a) for all g ∈ GN , a ∈ VN},

the space of GN -relative invariant functions with respect to χ.

Let f ∈ C(VN , χ) and consider the associated zeta function ξ(s, f ). For x ∈ VZ, let
f (x) = f (x mod N). We note that for γ ∈ SL2(Z), f (γx) = f (x) since (γ mod N) ∈
SL2(Z/NZ) is of determinant 1. For f ∈ C(VN , χ), the zeta function ξ(s, f ) has the
following description.

Proposition 4.6 For f ∈ C(VN , χ),

ξ±(s, f ) =
∑

x∈SL2(Z)\VZ

±P(x)>0

f (x)
| SL2(Z)x|−1

|P(x)|s
where ξ(s, f ) =

(
ξ+(s, f )
ξ−(s, f )

)
.
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Proof For X ⊂ VZ, let X± = {x ∈ X | ±P(x) > 0}. Then this follows from∑
x∈SL2(Z)\V±Z

f (x)
| SL2(Z)x|−1

|P(x)|s

= [SL2(Z) : Γ(N)]−1
∑

x∈Γ(N)\V±Z

f (x)
|Γ(N)x|−1

|P(x)|s

= [SL2(Z) : Γ(N)]−1
∑

a∈VN

f (a)
∑

x∈Γ(N)\(a+NVZ)±

|Γ(N)x|−1

|P(x)|s

= ξ±(s, f ).

All the zeta functions we study in the rest of this paper will be of the form ξ(s, f )

for some f ∈ C(VN , χ). We explain how ξ(s, f ) and f̂ for these f are related to the
orbital L-functions and the orbital Gauss sums introduced in Section 3.

For a ∈ VN , we define fχ,a ∈ C(VN ) as follows: If χ ◦ det is trivial on GN,a, we
define

fχ,a(a ′) :=

{
|GN,a|χ(det g) a ′ = ga, g ∈ GN ,

0 a ′ /∈ GN · a.
Otherwise, we put fχ,a = 0. Then one can easily see that

ξ(s, fχ,a) = ξ(s, χ, a) and f̂χ,a(b) = N−4W (χ, a, b).

We also check that fχ,a ∈ C(VN , χ), and moreover if f ∈ C(VN , χ), we have

f = |GN |−1
∑

a∈VN

f (a) fχ,a.

Hence we have the following.

Proposition 4.7 Let f ∈ C(VN , χ). Then

ξ(s, f ) = |GN |−1
∑

a∈VN

f (a)ξ(s, χ, a),

f̂ (b) = N−4|GN |−1
∑

a∈VN

f (a)W (χ, a, b).

So we will study ξ(s, χ, a) and W (χ, a, b), and then apply the results to prove
analytic properties of ξ(s, f ).

For its own interest, we describe the functional equation of the orbital L-functions.

Proposition 4.8 We have

ξ(1− s, χ, a) = N4s−4M(s)
∑

b∈GN\V∗N

W (χ, a, b)

|GN,b|
ξ∗(s, χ−1, b)

=
N4s−4

|GN |
M(s)

∑
b∈V∗N

W (χ, a, b)ξ∗(s, χ−1, b).
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Proof By applying fχ,a ∈ C(VN ) to Theorem 4.3, we have

ξ(1− s, χ, a) =
N4s−4

|GN |
M(s)

∑
b∈V∗N

W (χ, a, b)ξ∗(s, b)

=
N4s−4

|GN |
M(s)

∑
b∈GN\V∗N

1

|GN,b|
∑

g∈GN

W (χ, a, gb)ξ∗(s, gb).

Since W (χ, a, gb) = χ(det g)−1W (χ, a, b), we have the first equality. Since the prod-
uct W (χ, a, b) · ξ∗(s, χ−1, b) depends only on the GN -orbits of b, we have the second
identity.

We discuss some general properties of the orbital Gauss sums. The following is
easy to prove.

Lemma 4.9 Let d | N, a ∈ VN/d, b ∈ VN and let χ be a Dirichlet character whose
conductor is a divisor of N/d. Regarding da ∈ VN , we have

WN (χ, da, b) =
|GN |
|GN/d|

WN/d(χ, a, b).

Proof Since the action of GN on da ∈ VN factors through GN → GN/d, we have

WN (χ, da, b) =
|GN |
|GN/d|

∑
g∈GN/d

χ(det g)〈gda, b〉N .

Since 〈gda, b〉N = 〈ga, b〉N/d, we have the formula.

We give two further properties of orbital Gauss sums that are generalizations of
those of the classical Gauss sum τN (χ) =

∑
t∈(Z/NZ)× χ(t) exp(2πit/N). We do not

use these results in this paper, but mention them because of their own interest. Recall
that τN (χ−1)τN (χ) = χ(−1)N if the conductor of χ is N, and τN (χ) = 0 otherwise
(see, e.g., (3.15) of [12]). As a generalization, our Gauss sum satisfies the following.

Proposition 4.10 Assume that χ ◦ det is trivial on GN,a. Then

1

N4

∑
b∈GN\V∗N

W (χ−1,−a ′, b)

|GN,b|
W (χ, a, b)

|GN,a|
=

{
χ(det g) a ′ = ga,

0 a ′ /∈ GN · a.
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Proof By the Fourier inversion formula,

fχ,a(a ′) =
∑

b∈V∗N

f̂χ,a(b)〈−a ′, b〉 = N−4
∑

b∈V∗N

W (χ, a, b)〈−a ′, b〉

= N−4
∑

b∈GN\V∗N

1

|GN,b|
∑

g∈GN

W (χ, a, gb)〈−a ′, gb〉

= N−4
∑

b∈GN\V∗N

W (χ, a, b)

|GN,b|
∑

g∈GN

χ−1(det g)〈−a ′, gb〉

= N−4
∑

b∈GN\V∗N

W (χ, a, b)

|GN,b|
W (χ−1,−a ′, b).

This is equivalent to the desired formula.

We next describe the decomposition formula. Assume N =
∏

1≤i≤r Ni , where
(Ni ,N j) = 1 if i 6= j. Using the canonical isomorphism (Z/NZ)× ∼=

∏
(Z/Ni Z)×,

we obtain a character χi on (Z/Ni Z)× by restricting χ. Then

τN (χ) =
∏

1≤i≤r
χi(N/Ni)τNi (χi)

(see e.g., (3.16) of [12]). This is generalized as follows.

Proposition 4.11 For a ∈ VN and b ∈ V ∗N , let ai = (a mod Ni) ∈ VNi and bi =
(b mod Ni) ∈ V ∗Ni

, respectively. Then

WN (χ, a, b) =
∏

1≤i≤r
χi(N/Ni)

2WNi (χi , ai , bi).

Proof Let f = fχ,a ∈ C(VN ) and fi = fi,χi ,ai ∈ C(VNi ) for each i. Then f =∏
1≤i≤r fi . Since ( fi,N/Ni

)∧ = χi(N/Ni)2( fi)∧, the result follows from Lemma 4.4.

5 Orbit Description

For the specific study of the orbital L-functions and orbital Gauss sums, it is indis-
pensable to describe the GN -orbit structure of VN explicitly. By the Chinese remain-
der theorem, this is reduced to the case when N is a prime power. Let p be a prime.
In this section, we study these orbit structures when N = p and N = p2. The the-
ory over Z/pZ is the base case and is well known, and the theory over Z/p2Z is a
refinement of this. Besides its own interest, this is significant in the study of cubic
fields, because the maximality criterion of cubic rings R over Z at p is given in terms
of congruence conditions of the coefficients modulo p2 of the corresponding integral
binary cubic forms x ∈ VZ. We will in fact prove this criterion in Proposition 5.9.
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5.1 The Case N = p

Let Σp be the following set of symbols:

Σp = {(3), (21), (111), (121), (13), (0)}.

For each (σ) ∈ Σp, we define V p(σ) ⊂ V p as follows:

V p(3) = {a ∈ V p | a(u, v) has no rational roots in P1
Fp
},

V p(21) = {a ∈ V p | a(u, v) has only one rational root in P1
Fp
},

V p(111) = {a ∈ V p | a(u, v) has three distinct rational roots in P1
Fp
},

V p(121) = {a ∈ V p | a(u, v) has one single root and one double root in P1
Fp
},

V p(13) = {a ∈ V p | a(u, v) has one triple root in P1
Fp
},

V p(0) = {0}.

So each cubic form in V p(3) is irreducible over Fp, while each cubic form in V p(21)
is the product of a linear form and an irreducible quadratic form over Fp. We have
{a ∈ V p | P(a) = 0} = V p(121) t V p(13) t V p(0). We say a ∈ V p is of type
(σ) if a ∈ V p(σ). The description of rational orbits over a field is well known
(see e.g., [29, Proposition 2.1]). Each V p(σ) consists of a single Gp-orbit. More-
over, under the Delone–Faddeev correspondence in Theorem 2.1, the correspond-
ing cubic rings over Fp are Fp3 , Fp2 × Fp, (Fp)3, Fp × Fp[X]/(X2), Fp[X]/(X3) and
Fp[X,Y ]/(X2,XY,Y 2), respectively. Note that (0, 1, 0, 0) ∈ V p(121) and (1, 0, 0, 0) ∈
V p(13). We always use them as orbital representatives of these orbits. The structure
of the stabilizers for each orbit is given as follows.

Lemma 5.1 The group of stabilizers of Gp,a of a of type (3), (21), (111), (121), (13),
and (0) are isomorphic to Z/3Z,Z/2Z,S3, F×p , F×p nFp, and Gp, respectively. Moreover,
for (0, 1, 0, 0) ∈ V p(121) and (1, 0, 0, 0) ∈ V p(13), the stabilizers are respectively given
by {(

1 0
0 t

) ∣∣∣ t ∈ F×p

}
and

{(
t x
0 t2

) ∣∣∣ t ∈ F×p , x ∈ Fp

}
.

Proof If a ∈ V p corresponds to a cubic ring Ra over Fp under the Delone–Faddeev
correspondence, then Gp,a is isomorphic to the automorphism group Aut(Ra) as an
Fp-algebra. It is easy to see that Aut(Fp3 ) ∼= Z/3Z, Aut(Fp × Fp2 ) ∼= Z/2Z and

Aut
(

(Fp)3
) ∼= S3. If g ∈ Gp stabilizes a = (0, 1, 0, 0), then g fixes (1 :0), (0 :1) ∈ P1

Fp

and hence must be a diagonal matrix. Now an easy computation determines the
stabilizers of a. The stabilizers of (1, 0, 0, 0) are similarly determined.

As a result, we see the cardinality of each orbit.
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Lemma 5.2 Let np(σ) = |V p(σ)|. Then

np(3) = 3−1(p2 − 1)(p2 − p), np(121) = (p2 − 1)p,

np(21) = 2−1(p2 − 1)(p2 − p), np(13) = (p2 − 1),

np(111) = 6−1(p2 − 1)(p2 − p), np(0) = 1.

Let Qp be the p-adic field and Zp its ring of integers. For (σ) ∈ Σp, we define

VZp (σ) := {a ∈ VZp | a mod p ∈ V p(σ)},

V pe (σ) := {a ∈ V pe | a mod p ∈ V p(σ)}, (e ≥ 1).

We say a ∈ VZp or V pe is of type (σ) if a ∈ VZp (σ) or V pe (σ), respectively.
For the application in Section 7, we introduce the following function on V p.

Definition 5.3 Let fp ∈ C(V p) be the characteristic function of those a ∈ V p with
P(a) = 0.

Obviously, fp ∈ C(V p, 1).

5.2 The Case N = p2

In this subsection we study the Gp2 -orbit structure of V p2 . We put R := Z/p2Z, and
also pR := {pu | u ∈ R}, pR× := {pu | u ∈ R×} = pR \ {0}.

Let Σp2 be the following set of symbols:

Σp2 = {(3), (21), (111), (121max), (121∗), (13
max), (13

∗), (13
∗∗)}.

We introduce V p2 (σ) for (σ) = (121max), (121∗), (13
max), (13

∗), (13
∗∗) which we show

that

V p2 (121) = V p2 (121max) tV p2 (121∗),

V p2 (13) = V p2 (13
max) tV p2 (13

∗) tV p2 (13
∗∗).

Let

Dp2 (121max) := {(0, a2, a3, a4) ∈ V p2 | a2 ∈ R×, a3 ∈ pR, a4 ∈ pR×},

Dp2 (121∗) := {(0, a2, a3, a4) ∈ V p2 | a2 ∈ R×, a3 ∈ pR, a4 = 0},

Dp2 (13
max) := {(a1, a2, a3, a4) ∈ V p2 | a1 ∈ R×, a2 ∈ pR, a3 ∈ pR, a4 ∈ pR×},

Dp2 (13
∗) := {(a1, a2, a3, a4) ∈ V p2 | a1 ∈ R×, a2 ∈ pR, a3 ∈ pR×, a4 = 0},

Dp2 (13
∗∗) := {(a1, a2, a3, a4) ∈ V p2 | a1 ∈ R×, a2 ∈ pR, a3 = a4 = 0},

and
V p2 (σ) := Gp2 ·Dp2 (σ)
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for these (σ). We say a ∈ V p2 is of type (σ) if a ∈ V p2 (σ). We put np2 (σ) := |V p2 (σ)|.
One may notice that Dp2 (13

max) is the set of modulus classes of Eisenstein poly-
nomials multiplied by units. We will prove in Proposition 5.9 that orbits containing
these modulus classes correspond to cubic rings that are totally ramified at p. A sim-
ilar interpretation in terms of partially ramified rings will be given for Dp2 (121max)
also. We also give an interpretation of these stratifications in terms of p-adic valua-
tions of P(x) in Proposition 5.7.

Let us study these sets.

Lemma 5.4 We put

Dp2 (121) = Dp2 (121max) tDp2 (121∗),

Gp2 (121) =

{(
s 0
n t

)
∈ Gp2

∣∣∣ s, t ∈ R×, n ∈ pR

}
.

(i) We have V p2 (121) = Gp2 ·Dp2 (121).
(ii) Let a ∈ Dp2 (121). Then for g ∈ Gp2 , ga ∈ Dp2 (121) if and only if g ∈ Gp2 (121).

Moreover, both Dp2 (121max) and Dp2 (121∗) are Gp2 (121)-invariant.
(iii) We have np2 (121max) = p3(p2 − 1)(p2 − p), np2 (121∗) = p4(p2 − 1).

Proof (i) By definition V p2 (121) ⊃ Gp2Dp2 (121) and we consider the reverse in-
clusion. Let a ∈ V p(121). Then (a mod p) ∈ V p lies in the Gp-orbit of (0, 1, 0, 0).
Hence by changing an element of its Gp2 -orbit if necessary, we may assume a =
(a1, 1, a3, a4) where a1, a3, a4 ∈ pR. Then the cubic form a(u, v) decomposes as
a(u, v) = (a1u + v)(u2 + a3uv + a4v2) in R[u, v]. Hence for g =

(
1 −a1
0 1

)
, we have

ga ∈ Dp2 (121).
(ii) Let a = (0, a2, a3, a4) ∈ Dp2 (121), g ∈ Gp2 and assume ga ∈ Dp2 (121). By

considering the reduction modulo p, we see that g must be of the form

g =

(
s m
n t

)
, s, t ∈ R×,m, n ∈ pR.

Moreover, since the first coordinate of ga is (det g)−1s2ma2 and also (det g)−1s2a2 ∈
R×, we have m = 0. Hence g ∈ Gp2 (121). On the other hand, for this g, we have
ga = (0, sa2, 2na2 + ta3, s−1t2a4). Note that na3 = 0. Hence both Dp2 (121max) and
Dp2 (121∗) are Gp2 (121)-invariant.

(iii) By (ii), we have

np2 (121max) =
|Gp2 |

|Gp2 (121)|
|Dp2 (121max)| = p3(p2 − p)(p2 − 1).

The number np2 (121∗) is computed similarly.

Lemma 5.5 Let

Dp2 (13) = Dp2 (13
max) tDp2 (13

∗) tDp2 (13
∗∗),

Gp2 (13) =

{(
s m
n t

)
∈ Gp2

∣∣∣ s, t ∈ R×,m ∈ R, n ∈ pR

}
.
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(i) We have V p(13) = Gp2 ·Dp2 (13).
(ii) Let a ∈ Dp2 (13). Then for g ∈ Gp2 , ga ∈ Dp2 (13) if and only if g ∈ Gp2 (13).

Moreover, all of Dp2 (13
max), Dp2 (13

∗), and Dp2 (13
∗∗) are Gp2 (13)-invariant.

(iii) We have np2 (13
max) = p2(p2 − 1)(p2 − p), np2 (13

∗) = p(p2 − p)(p2 − 1), and
np2 (13

∗∗) = p2(p2 − 1).

Since the proof is similar to the previous lemma, we omit the details. Note that
for a = (a1, a2, a3, a4) ∈ Dp2 (13) and g =

(
s m
n t

)
∈ Gp2 (13) (and hence n ∈ pR),

t (ga) =
1

det g


s3a1 + s2ma2 + sm2a3 + m3a4

3s2na1 + s2ta2 + 2stma3 + 3m2ta4

st2a3 + 3mt2a4

t3a4

 .

We summarize the formulas for n2
p(σ) for convenience.

Lemma 5.6 We have

np2 (3) = 3−1 p4(p2 − 1)(p2 − p),

np2 (21) = 2−1 p4(p2 − 1)(p2 − p), np2 (121∗) = p4(p2 − 1),

np2 (111) = 6−1 p4(p2 − 1)(p2 − p), and np2 (13
∗) = p(p2 − 1)(p2 − p),

np2 (121max) = p3(p2 − 1)(p2 − p), np2 (13
∗∗) = p2(p2 − 1).

np2 (13
max) = p2(p2 − 1)(p2 − p),

For (σ) ∈ Σp2 and e ≥ 2 we put

VZp (σ) := {a ∈ VZp | a mod p2 ∈ V p2 (σ)},

V pe (σ) := {a ∈ V pe | a mod p2 ∈ V p2 (σ)}.

By the definition of Dp2 (σ), we can easily see the following.

Proposition 5.7 For p 6= 2,

VZp (121max) =
{

x ∈ VZp (121) | ordp

(
P(x)

)
= 1
}
,

VZp (121∗) =
{

x ∈ VZp (121) | ordp

(
P(x)

)
≥ 2
}
,

and for p 6= 2, 3,

VZp (13
max) =

{
x ∈ VZp (13) | ordp

(
P(x)

)
= 2
}
,

VZp (13
∗) =

{
x ∈ VZp (13) | ordp

(
P(x)

)
= 3
}
,

VZp (13
∗∗) =

{
x ∈ VZp (13) | ordp

(
P(x)

)
≥ 4
}
.
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We now describe the ring-theoretic meaning of these orbits. We say that a cubic
ring over Zp is maximal if it is not isomorphic to a proper subring of another cubic
ring. We say that a cubic ring R over Z is maximal at p if it is not contained in another
cubic ring with finite index divisible by p, or equivalently if R ⊗ Zp is maximal as a
cubic ring over Zp. We need the following auxiliary lemma.

Lemma 5.8 Let R be a cubic ring over Zp whose discriminant is zero. Then R is
nonmaximal.

Proof Let K = R ⊗Zp Qp and regard R ⊂ K. Since Disc(K) = 0, K is isomorphic
to Qp × Qp[X]/(X2), Qp[X]/(X3) or Qp[X,Y ]/(X2,XY,Y 2). In particular, K has a
nilpotent element x. Take y ∈ R such that R ∩ Qpx = Zp y and consider the ring
R[y/p] ⊂ K. Since y3 = 0, we have R ⊂ R[y/p] ⊂ p−2R. This implies that
R[y/p] is free of rank 3 as a Zp-module. Since R is a proper subring of R[y/p], R is
nonmaximal.

Applying Theorem 2.1, we have the following interpretation of the set V p2 (σ) for
(σ) = (3), (21), (111), (121max) and (13

max) in terms of maximal cubic rings over Zp.
This also explains why the maximality condition can be detected modulo p2.

Proposition 5.9 A maximal cubic ring over Zp is one of the following: the integer
ringOL of the unramified cubic extension L of Qp; OF×Zp, whereOF is the integer ring of
the unramified quadratic extension F of Qp; Z3

p, the integer ring OL ′ of a ramified cubic
extension L ′ of Qp; or OF ′ × Zp, where OF ′ is the integer ring of a ramified quadratic
extension F ′ of Qp. An element x ∈ VZp corresponds to the above OL,OF × Zp,Z3

p,OL ′

or OF ′×Zp if and only if x ∈ VZp (σ), where (σ) = (3), (21), (111), (13
max), or (121max),

respectively. In particular, VZp (σ) is a single GZp -orbit for (σ) = (3), (21), and (111).

Proof Let R be a maximal cubic ring over Zp. By the lemma above, the discriminant
is nonzero. Hence R ⊗ Qp ⊃ R is a separable cubic algebra over Qp and so it is a
direct product F1 × · · · × Fn of field extensions Fi of Qp with

∑
i[Fi : Qp] = 3.

Let OFi be the integer ring of Fi . Since any elements of Fi \ OFi generate Zp-algebras
of infinite rank, any entries of elements of R ⊂ F1 × · · · × Fn must be in OFi . Hence
we have R ⊂ OF1 × · · · × OFn . Since R is maximal, we have R = OF1 × · · · × OFn

and the first statement follows. Let R = Zp × OF ′ where F ′ is a ramified quadratic
extension. Then OF ′ = Zp[θ] where θ ∈ F ′ is a root of an Eisenstein polynomial
X2 + cX + d ∈ Zp[X]. Hence x(u, v) = v(u2 + cuv + dv2) ∈ VZp corresponds to R by
Theorem 2.1 and we have (x mod p2) ∈ Dp2 (121max) ⊂ V p2 (121max) by the definition
of an Eisenstein polynomial. The other cases are proved similarly.

Let V max
p2 ⊂ V p2 be the set of elements of any of the types above. Then V max

p2 is

defined by a congruence condition modulo p2 on VZ, and it detects cubic rings over
Z maximal at p. Similarly we define V max

Zp
⊂ VZp and V max

pe ⊂ V pe .

Definition 5.10 We define the following subsets of V p2 :

V nm
p2 := pV p2 tV p2 (13

∗∗) tV p2 (13
∗) tV p2 (121∗) = V p2 \V max

p2 ,

Ṽ nm
p2 := V nm

p2 tV p2 (13
max).
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We denote by Φp,Φ
′
p ∈ C(V p2 ) the characteristic functions of V nm

p2 , Ṽ nm
p2 , respectively.

Obviously Φp,Φ
′
p ∈ C(V p2 , 1). Φp detects cubic rings nonmaximal at p, and Φ ′p

detects rings nonmaximal or totally ramified at p. The conditions corresponding
to these functions were introduced in the seminal work of Davenport and Heilbronn
[4], who originally proved the main terms of Theorem 1.5 by studying the space of bi-
nary cubic forms. These functions play important roles in our proof of Theorem 1.5
as well.

In Section 6, we will compute the Fourier transform of Φp, Φ ′p and hence the
related orbital Gauss sums explicitly. For that purpose, we study the orbit structure
of V p2 (σ) for (σ) = (121∗), (121max), (13

∗∗), (13
∗), and (13

max) more closely.

Lemma 5.11

(i) Assume p 6= 2. The stabilizers of elements a = (0, 1, 0, 0) ∈ Dp2 (121∗) and
a ′ = (0, 1, 0, a4) ∈ Dp2 (121max) are respectively given by

Gp2,a =

{(
1 0
0 t

) ∣∣∣ t ∈ R×
}
,

Gp2,a ′ =

{(
1 0
0 t

) ∣∣∣ t ∈ R×, t2 ≡ 1 (mod p)

}
.

Moreover, b ′ = (0, 1, 0, b4) ∈ Dp2 (121max) lies in the orbit Gp2 · a ′ if and only if
b4 = t2a4 for some t ∈ R×.

(ii) Assume p 6= 3. The stabilizers of elements a = (1, 0, 0, 0) ∈ Dp2 (13
∗∗), a ′ =

(1, 0, a3, 0) ∈ Dp2 (13
∗), and a ′ ′ = (1, 0, 0, a4) ∈ Dp2 (13

max) are respectively given
by

Gp2,a =

{(
t m
0 t2

) ∣∣∣ t ∈ R×,m ∈ R

}
,

Gp2,a ′ =

{(
t m

−2tma3/3 t2 + m2a3/3

) ∣∣∣ t ∈ R×,m ∈ R, t2 ≡ 1 (mod p)

}
,

Gp2,a ′ ′ =

{(
t m
0 t2

) ∣∣∣ t ∈ R×,m ∈ pR, t3 ≡ 1 (mod p)

}
.

Moreover, b ′ = (1, 0, b3, 0) ∈ Dp2 (13
∗) lies in the orbit Gp2 · a ′ if and only if

b3 = t2a3 for some t ∈ R×, and b ′ ′ = (1, 0, 0, b4) ∈ Dp2 (13
max) lies in the orbit

Gp2 · a ′ ′ if and only if b4 = t3a4 for some t ∈ R×.

Proof (i) Let g ∈ Gp2 satisfy ga = a, ga ′ = a ′ or ga ′ = b ′. Then (g mod p) ∈ Gp

stabilizes (0, 1, 0, 0) ∈ V p. Hence by Lemma 5.1, g must be of the form

g =

(
1 + l m

n t

)
, t ∈ R×, l,m, n ∈ pR.

For this g, we have

ga =
1

det g

(
m, (1 + l)2t, 2nt, 0

)
, ga ′ =

1

det g

(
m, (1 + l)2t, 2nt, a4t3

)
.
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If ga = a, then by comparing the first and third entries, we have m = n = 0.
Note that 2t ∈ R× since p 6= 2. Now by comparing the second entries, we have
(det g)−1(1 + l)2t = 1 + l = 1 and hence l = 0. If ga ′ = b ′, by a similar argument we
have m = n = l = 0 and b4 = t2a4. In particular, if b4 = a4, this holds if and only if
m = n = l = 0 and t2 ≡ 1 (mod p). This proves (i).

(ii) Let g ∈ Gp2 satisfy ga = a, ga ′ = a ′, ga ′ = b ′, ga ′ ′ = a ′ ′, or ga ′ ′ = b ′ ′.
Then (g mod p) ∈ Gp stabilizes (1, 0, 0, 0) ∈ V p. Hence by Lemma 5.1, g must be of
the form

g =

(
t m
n t2 + l

)
, t ∈ R×,m ∈ R, n, l ∈ pR.

For this g, we have

ga =
1

det g
(t3, 3t2n, 0, 0),

ga ′ =
( t3 + tm2a3

t3 + tl−mn
,

3t2n + 2t3ma3

t3 + tl−mn
,

t5a3

t3 + tl−mn
, 0
)

=
(

1 +
tm2a3 + mn− tl

t3
,

3n + 2ta3m

t
, t2a3, 0

)
,

ga ′ ′ =
1

det g
(t3 + m3a4, 3t2(n + m2a4), 3mt4a4, t

6a4).

By the first formula, ga = a holds if and only if n = 0 and l = 0. Note that 3t2 ∈ R×

since p 6= 3. Similarly by the second formula, ga ′ = b ′ holds if and only if

n = −2ta3m/3, l = m2a3 + mnt−1 = m2a3/3, b3 = t2a3.

Let ga ′ ′ = b ′ ′. Then by comparing the third and second entries, we have m ∈ pR and
n = 0. Also since t3/(det g) = 1, we have l = 0. Now comparing the last coefficient,
we have b4 = t3a4. Hence we have (ii).

Now we are ready to prove the following.

Proposition 5.12

(i) Let p 6= 2.

(i) We have V p2 (121∗) = Gp2 · (0, 1, 0, 0).
(ii) The set V p2 (121max) consists of two Gp2 -orbits, and each orbit has the same

cardinality 2−1|V p2 (121max)|. For any u1, u2 ∈ F×p such that u1/u2 is not a
square, (0, 1, 0, pu1) and (0, 1, 0, pu2) are representatives of the two orbits.

(ii) Let p 6= 3.

(i) We have V p2 (13
∗∗) = Gp2 · (1, 0, 0, 0).

(ii) If p ≡ 2 (mod 3), V p2 (13
max) consists of single Gp2 -orbit.

(iii) Let p ≡ 1 (mod 3). Then V p2 (13
max) consists of three Gp2 -orbits and each

orbit has the same cardinality 3−1|V p2 (13
max)|. Let {u1, u2, u3} ⊂ F×p be a set

of representatives of F×p /(F×p )3. Then we can take (1, 0, 0, pui), i = 1, 2, 3
as representatives of the three orbits.

https://doi.org/10.4153/CJM-2013-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-027-0


1344 T. Taniguchi and F. Thorne

(iii) Let p 6= 2, 3. The set V p2 (13
∗) consists of two Gp2 -orbits and each orbit has the

same cardinality 2−1|V p2 (13
∗)|. If u1, u2 ∈ F×p are such that u1/u2 is not a square,

then (1, 0, pu1, 0) and (1, 0, pu2, 0) are representatives of the two orbits.

Proof (i) Let a = (0, 1, 0, 0) ∈ V p2 (121∗). By Lemma 5.11, we have |Gp2,a| = p2−p.
Hence

|Gp2 · a| =
|Gp2 |
|Gp2,a|

=
p4(p2 − p)(p2 − 1)

(p2 − p)
= p4(p2 − 1) = |V p2 (121∗)|

and we have V p2 (121∗) = Gp2 · a. Let a ′ = (0, 1, 0, a4) ∈ V p2 (121max). Then
we have |Gp2,a ′ | = 2p and hence we have |Gp2 · a ′| = 2−1 p3(p2 − p)(p2 − 1) =
2−1|V p2 (121max)|. Hence V p2 (121∗) consists of two orbits. Combined with Lemma
5.11 (i), we have (i).

(ii) and (iii) are proved in the same way. Let p 6= 3 and let a, a ′, a ′ ′ be as in
Lemma 5.11 (ii). Then

|Gp2,a| = p2(p2 − p), |Gp2,a ′ ′ | =

{
p2 p ≡ 2 (mod 3),

3p2 p ≡ 1 (mod 3).

If further p 6= 2, then |Gp2,a ′ | = 2p3. The rest of the argument proceeds similarly.

We conclude this section with supplementary results which we use in residue com-
putations.

Proposition 5.13 Let R be a non-degenerate cubic ring over Zp and let VZp ,R ⊂ VZp

be the set of elements corresponding to R under the Delone–Faddeev correspondence.
Normalize the Haar measure on VZp such that the total volume is 1. Then the volume
of VZp ,R is |AutZp (R)|−1 |Disc(R)|−1(1 − p−1)(1 − p−2), where |Disc(R)| is the dis-
criminant of R as a power of p.

Proof Recall that for any x ∈ VQp with P(x) 6= 0, GQp · x is an open orbit in VQp .
Let dg be the Haar measure on GQp such that the volume of GZp is 1. Then by the
computation of the Jacobian determinant [2, p. 38], we have∫

GQp ·x
φ(y)

dy

|P(y)|p
=

(1− p−1)(1− p−2)

|GQp ,x|

∫
GQp

φ(gx) dg

for an integrable function φ on GQp · x ⊂ VQp . Hence the same computation shows
that ∫

GZp ·x
φ(y)

dy

|P(y)|p
=

(1− p−1)(1− p−2)

|GZp ,x|

∫
GZp

φ(gx) dg.

Now let x ∈ VZp ,R and let φ be the characteristic function of VZp ,R = GZp · x. Then
since GZp ,x

∼= AutZp (R) and |P(y)|p = |Disc(R)|−1 for all y ∈ VZp ,R, we have the
result.
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Proposition 5.14

(i) For a ∈ V p of type (3), (21), or (111), Gpa + pVZp is a single GZp -orbit.
(ii) For p 6= 2 and a ∈ V p2 of type (121max), Gp2 a + p2VZp is a single GZp -orbit.
(iii) For p 6= 3 and a ∈ V p2 of type (13

max), Gp2 a + p2VZp is a single GZp -orbit.

Proof (i) follows from Proposition 5.9. Alternatively, we can prove this as follows.
Let ã ∈ VZp be a lift of a and R the corresponding (unramified) cubic ring. Then ob-
viously GZp ã ⊆ Gpa + pVZp . On the other hand, by Lemma 5.1 and Proposition 5.13
we see that the volumes of these sets are equal:∫

Gpa+pVZp

dx = p−4|Gpa| =
p−4|Gp|
|Gp,a|

=
(1− p−1)(1− p−2)

|AutZp (R)|
=

∫
GZp ã

dx.

Since both GZp ã and Gpa + pVZp are open, they coincide.
(ii) and (iii) are proved similarly. We recall the classification of ramified quadratic

and cubic extensions of Qp. If p 6= 2, then there are two ramified quadratic exten-
sions of discriminant p. If p ≡ 1 (mod 3), then there are three cyclic ramified cubic
extensions, and if p ≡ 2 (mod 3) there is a unique non-cyclic ramified cubic ex-
tension, and the discriminants of all these extensions are p2. Let R be the (maximal
ramified) cubic ring corresponding to a lift ã of a. Since R is maximal in R ⊗ Qp,
AutZp (R) ∼= AutQp (R⊗Qp). Lemma 5.11 asserts that

|Gp2,a| = |AutQp (R⊗Qp)| |Disc(R)|−1

for each case and hence we have the result.

The following result, proved with the aid of PARI/GP [19], will be used in Sec-
tion 8.5.

Proposition 5.15 For p = 3 and a ∈ V p3 of type (13
max), Gp3 a + p3VZp is a single

GZp -orbit.

Proof It is known that there are 9 ramified cubic extensions of Q3 (see, e.g., [13])
and hence VZp (13

max) consists of 9 GZp -orbits. We list a set of representatives in a
table in Proposition 8.20. Using PARI/GP [19] to explicitly calculate the stablizer
group in GZ/27Z for each representative a ∈ VZ/27Z(13

max), we confirm the identity
|Gp3,a| = |AutQp (R⊗Qp)| |Disc(R)|−1 as above. This finishes the proof.

6 Computation of Singular Gauss Sums

In this section, we explicitly compute the Fourier transforms of the functions fp ∈
C(V p, 1) and Φp,Φ

′
p ∈ C(V p2 , 1) introduced in Definitions 5.3 and 5.10. By Propo-

sition 4.7, it suffices to evaluate the orbital Gauss sum W (1, a, b) for all b and for a in
the support of these functions. We call these Gauss sums singular because P(a) is not
invertible for any such a.

For N = p, these Gauss sums were computed by S. Mori [14]. We first review his
results and then study the case N = p2 by extending Mori’s approach.
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6.1 The Case N = p

In this subsection we will prove the following.

Proposition 6.1 The Fourier transform of fp ∈ C(V p) is given by

f̂p(b) =


−p−3 P∗(b) 6= 0,

p−2 − p−3 P∗(b) = 0, b 6= 0,

p−1 + p−2 − p−3 b = 0.

By Proposition 4.7,

f̂p(b) = p−4|Gp|−1
∑
a∈V p

fp(a)W (1, a, b) = p−4|Gp|−1
∑

P(a)=0

W (1, a, b)

and so we are interested in W (1, a, b) for those a with P(a) = 0. Let p 6= 3. Then the
map ι : V ∗p → V p is an isomorphism of Gp-modules, so we may and do identify V ∗p
with V p. Hence the orbital Gauss sum W (χ, a, b) is defined for a character χ on F×p
and a, b ∈ V p. Since the bilinear form (2.1) is alternating, we have W (χ, b, a) =
χ(−1)W (χ, a, b). As mentioned above, explicit formulas for these Gauss sums were
proved by Mori [14]. Here we quote some of his results with his permission.

Proposition 6.2 (Mori) Let p 6= 3. Assume χ = 1 and P(a) = 0, a 6= 0. Then
W (1, a, b) is given by the following table.

type of b a: of type (13) a: of type (121)

(0) (p2 − p)(p2 − 1) (p2 − p)(p2 − 1)
(13) −p(p − 1) p(p − 1)2

(121) p(p − 1)2 p(p − 1)(p − 2)
(111) p(p − 1)(2p − 1) −3p(p − 1)
(21) −p(p − 1) −p(p − 1)
(3) −p(p − 1)(p + 1) 0

Since Mori’s preprint is not yet available, we will give a brief outline of his proof
in Remark 6.8 in the next subsection.

Proof of Proposition 6.1 The case p = 3 can be checked numerically, so we assume
p 6= 3. As above, we identify V ∗p with V p. When b is of type (111), by Lemma 5.2 and
Propositions 4.7 and 6.2,

f̂p(b) = p−4|Gp|−1
∑

a∈V p(0)tV p(13)tV p(121)

W (1, a, b)

=
(p2 − 1)(p2 − p) · 1 + p(p − 1)(2p − 1) · (p2 − 1)− 3p(p − 1) · p(p2 − 1)

p4(p2 − 1)(p2 − p)

= −p−3.

All the other cases are computed similarly.
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6.2 The Case N = p2

In this subsection we assume p 6= 2, 3. We identify V ∗p2 with V p2 via ι. Recall that we

defined Φp,Φ
′
p ∈ C(V p2 , 1) in Definition 5.10. In this subsection we will prove the

following.

Theorem 6.3 The Fourier transform of Φp is given as follows:

(i) Let b ∈ pV p2 . We write b = pb ′ and regard b ′ as an element of V p. Then

Φ̂p(pb ′) =


p−2 + p−3 − p−5 for b ′ of type (0),

p−3 − p−5 for b ′ of type (13), (121),

−p−5 for b ′ of type (111), (21), (3).

(ii) For b ∈ V p2 \ pV p2 ,

Φ̂p(b) =


p−3 − p−5 for b of type (13

∗∗),

−p−5 for b of type (13
∗), (13

max),

0 otherwise.

Theorem 6.4 The Fourier transform of Φp is given as follows:

(i) Let b ∈ pV p2 and write b = pb ′ as above. Then

Φ̂ ′p(pb ′) =



2p−2 − p−4 for b ′ of type (0),

p−3 − p−4 for b ′ of type (13),

2p−3 − 2p−4 for b ′ of type (121),

2p−3 − 3p−4 for b ′ of type (111),

−p−4 for b ′ of type (21),

−p−3 for b ′ of type (3).

(ii) For b ∈ V p2 \ pV p2 ,

Φ̂ ′p(b) =


p−3 − p−4 for b of type (13

∗∗),

−p−4 for b of type (13
∗),

0 otherwise.

Remark 6.5 We may check that our results are consistent with the Parseval formula∑
b∈V p2

|Φ̂p(b)|2 = p−8
∑

a∈V p2

|Φp(a)|2,

and similarly for Φ ′p.
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Remark 6.6 As noted in the introduction, it is interesting to compare these results
with the results of Fouvry and Katz [7] and in particular their Lemma 9.3. In par-
ticular, we observe the same phenomenon, i.e., the cubic Gauss sums are larger on
highly singular orbits.

To prove these theorems, we evaluate W (1, a, b) for a ∈ Ṽ nm
p2 .

Proposition 6.7 Assume b ∈ V p2 \ pV p2 . Then for a ∈ Ṽ nm
p2 , the orbital Gauss sum

W (1, a, b) is given by the following table.

type of b a: of type (13
∗∗) a: of type (13

∗) a: of type (13
max) a: of type (121∗)

(13
∗∗) p5(p − 1)2 p5(p − 1)2 −p5(p − 1) p5(p − 1)2

(13
∗) p5(p − 1)2 p5(p − 1)2 −p5(p − 1) −p5(p − 1)

(13
max) −p5(p − 1) −p5(p − 1) p5 on average 0

(121∗) p5(p − 1)2 −p5(p − 1) 0 0
(121max) −p5(p − 1) p5 on average 0 0

(111) 0 0 0 0
(21) 0 0 0 0
(3) 0 0 0 0

Here, when we say “on average”, we fix b and take the average of W (1, a, b) over all a of
the given type. For example, if b is of type (121max), “p5 on average” in the second entry
means |V p2 (13

∗)|−1
∑

a∈V p2 (13
∗) W (1, a, b) = p5. (The individual values are described

in the proof.)

The theorems follow from Propositions 6.2 and 6.7.

Proof of Theorems 6.3 and 6.4 Assume b = pb ′, b ′ ∈ V p. Then W p2 (1, a, pb ′) =
p4W p(1, a, b ′) by Lemma 4.9. There are respectively p4, p3(p2 − 1), and p4(p2 − 1)
elements in V nm

p2 whose reductions modulo p are of type (0), (13), and (121), respec-

tively. Similarly there are respectively p4, p4(p2 − 1), and p4(p2 − 1) in Ṽ nm
p2 . Hence

by Propositions 4.7 and 6.2, if b ′ is of type (111), we have

Φ̂p(pb ′) =
1

p4|Gp2 |
∑

a∈V nm
p2

W p(1, a, b ′)

=
p3(p2 − p)(p2 − 1){p + (2p − 1)− 3p}

p4|Gp2 |
= −p−5,

Φ̂ ′p(pb ′) =
1

p4|Gp2 |
∑

a∈Ṽ nm
p2

W p(1, a, b ′)

=
p4(p2 − p)(p2 − 1){1 + (2p − 1)− 3}

p4|Gp2 |
= 2p−3 − 3p−4.
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Other cases of b ∈ pV p2 are handled similarly. Now let b ∈ V p2 \ pV p2 . Then since
(b mod p) 6= 0, we have∑

a∈pV p2

W p2 (1, a, b) = p4
∑

a ′∈V p

W p(1, a ′, b) = 0.

Hence by Proposition 4.7,

Φ̂p(b) =
1

p8|Gp2 |
∑

a∈V nm
p2 \pV p2

W p2 (1, a, b) and

Φ̂ ′p(b) =
1

p8|Gp2 |
∑

a∈Ṽ nm
p2 \pV p2

W p2 (1, a, b).

Our formulas now follow from Proposition 6.7 and Lemma 5.6.

We now come to the proof of Proposition 6.7.

Proof of Proposition 6.7 We prove this by case by case direct computations. We
begin by introducing some notation and explaining our approach. Since W (1, a, b)
depends only on the Gp2 -orbits of a and b, we will take a specific representative from
each orbit and compute for those a and b. Let R = Z/p2Z, as in Section 5.2. We will
choose b according to its type, as follows:

type of b b condition on the coefficients

(13
∗∗) (1, 0, 0, 0) –

(13
∗) (1, 0, l, 0) l ∈ pR×

(13
max) (1, 0, k,−l) k ∈ pR, l ∈ pR×

(121∗) (0,−1, 0, 0) –

(121max) (0,−1, 0,−l) l ∈ pR×

(111) (0,−1, 1, 0) –

(21) (0,−1, 0,−l) u2 + l ∈ R[u] is irreducible

(3) (1, 0, k,−l) u3 + ku− l ∈ R[u] is irreducible

For b of type (13
max), we can let k = 0, but we sometimes leave it as is to treat types

(13
max) and (3) simultaneously. We will choose a ∈ V p2 later.
We put

Gp2,1 :=

{
g1 := t(1−mn)

(
s 0
0 1

)(
1 n
m 1

) ∣∣∣ s, t ∈ R×, n ∈ R,m ∈ pR

}
⊂ Gp2 ,

Gp2,2 :=

{
g2 := −t

(
s 0
0 1

)(
m 1 + mn
1 n

) ∣∣∣ s, t ∈ R×, n,m ∈ R

}
⊂ Gp2 .
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Then Gp2 = Gp2,1 t Gp2,2. We also drop p2 and write G1 = Gp2,1,G2 = Gp2,2. We
write 〈t〉 := exp(2πit/p2), hence 〈a, b〉 = 〈[a, b]〉. We put

Wi(a, b) :=
∑
gi∈Gi

〈[gia, b]〉 i = 1, 2,

and compute this value for each choice of a, b. We recall the formula (2.1),

[a, b] = a4b1 −
1

3
a3b2 +

1

3
a2b3 − a1b4,

for a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) ∈ V p2 , which will be used throughout.
When convenient, we write an element of V p2 as a row vector via its transpose.

We immediately see that∑
t∈R×

〈t〉 = 0,
∑

t∈R×

〈pt〉 = −p,
∑
n∈R

〈n〉 =
∑
n∈R

〈pn〉 =
∑
n∈pR

〈n〉 = 0.

We use these formulas and their variations very often. For example, if f (s,m, n) ∈ R
is a function independent of t and f (s,m, n) ∈ R× for all s,m, n, then∑

t∈R×

∑
s,m,n

〈t · f (s,m, n)〉 =
∑
s,m,n

∑
t∈R×

〈t〉 = 0.

Also, if g(s,m) ∈ pR is independent of n and α ∈ pR× is a constant, then∑
n∈R

∑
t∈R×

∑
s,m

〈
t
(

g(s,m) + αn
)〉

=
∑

t∈R×

∑
s,m

∑
n∈R

〈αn〉 = 0.

These are typical examples of change of variables, and we omit the explanation of
such modifications when they are easy and natural. Finally, note that W (1, a, b) =
W (1, b, a).

We now carry out the computation. In what follows, we see that W2(a, b) =
0 and W1(a, b) is given by the table given in Proposition 6.7 for all of our chosen
representatives.

(I) a is of type (13
∗∗). We choose a = (1, 0, 0, 0). To make the computation easier

we replace the variables t,m of g1 by s−2t, st−1m and t , m of g2 by st and s−1m. Then
since the variable m of g1 is in pR and hence m2 = 0, we have

g1a =


t

3m
0
0

 , g2a = t


m3

3m2

3m
1

 .

If b = (1, 0, 0, 0), then since |G1| = p5(p − 1)2,

W1(a, b) =
∑

g1∈G1

1 = p5(p − 1)2, W2(a, b) =
∑

g2∈G2

〈t〉 =
∑
s,m,n

∑
t∈R×

〈t〉 = 0.
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If b = (0,−1, 0, 0), then

W1(a, b) =
∑

g1∈G1

1 = p5(p − 1)2, W2(a, b) =
∑

g2∈G2

〈tm〉 =
∑
s,t,n

∑
m∈R

〈tm〉 = 0.

If b = (1, 0, l, 0) is of type (13
∗), then since 1 + lm2 ∈ R× for any m ∈ R, we have

W1(a, b) =
∑

g1∈G1

1 = p5(p − 1)2, W2(a, b) =
∑

g2∈G2

〈t(1 + lm2)〉 =
∑

g2∈G2

〈t〉 = 0.

If b = (0,−1, 1, 0), then W1(a, b) =
∑

g1∈G1
〈m〉 = 0 and

W2(a, b) =
∑

g2∈G2

〈t(m + m2)〉 =
( ∑

m+m2∈R×

+
∑

m+m2∈pR×

+
∑

m+m2=0

)
〈t(m + m2)〉

= 0 + 2(p − 1)
∑

n∈R,s∈R×

(−p) + 2
∑

n∈R,s,t∈R×

1

= −2p4(p − 1)2 + 2p4(p − 1)2 = 0.

Let b = (0,−1, 0,−l) be either of type (121max) or (21). Then l ∈ pR× if b is of
type (121max) and l ∈ R× if b is of type (21). Also 1 + lm2 ∈ R× for any m, since
1 + lX2 ∈ R[X] is an irreducible polynomial. Hence we have

W1(a, b) =
∑

g1∈G1

〈tl〉 =

{∑
s,m,n(−p) = −p5(p − 1) (121max),∑
s,m,n 0 = 0 (21),

W2(a, b) =
∑

g2∈G2

〈tm(1 + lm2)〉 =
∑

g2∈G2

〈tm〉 =
∑
s,t,n

∑
m∈R

〈tm〉 = 0.

Finally, if b = (1, 0, k,−l) is of type (13
max) or (3), then by a similar consideration as

above,

W1(a, b) =
∑
s,m,n

〈km〉
∑

t

〈tl〉 =

{∑
s,m,n(−p) = −p5(p − 1) (13

max),∑
s,m,n 0 = 0 (3),

W2(a, b) =
∑

g2∈G2

〈t(1 + km2 + lm3)〉 = 0.

(II) a is of type (121∗). We consider this case next. We choose a = (0, 1, 0, 0). Then

g1a = t


s2n

s(1 + 2nm)
2m
0

 , g2a = t


s2(m2 + nm3)
s(2m + 3nm2)

1 + 3nm
s−1n

 .
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If b = (0,−1, 0, 0), then

W1(a, b) =
∑

g1∈G1

〈 2tm

3

〉
=
∑
s,t,n

∑
m∈pR

〈m〉 = 0,

W2(a, b) =
∑

g2∈G2

〈
t
( 1

3
+ nm

)〉
=
∑

t,s

〈 t

3

〉∑
m,n

〈tnm〉 =
∑

t,s

〈t〉
∑
m,n

〈nm〉

=
∑
m,n,s

〈nm〉
∑

t∈R×

〈t〉 = 0.

Let b = (1, 0, l, 0) be of type (13
∗). Since l ∈ pR× and 1 + ls2m2 is always a unit, we

have

W1(a, b) =
∑

g1∈G1

〈 tsl

3

〉
=
∑
s,m,n

∑
t∈R×

〈tl〉 =
∑
s,m,n

(−p) = −p5(p − 1),

W2(a, b) =
∑

g2∈G2

〈
t
{ 2mls

3
+ n
( 1

s
+ lsm2

)}〉
=
∑
s,t,r

〈 2mlts

3

〉∑
n

〈 t

s
n(1 + ls2m2)

〉
= 0.

Let b = (0,−1, 1, 0) be of type (111). Then

W1(a, b) =
∑

g1∈G1

〈 t

3
(2m + s(1 + 2nm))

〉
=
∑

g1∈G1

〈t〉 = 0.

For W2(a, b), we have

W2(a, b) =
∑
s,t,m

∑
n

〈 t

3

(
1 + 2ms + 3n(m + sm2)

)〉
.

We divide the sum according as m + sm2 = m(1 + sm) ∈ R× or not. The former is∑
m+sm2∈R×

〈 t

3
(1 + 2ms)

〉
〈tn(m + m2s)

〉
=

∑
m+sm2∈R×

〈 t

3
(1 + 2ms)

〉
〈n〉 = 0.

Let m + sm2 ∈ pR. Then either m ∈ pR or ms ∈ −1 + pR. Hence(
1 + 2ms + 3n(m + sm2)

)
∈ R×,

and so the latter sum is 0 as well. Hence W2(a, b) = 0.
Let b = (0,−1, 0,−l) be of type (121max) or (21). If b is of type (121max) then

s2nl ∈ pR, and if b is of type (21) then s2l ∈ R× for any s, n. Hence

W1(a, b) =
∑

g1∈G1

〈
t
( 2m

3
+ s2nl

)〉
=

{∑
t,s,n

∑
m∈pR〈tm〉 = 0 (121max),∑

t,s,m

∑
n∈R〈tn〉 = 0 (21).
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For W2(a, b), since 1 + s2m2l ∈ R×, we have

W2(a, b) =
∑

g2∈G2

〈
t
( 1

3
+s2m2l

)〉
〈tnm(1+s2m2l)〉 =

∑
t,s,m

〈
t
( 1

3
+s2m2l

)〉∑
n

〈nm〉.

Since
∑

n∈R〈nm〉 = 0 unless m = 0, we have W2(a, b) =
∑

t,s,n〈t/3〉 = 0.

Let b = (1, 0, k,−l) be of type (13
max) or (3). If b is of type (13

max), since l ∈ pR×,

W1(a, b) =
∑

g1∈G1

〈
t
( sk

3
+ s2ln

)〉
=
∑
t,s,m

〈 tsk

3

〉∑
n

〈ts2ln〉 = 0.

If b is of type (3), then since s2l + 2sk
3 m ∈ R×,

W1(a, b) =
∑

g1∈G1

〈
tn
(

s2l +
2sk

3
m
)〉〈 tsk

3

〉
=
∑
〈n〉
〈 tsk

3

〉
= 0.

Moreover for both types,

W2(a, b) =
∑

g2∈G2

〈tn(s−1 + sm2k + s2m3l)〉
〈

t
( 2msk

3
+ s2m2l

)〉
.

Since s−1 + sm2k + s2m3l ∈ R×, W2(a, b) =
∑

g2
〈n〉〈t( 2msk

3 + s2m2l)〉 = 0.

(III) a is of type (13
∗). Let a = (1, 0, α, 0), where α ∈ pR×. By replacing m of g1

with s−1m− 2αn/3, we have

g1a = t


s2(1 + αn2)

3m
α
0

 , g2a = t


s2
(

m3 + α(n2m3 + 2nm2 + m)
)

s
(

3m2 + α(3n2m2 + 4nm + 1)
)

3m + α(3n2m + 2n)
s−1(1 + αn2)

 .

Let b = (1, 0, l, 0) be of type (13
∗). Then

W1(a, b) =
∑

g1∈G1

1 = p5(p − 1)2, W2(a, b) =
∑

g2∈G2

〈
t
( 1

s
(1 + αn2) + slm2

)〉
=
∑

g2∈G2

〈t〉 = 0.

Let b = (0,−1, 1, 0) be of type (111). Then W1(a, b) =
∑

t,s,n〈tα/3〉
∑

m〈tm〉 = 0,
and

W2(a, b) =
∑

g2∈G2

〈 t

3

(
3m + α(3n2m + 2n)

)〉〈 ts

3

(
3m2 + α(3n2m2 + 4nm + 1)

)〉

=
∑
t,s,n

( ∑
m∈R×

〈t〉〈ts〉 +
∑

m∈pR

〈
t
(

m +
2αn

3

)〉〈 tsα

3

〉)
=
∑

m∈R×

∑
s,n

∑
t∈R×

〈s〉〈t〉 +
∑

m∈pR

∑
s,t

∑
n∈R

〈m〉〈t〉 = 0 + 0 = 0.
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Let b = (1, 0, k,−l) be either of type (13
max) or (3). Then

W1(a, b) =

{∑
g1∈G1
〈ts2l〉 = −p5(p − 1) (13

max),∑
g1∈G1

〈
t
(

ls2 + (km + αs2n2l)
)〉

=
∑

g1∈G1
〈t〉 = 0 (3),

W2(a, b) =
∑

g2∈G2

〈t{s−1(1 + ks2m2 + ls3m3) + α f (s, n,m)}〉 =
∑

g2∈G2

〈t〉 = 0.

Note that 1 + ks2m2 + ls3m3 = b(1, sm) ∈ R× for all s,m.
Let b = (0,−1, 0,−l) be of type (121max) or (21). Then

W2(a, b) =
∑

G2

〈
t
{

m(1 + lm2s2) +
α

3
f (s,m, n)

}〉
,

where f (s,m, n) = 3n2m + 2n + s2(n2m3 + 2nm2 + m)l. Note that 1 + lm2s2 ∈ R×. If
m ∈ pR, then α f (s,m, n) = 2nα. Hence

W2(a, b) =
∑

m∈R×

〈t〉 +
∑

m∈pR

〈
t
(

m +
2nα

3

)〉
= 0 + 0 = 0.

If b is of type (21),

W1(a, b) =
∑

G1

〈
t
(

ls2 +
α

3
+ ls2n2α

)〉
= 0.

If b is of type (121max),

W1(a, b) =
∑

g1∈G1

〈
t
( α

3
+ ls2

)〉
=
∑
s,m,n

∑
t∈R×

〈t(α + 3ls2)〉.

We consider whether α + 3ls2 ∈ pR is 0 or not for s ∈ R×. Note that since α, 3l ∈
pR×, we can regard α/3l ∈ F×p . If−α/3l is not a square in F×p , then α + 3ls2 ∈ pR×

for any s ∈ R×. If−α/3l is a square in F×p , then α+3ls2 = 0 for 2p choices of s ∈ R×,
and α + 3ls2 ∈ pR× otherwise. Hence

W1(a, b) =


∑

s,m,n(−p) = p5 − p6 if − α/3l /∈ (F×p )2,

2p
∑

m,n(p2 − p) + (p2 − 3p)
∑

m,n(−p)

= p5 + p6 if − α/3l ∈ (F×p )2.

By Proposition 5.12 (ii), for a ∈ V p2 (13
∗), −α/3l ∈ (F×p )2 or −α/3l /∈ (F×p )2 oc-

curs with equal probability. Hence the average value of W1(a, b) with respect to
a ∈ V p2 (13

∗) is p5.
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(IV) a is of type (13
max). By Proposition 5.12, we can take a = (1, 0, 0, α) for some

α ∈ pR×. Then

g1a = t


s2(1 + αn3)
3s(m + αn2)

3αn
s−1α

 , g2a = t


s2
(

m3 + α(mn + 1)3
)

3s
(

m2 + αn(mn + 1)2
)

3
(

m + αn2(mn + 1)
)

s−1(1 + αn3)

 .

Let b = (0,−1, 1, 0). Then

W1(a, b) =
∑
s,t,n

∑
m∈pR

〈t(sm + αn + αsn2)〉 =
∑
s,t,n

∑
m∈pR

〈m〉 = 0,

W2(a, b) =
∑

g2∈G2

〈
t
(

m + αn2(mn + 1)
)〉〈

st
(

m2 + αn(mn + 1)2
)〉

=
∑
s,t,n

∑
m∈R×

〈t〉〈ts〉 +
∑
s,t,n

∑
m∈pR

〈t(m + αn2)〉〈αtsn〉 = 0 + 0 = 0.

Let b = (0,−1, 0,−l) be of type (121max) or (21). Then

W1(a, b) =
∑

g1∈G1

〈t(αn + ls2(1 + αn3))〉 =

{∑
s,t,m

∑
n〈t(αn + ls2)〉 = 0 (121max),∑

s,m,n

∑
t〈t〉 = 0 (21),

W2(a, b) =
∑

g2∈G2

〈
t
{

m(1 + ls2m2) + α
(

n2(mn + 1) + ls2(mn + 1)3
)}〉

=
∑
s,t,n

∑
m∈R×

〈t〉 +
∑
s,t,n

∑
m∈pR

〈
t
(

m + α(n2 + s2l)
)〉

= 0 + 0 = 0.

Let b = (1, 0, k,−l) be of type (3). Then

W1(a, b) =
∑

g1∈G1

〈
t
(

ls2 + ksm + α(s−1 + kn2 + ls2n3)
)〉

=
∑
s,m,n

∑
t∈R×

〈t〉 = 0,

W2(a, b) =
∑

g2∈G2

〈t{s−1(1 + ks2m2 + ls3m3) + α f (s,m, n)}〉 =
∑
s,m,n

∑
t∈R×

〈t〉 = 0.

Note that 1 + ks2m2 + ls3m3 ∈ R× for any s,m.
Let b = (1, 0, 0,−l) be of type (13

max). (By Proposition 5.12, we may assume
k = 0.) Similarly to as above, we have W2(a, b) = 0. For W1(a, b), we have

W1(a, b) =
∑

g1∈G1

〈 t

s
(α + s3l)

〉
=
∑
t,m,n

∑
s

〈t(α + s3l)〉.

We consider whether α + s3l ∈ pR is 0 or not for s ∈ R×.
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First, let p ≡ 2 (mod 3). Then α + s3l = 0 for p choices of s and α + s3l ∈ pR×

otherwise. Hence

W1(a, b) = p
∑
m,n,t

1 + (p2 − 2p)
∑
m,n

(−p) = p(p2 − p)p3 − (p2 − 2p)p4 = p5.

Next let p ≡ 1 (mod 3). If −α/l is not a cube in F×p , then α + s3l ∈ pR× for all s. If
−α/l is a cube in F×p , α + s3l = 0 for 3p choices of s and α + s3l ∈ pR× otherwise.
Hence

W1(a, b) =

{
(p2 − p)

∑
m,n(−p) = p5 − p6 −α/l /∈ (F×p )3,

3p
∑

m,n,t 1 + (p2 − 4p)
∑

m,n(−p) = p5 + 2p6 −α/l ∈ (F×p )3.

By Proposition 5.12 (iv), the average value of W1(a, b) with respect to a ∈ V p2 (13
max)

is 2
3 (p5 − p6) + 1

3 (p5 + 2p6) = p5.

Remark 6.8 We briefly review Mori’s proof [14] of Proposition 6.2. The outline is
quite similar to the proof above. We fix a prime p 6= 3. Let

Gp,1 :=

{
g1 := t

(
s 0
0 1

)(
1 n
0 1

) ∣∣∣ s, t ∈ F×p , n ∈ Fp

}
⊂ Gp,

Gp,2 :=

{
g2 := −t

(
s 0
0 1

)(
m 1 + mn
1 n

) ∣∣∣ s, t ∈ F×p , n,m ∈ Fp

}
⊂ Gp.

Then Gp = Gp,1 t Gp,2. We drop p and write G1 = Gp,1,G2 = Gp,2. We write
〈t〉 := exp(2πit/p), hence 〈a, b〉 = 〈[a, b]〉. We put Wi(a, b) :=

∑
gi∈Gi
〈[gia, b]〉

and compute this value. Note that W (1, a, b) = W1(a, b) + W2(a, b). In this case of
Fp = Z/pZ, we have ∑

t∈F×p

〈t〉 = −1,
∑
n∈Fp

〈n〉 = 0.

Let a = (1, 0, 0, 0) be of type (13). Then, with a change of variables similar to that
in (I) in the previous proof, we have g1a = (t, 0, 0, 0), g2a = t(m3, 3m2, 3m, 1). If
b = (1, 0, 0, 0), then

W1(a, b) =
∑
g∈G1

1 = |G1| = p(p − 1)2,

W2(a, b) =
∑
g∈G2

〈t〉 =
∑
s,m,n

(−1) = −p2(p − 1),

and hence W (1, a, b) = −p(p − 1). If b = (0, 1, 0, 0), then

W1(a, b) =
∑
g∈G1

1 = p(p − 1)2, W2 =
∑
g∈G2

〈tm〉 =
∑
s,t,n

∑
m

〈m〉 = 0
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and W (1, a, b) = p(p − 1)2 follows. If b = (1, 0, k,−l) is of type (3), then l ∈ F×p
and also 1 + m2k + m3l ∈ F×p for all m ∈ Fp. Hence

W1(a, b) =
∑
g∈G1

〈tl〉 = −p(p−1), W2(a, b) =
∑
g∈G2

〈t(1+km2 +lm3)〉 = −p2(p−1)

and so W (1, a, b) = −p(p2 − 1). Let a = (0, 1, 0, 0). Then as in (II) in the previous
proof,

g1a = t


s2n
s
0
0

 , g2a = t


s2(m2 + nm3)
s(2m + 3nm2)

1 + 3nm
s−1n

 .

Let b = (0,−1, 1, 0) be of type (111). Then W1(a, b) =
∑

g∈G1
〈ts/3〉 = −p(p − 1).

For W2(a, b), by exactly the same consideration as in (II) in the previous proof,

W2(a, b) =
∑

m+sm2∈F×p

〈 t

3
(1 + 2ms)

〉
〈n〉 +

∑
m=0

〈 t

3

〉
+
∑

1+ms=0

〈
− t

3

〉
= 0− p(p − 1)− p(p − 1) = −2p(p − 1).

Hence we have W (1, a, b) = −3p(p − 1). Let b = (0,−1, 0,−l) be of type (21).
Then similarly,

W1(a, b) =
∑

t,s,n,m

〈ts2nl〉 = 0, W2(a, b) =
∑

t,s,n,m

〈t/3〉 = −p(p − 1)

and hence W (1, a, b) = −p(p − 1). The other cases are obtained similarly and we
omit the details.

7 The Ohno–Nakagawa Formula

25 years after Shintani introduced the zeta functions ξ(s) and ξ∗(s), Ohno [16] con-
jectured a remarkably simple formula satisfied by ξ(s) and ξ∗(s). This was proved by
Nakagawa [15].

Theorem 7.1 (Ohno, Nakagawa) We have

ξ∗(s) = A · ξ(s), A =

(
0 1
3 0

)
.

By plugging this formula into Shintani’s functional equation ξ(1− s) = M(s)ξ∗(s)
in Theorem 4.1, the functional equation is rewritten in the following symmetric
form.

Theorem 7.2 (Ohno, Nakagawa) We have

∆(1− s) · T · ξ(1− s) = ∆(s) · T · ξ(s),

where ∆(s) and T are as in Theorem 1.7.
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Theorem 7.2 follows from Theorem 7.1 simply because ∆(1 − s)TM(s) =
∆(s)TA−1. We note that this “diagonalization” of M(s) is due to Datskovsky and
Wright [2, Proposition 4.1]. Recently, Ohno, Wakatsuki, and the first author [17, 18]
classified all SL2(Z)-invariant lattices L in VZ and showed that the associated zeta
function ξ(s, L, SL2(Z)) for each L satisfies a functional equation in a self-dual form
as in Theorem 7.2. In this section we establish a similar formula for the “N-divisible
zeta function” when N is square free. We also state residue formulas that we will
prove in Section 8.

In this section we assume that N is a square free integer. Let fN ∈ C(VN , 1) be
the characteristic function of {a ∈ VN | P(a) = 0}. This definition agrees with
Definition 5.3, and fN =

∏
p|N fp.

Definition 7.3 We define the N-divisible zeta function

ξN (s) := ξ(s, fN ) =
∑

a∈VN ,P(a)=0

ξ(s, a).

This function counts the VZ-orbits whose discriminants are multiples of N, and
we study its analytic properties.

We first describe the residues; these formulas follow from Proposition 8.6 and
Corollary 8.14.

Proposition 7.4 We have

Ress=1 ξN (s) =
∏
p|N

( 1

p
+

1

p2
− 1

p3

)
· (α + β),

Ress=5/6 ξN (s) =
∏
p|N

( 1

p
+

1

p4/3
− 1

p7/3

)
· ζ(

1

3
)γ,

where α, β and γ are as in Definition 8.3.

We next prove the functional equation. For a square free integer m, we put

ξ∗m(s) :=
∑

b∈V∗m ,P
∗(b)=0

ξ∗(s, b).

Proposition 7.5 If N is square free, we have

ξN (1− s) = N4s−3M(s)
∑

m1m2m3=N

µ(m1)m2m2−4s
3 ξ∗m2

(s).

Proof By Theorem 4.3 and Proposition 6.1, we have

ξN (1− s) = N4sM(s)
∑

b∈V∗N

f̂N (b)ξ∗(s, b)
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where f̂N (b) is multiplicative in N, and for a prime p is equal to p−1 + p−2 − p−3 if

b = 0, p−2 − p−3 if b 6= 0 but P∗(b) = 0, and−p−3 otherwise. We rewrite f̂p(b) as

f̂p(b) = −p−3 + gp,2(b)p−2 + gp,3(b)p−1,

where gp,3(b) is the characteristic function of b = 0, and gp,2(b) is the characteristic
function of those b with P∗(b) = 0. Then we have

ξN (1− s) = N4sM(s)
∑

b∈V∗N

∏
p|N

(
−p−3 + gp,2(b)p−2 + gp,3(b)p−1

)
ξ∗(s, b)

= N4sM(s)
∑

m1m2m3=N

µ(m1)m−3
1 m−2

2 m−1
3

( ∑
b∈V∗N

m2|P∗(b),b∈m3V∗N

ξ∗(s, b)
)

= N4s−3M(s)
∑

m1m2m3=N

µ(m1)m2m2
3

(
m−4s

3

∑
b∈V∗N

m2|P∗(b)

ξ∗(s, b)
)
,

as desired.

Let ϕ and µ be the Euler function and Möbius function, respectively. Similarly
to [17], we find a functional equation in self dual form for certain linear combina-
tions of zeta functions.

Theorem 7.6 For a square free integer N, let

θN (s) :=
∑
m|N

µ(m)mξm(s).

Then

Ress=1 θN (s) = µ(N)
ϕ(N)

N2
· (α + β), Ress=5/6 θN (s) = µ(N)

ϕ(N)ζ(1/3)

N4/3
· γ,

and
N2(1−s)∆(1− s) · T · θN (1− s) = N2s∆(s) · T · θN (s).

Proof By Proposition 7.4,

Ress=1 mξm(s) =
∏
p|m

(
1 +

1− p−1

p

)
· (α + β),

Ress=5/6 mξm(s) =
∏
p|m

(
1 +

1− p−1

p1/3

)
· ζ(1/3)γ.

Since ∏
p|N

(1− ap) =
∑
m|N

µ(m)
∏
p|m

ap
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for any ap and
∏

p|N (1− p−1) = ϕ(N)/N, the residue formulas follow. We consider
the functional equation. By Proposition 7.5,

M(s)−1 · θN (1− s) = M(s)−1
∑
m|N

µ(m)mξm(1− s)

=
∑
m|N

µ(m)m4s−2
∑

m1m2m3=m

µ(m1)m2m2−4s
3 ξ∗m2

(s)

=
∑

m1m2m3m4=N

µ(m2m3)m2(m1m2)4s−2ξ∗m2
(s)

=
∑

m1m2|N

µ(m2)(m1m2)4s−2m2ξ
∗
m2

(s)
∑

m3m4= N
m1m2

µ(m3).

By the Möbius inversion formula,
∑

m3m4= N
m1m2

µ(m3) is 1 if N = m1m2 and 0 other-

wise. Hence
M(s)−1 · θN (1− s) = N4s−2

∑
m|N

µ(m)mξ∗m(s).

By the Ohno–Nakagawa formula, we have ξ∗m(s) = A · ξm(s) for any m. Hence

M(s)−1 · θN (1− s) = N4s−2A · θN (s).

Since ∆(1− s)TM(s) = ∆(s)TA−1, we have the formula.

8 Computation of Residues

In this section we compute the residues of our orbital L-functions and related zeta
functions. We start by showing that for a suitable choice Φa of test function, the
adelic Shintani zeta function studied by Wright [29] gives an integral expression for
ξ(s, χ, a). Hence its residues are described in terms of certain integrals that have
Euler products. The local analysis is carried out in later subsections. We note that
a number of the results of this section are already obtained in the extensive work of
Datskovsky–Wright [2], and we follow their approach to give refinements of their
results.

Recall that ξ(s, χ, a) is a vector consisting of two Dirichlet series. When we talk
about the analytic properties of ξ(s, χ, a), we mean so entrywise. The locations of
the poles coincide for the two series, so we hope our meaning is clear. In particular,
for z0 ∈ C, we denote by Resz=z0 ξ(s, χ, a) the column vector of residues of these
Dirichlet series at z = z0.

We fix some notation for adelic analysis. Let R×+ = {t ∈ R | t > 0} and C×1 =
{z ∈ C× | |z| = 1}. For t ∈ Q×p , let ordp(t) be the unique integer m satisfying t ∈
pmZ×p . Let | · |p : Q×p → R×+ be the normalized absolute value, hence |t|p = p− ordp(t).
We normalize the Haar measure du (resp. d×t) on Qp (resp. Q×p ) so that the volume

of Zp (resp. of Z×p ) is 1. We put Ẑ :=
∏

p:finite Zp, so that Ẑ× =
∏

p:finite Z×p . As

usual, let Af := Ẑ⊗ Q and A = Af × R. Let S(VR),S(VQp ),S(VAf ),S(VA) be the
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space of Schwarz–Bruhat functions on each of the indicated domains. For a Dirichlet
character χ, let δ(χ) be 1 if χ is trivial and 0 otherwise.

For the rest of this section we fix a (primitive) Dirichlet χ of conductor m. We
introduce notation related to χ. The usual L-function and the local L-factors for χ
are defined by

L(s, χ) :=
∏
p

Lp(s, χ), Lp(s, χ) :=

{
1 p | m,(

1− χ(p)/ps
)−1

p - m.

Recall the direct product decomposition A× = R×+ · Ẑ× · Q×. We lift χ to an idele
class character χ̃ : A×/Q× → C×1 by using the compositum

χ̃ : A× = R×+ · Ẑ× ·Q× � Ẑ× � (Ẑ/mẐ)× ∼= (Z/mZ)×
χ→ C×1 .

Let χ̃p be the local character on Q×p induced from χ̃:

χ̃p := χ̃|Q×p : Q×p → C×1 .

Let m =
∏

pcp . Then χ has a unique decomposition, χ =
∏
χp, corresponding

to the decomposition (Z/mZ)× =
∏

(Z/pcp Z)×, where χp is a primitive character
on (Z/pcp Z)×. (If p - m, this means cp = 0 and χp is the trivial character.) We put
χ ′p :=

∏
p ′ 6=p χp ′ . This is a primitive character of conductor m/pcp that is coprime

to p. Hence χ ′p(p) makes sense.

Let us describe χ̃p explicitly in terms of χ. Since Q×p = Z×p × pZ, it is enough to
describe χ̃p|Z×p and χ̃p(p), and by definition these are given as follows.

Lemma 8.1 The character χ̃p restricted to Z×p agrees with the pullback of χp via
the canonical surjection Z×p → (Zp/pcp Zp)× ∼= (Z/pcp Z)×. Also we have χ̃p(p) =
χ ′p(p)−1.

If p - m, then χ ′p = χp and so χ̃p(p) = χ(p)−1.

8.1 An Integral Expression for Orbital L-functions

We now return to the analysis of zeta functions. In this subsection we fix a positive
integer N that is a multiple of m, and we also fix a ∈ VN . Let V ′Q := {x ∈ VQ |
P(x) 6= 0}. For Φ ∈ S(VA), Wright [29] introduced the global zeta function

Z(Φ, s, χ) :=

∫
GA/GQ

| det g|2s
A χ̃(det g)

∑
x∈V ′Q

Φ(gx) dg.

Here dg is a Haar measure on GA normalized as in [29, p. 514].
Let Φa = Φ∞ × Φf,a where Φ∞ ∈ S(VR) is arbitrary and Φf,a ∈ S(VAf ) is the

characteristic function of ã + NVẐ ⊂ VẐ, where ã is a lift of a under the surjection
VẐ � VẐ/NẐ

∼= VN . Let G+
R := {g ∈ GR = GL2(R) | det g > 0} with Haar measure

dg∞ normalized as in [29], and let Γ∞(Φ∞, s) be the local zeta function defined
in (4.1).
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Proposition 8.2 We have

Z(Φa, s, χ) = |GN |−1Γ∞(Φ∞, s)ξ(s, χ−1, a).

If χ = 1, ξ(s, χ, a) is holomorphic except for simple poles at s = 1 and 5/6. If χ 6= 1
and χ3 = 1, then ξ(s, χ, a) is holomorphic except for a simple pole at s = 5/6; otherwise
it is entire.

Proof Let KN := ker(GẐ → GZ/NZ). This is an open subgroup of GAf . Note that
G+

RKN∩GQ = Γ(N). For t ∈ TN ⊂ GN = GZ/NZ, we denote by t̃ ∈ GẐ its (arbitrary)
lift. Then KN t̃ does not depend on the choice of t̃ . By strong approximation for SL2,
it is known (see, e.g., [9]) that GA = G+

RKGQ for any subgroup K ⊂ GẐ such that

the determinant map is surjective onto Ẑ×. One checks that the union
⋃

t∈TN
KN t̃

is such a K, and it is not difficult to check that the union GA =
⋃

t∈TN
G+

RKN t̃GQ is
disjoint.

Corresponding to this decomposition, for each t ∈ TN we put

Zt (Φa, s, χ̃) :=

∫
G+

RKN t̃GQ/GQ

| det g|2s
A χ̃(det g)

∑
x∈V ′Q

Φa(gx) dg.

Let dgf be the Haar measure on GAf normalized so that the volume of GẐ is 1. Then
dg = dg∞dgf. For this integral, we have the following process of modification:

Zt (Φa, s, χ̃) =

∫
G+

RKN GQ/GQ

| det t̃g|2s
A χ̃(det t̃g)

∑
x∈V ′Q

Φa(t̃gx) dg

= χ(det t)

∫
G+

RKN GQ/GQ

| det g|2s
A χ̃(det g)

∑
x∈V ′Q

Φt−1a(gx) dg

= χ(det t)

∫
G+

RKN/G+
RKN∩GQ

| det g|2s
A χ̃(det g)

∑
x∈V ′Q

Φt−1a(gx) dg

= χ(det t)

∫
G+

R/Γ(N)×KN

| det g∞|2s
∞

∑
x∈V ′Q

Φ∞(g∞x)Φf,t−1a(gfx) dg∞dgf

= χ(det t)

∫
KN

dgf

∫
G+

R/Γ(N)
| det g∞|2s

∞

∑
x∈V ′Q

Φ∞(g∞x)Φf,t−1a(x) dg∞

=
χ(det t)

|GN |

∫
G+

R/Γ(N)
| det g∞|2s

∞

∑
x∈V ′Q∩(t−1a+NVẐ)

Φ∞(g∞x) dg∞

=
χ(det t)

|TN |
1

[Γ(1) : Γ(N)]

∫
G+

R/Γ(N)
| det g∞|2s

∞

∑
x∈V ′Q∩(t−1a+NVZ)

Φ∞(g∞x) dg∞

=
χ(det t)

|TN |
Γ∞(Φ∞, s)ξ(s, t−1a).
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By (3.1), the formula is obtained by summing this formula over all t ∈ TN . We now
explain the process of modifications above.

The first equality follows from G+
RKN t̃ = t̃G+

RKN . Since χ̃ and t̃ are both lifts,
χ̃(det t̃) = χ(det t) and t̃ ∈ GẐ implies | det t̃|A = 1. Also by definition Φa(t̃x) =
Φt−1a(x). Hence the second equality follows. The third equality is obvious. Since
| det(KN )|A = χ̃(det(G+

RKN )) = 1, we have the fourth. The fifth equality is because
Φf,t−1a is KN -invariant. Since

∫
KN

dgf = [GẐ : KN ]−1 ·
∫

GẐ
dgf = |GN |−1 and

Φf,t−1a ∈ S(VA f ) is the characteristic function of t−1a + NVẐ, we have the sixth
equality. By VQ ∩ (t−1a + NVẐ) = t−1a + NVZ, we have the seventh. For the last
equality, we divide V ′Q ∩(t−1a+NVẐ) into its Γ(N)-orbits and consider each integral
separately. Then this equality follows from the unfolding method. Note that∫

G+
R/Γ(N)x

| det g∞|2s
∞Φ∞(g∞x) dg∞ =

|Γ(N)x|−1

|P(x)|s

∫
G+

R

|P(g∞x)|s∞Φ∞(g∞x) dg∞.

The second statement of the proposition follows from Wright’s study of Z(Φ, s, ω)
in [29], combined with the standard argument treating Γ∞(Φ∞, s). For this, see the
proof of [25, Theorem 2.1], for example.

8.2 Residues as Integrals

We now start to compute the residues of ξ(s, χ, a). We introduce the following con-
stants.

Definition 8.3 We define

(8.1) α :=
π2

36

(
1
3

)
, β :=

π2

12

(
1
1

)
, γ :=

2π2

9Γ(2/3)3

(
1√
3

)
.

Shintani [25] proved the following.

Theorem 8.4 (Shintani) The residues of ξ(s) are

Ress=1 ξ(s) = α + β, Ress=5/6 ξ(s) = ζ(1/3)γ.

We define an averaging operator Mf,χ on S(VAf ) by

(8.2) Mf,χΦf(x) =

∫
GẐ

χ̃(det gf)Φf(gfx) dgf

(
Φf ∈ S(VAf )

)
.

If χ is trivial then we write Mf as well. For Φf ∈ S(VAf ), let

Bf(Φf) := ζ(2)−1

∫
A×f ×A2

f

|t|2f MfΦf(0, t, u3, u4) d×tdu3du4,

Cf(Φf, χ, s) :=

∫
A×f ×A3

f

χ̃(t)|t|sfMf,χ−1 Φf(t, u2, u3, u4) d×tdu2du3du4,

Cf(Φf, χ) := Cf(Φf, χ, 1/3).
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We note that Cf(Φf, χ, s) is defined for <(s) ≤ 1 by analytic continuation. Then for
a ∈ VN , by [29, Theorem 6.1] and Proposition 8.2 (see [2, pp. 69–70] also), we have

(8.3)

Ress=1
ξ(s, χ, a)

|GN |
= δ(χ)

( 1

N4
α + Bf(Φf,a)β

)
,

Ress=5/6
ξ(s, χ, a)

|GN |
= δ(χ3)Cf(Φf,a, χ)γ.

Hence we will compute these values explicitly. We define a local averaging opera-
tor Mp,χ on S(VQp ) similarly to (8.2):

(8.4) Mp,χΦp(x) =

∫
GZp

χ̃p(det gp)Φp(gpx) dgp

(
Φp ∈ S(VQp )

)
.

Here we normalize the measure dgp on GQp such that the volume of GZp is 1. For
a ∈ V pe or a ∈ VZp and e ≥ 0, let Φp,a ∈ S(VZp ) be the characteristic function of
a + peVZp . We put

Bpe (a) := p4e(1− p−2)

∫
Q×p ×Q2

p

|t|2pMpΦp,a(0, t, u3, u4) d×tdu3du4,(8.5)

Cpe (a, χ) := p4eLp

( 1

3
, χ−1

)−1
(8.6)

×
∫

Q×p ×Q3
p

χ̃p(t)|t|1/3
p Mp,χ−1 Φp,a(t, u2, u3, u4) d×tdu2du3du4.

Note that these are 1 if e = 0 and χ is unramified at p. Let N =
∏

pep be the prime
decomposition of N. For a ∈ VN , we define

(8.7) BN (a) :=
∏
p|N

Bpep (ap), CN (a, χ) :=
∏
p|N

Cpep (ap, χ),

where ap = (a mod pe) ∈ V pe . Then

Bf(Φf,a) = N−4BN (a), Cf(Φf,a, χ) = N−4CN (a, χ)L(1/3, χ−1).

Hence by (8.3) we have the following generalization of Theorem 8.4.

Theorem 8.5 We have

Ress=1
ξ(s, χ, a)

|GN |
= δ(χ)

( 1

N4
α +

BN (a)

N4
β
)
,

Ress=5/6
ξ(s, χ, a)

|GN |
= δ(χ3)

CN (a, χ)

N4
L
( 1

3
, χ−1

)
γ.
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We now describe the residues of ξ(s, f ) for f ∈ C(VN , χ). For f ∈ C(VN ) we
define

(8.8)

AN ( f ) =
∑

a∈VN

f (a)

N4
, BN ( f ) =

∑
a∈VN

f (a)BN (a)

N4
,

CN ( f , χ) =
∑

a∈VN

f (a)CN (a, χ)

N4
.

By definition these are multiplicative. By Theorem 8.5 and Proposition 4.7, we have
the following.

Proposition 8.6 Let f ∈ C(VN , χ). Then

Ress=1 ξ(s, f ) = δ(χ)
(
AN ( f )α + BN ( f )β

)
,

Ress=5/6 ξ(s, f ) = δ(χ3)CN ( f , χ)L
( 1

3
, χ−1

)
γ.

Since ξ(s, χ, a) and ξ(s, f ) for f ∈ C(VN , χ) are holomorphic if χ3 is nontrivial,
we assume that χ3 is trivial for the rest of this section:

Assumption 8.7 The Dirichlet character χ is either trivial or cubic.

This of course implies that χ̃, χ̃p, χp and χ ′p are trivial or cubic characters also.

8.3 Preliminaries for Explicit Computation

Now our aim is to compute Bpe (a) and Cpe (a, χ) explicitly. In this subsection we
prepare several lemmas for the computation. We fix a prime p and denote the p-part
of the conductor of χ by pc. We assume e ≥ c.

We first describe some basic properties satisfied by Bpe (a) and Cpe (a, χ).

Lemma 8.8

(i) For g ∈ Gpe ,

(8.9) Bpe (ga) = Bpe (a), Cpe (ga, χ) = χp(det g)−1Cpe (a, χ).

(ii) If χ is unramified at p, then

(8.10) p−4e
∑

a∈V pe

Bpe (a) = 1, p−4e
∑

a∈V pe

Cpe (a, χ) = 1.

(iii) Let m ≤ e− c. For a ∈ V pe−m , we regard pma ∈ V pe . Then

Bpe (pma) = Bpe−m (a), Cpe (pma, χ) = χ̃p(p)m p2m/3Cpe−m (a, χ).
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Proof These immediately follow from the definitions (8.5) and (8.6). For (ii), we
note that if χ is unramified,

∑
a∈V pe

Mp,χ−1 Φp,a =
∑

a∈V pe
Φp,a is the characteristic

function of VZp .

Lemma 8.9 Let a ∈ V pe . Assume that Gpe a + peVZp is a single GZp -orbit and that
χp ◦ det is trivial on Gpe,a. Then

Bpe (a) = Bpe ′ (a ′), Cpe (a, χ) = Cpe ′ (a ′, χ),

for all e ′ ≥ e and a ′ ∈ V pe ′ such that a ′mod pe = a.

Proof By (8.5) and (8.6), it is enough to show that

p4eMp,χ−1 Φp,a = p4e ′Mp,χ−1 Φp,a ′ .

Let ã ∈ VZp be a lift of a. Then by assumption Gpe a + peVZp = GZp ã. We claim that

(8.11) Mp,χ−1 Φp,a(x) =

{
|Gpe,a||Gpe |−1χp(det k) x = kã, k ∈ GZp ,

0 x /∈ GZp ã.

By (8.4) and Lemma 8.1,

(8.12) Mp,χ−1 Φp,a = |Gpe |−1
∑

g∈Gpe

χp(det g)Φp,ga.

Hence Mp,χ−1 Φp,a(x) vanishes unless x ∈ Gpe a + peVZp . Let x = kã, k ∈ GZp . Then

Mp,χ−1 Φp,a(kã) = χp(det k)|Gpe |−1
∑

g∈Gpe

χp(det g)Φp,ga(ã)

= χp(det k)|Gpe |−1
∑

g∈Gpe ,a

χp(det g) = |Gpe,a| |Gpe |−1χp(det k),

where the last equality follows from the assumption and hence we have (8.11). Now
it is enough to show that |Gpe ′ ,a ′ | = |Gpe,a|. For this, note the identity Gpe ′ a ′ +

pe ′VZp = Gpe a+peVZp . These volumes are p−4e ′ |Gpe ′ |/|Gpe ′ ,a ′ | and p−4e|Gpe |/|Gpe,a|
respectively, and hence we have |Gpe ′ ,a ′ | = |Gpe,a|. This finishes the proof.

To begin our computation of Bpe (a) and Cpe (a, χ), we introduce the following
notation.

Definition 8.10

(i) For a = (a1, a2, a3, a4) ∈ VZp , we define

(8.13) B ′pe (a) :=


0 a1 /∈ peVZp ,

pe(1 + p−1)|a2|p a1 ∈ peVZp , a2 /∈ peVZp ,

1 a1, a2 ∈ peVZp .
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(ii) For y ∈ Zp, we define Ipe (y, χ) as follows. If c = 0, we put

(8.14) Ipe (y, χ) :=


p2e/3χ̃p(p)e ordp(y) ≥ e,
1− χ̃p(p)p−1/3

1− p−1
χ̃p(y)|y|−2/3

p ordp(y) < e.

If c ≥ 1, then we put

(8.15) Ipe (y, χ) :=

{
(1− p−1)−1χ̃p(y)|y|−2/3

p ordp(y) ≤ e− c,

0 ordp(y) > e− c.

Since these quantities respectively depend only on (a mod pe) ∈ V pe or (y mod pe) ∈
Z/peZ, we use the same notation for a ∈ V pe or y ∈ Z/peZ as well.

An easy computation shows that

B ′pe (a) = p4e(1− p−2)

∫
Q×p ×Q2

p

|t|2pΦp,a(0, t, u3, u4) d×tdu3du4,(8.16)

Ipe (y, χ) = peLp(
1

3
, χ−1)−1

∫
y+peZp

χ̃p(t)|t|1/3
p d×t.(8.17)

Let W = Aff2 be the affine space of 2-dimensional row vectors. The G naturally
acts on W from the right. We put W pe := WZ/peZ = (Z/peZ)2 and

W ′
pe := {(u, v) ∈ (Z/peZ)2 | u ∈ (Z/peZ)× or v ∈ (Z/peZ)×},

which is the Gpe -orbit of (1, 0) ∈ W pe . The following formulas for Bpe (a) and
Cpe (a, χ) hold.

Lemma 8.11

(i) We have

(8.18) Bpe (a) = |Gpe |−1
∑

g∈Gpe

B ′pe (ga).

(ii) If χ is unramified at p (i.e., if c = 0), we have

(8.19) Cpe (a, χ) = |Gpe |−1
∑

g∈Gpe

Ipe

(
(ga)1, χ

)
,

where (ga)1 ∈ Z/peZ is the first entry of ga ∈ V pe . Moreover for any χ,

(8.20) Cpe (a, χ) = |W ′
pe |−1

∑
(u,v)∈W ′pe

Ipe

(
a(u, v), χ

)
.

Here we are plugging particular values of u and v into the binary cubic form a.
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Proof (i) is obtained by (8.12) with χp trivial and (8.16). We consider (ii). Let

C ′pe (a, χ) = p4eLp

( 1

3
, χ−1

)−1
∫

Q×p ×Q3
p

χ̃p(t)|t|1/3
p Φp,a(t, u2, u3, u4) d×tdu2du3du4.

Then by (8.17) we have C ′pe (a, χ) = Ipe (a1, χ). Hence by (8.12) we have

Cpe (a, χ) = |Gpe |−1
∑

g∈Gpe

χp(det g)C ′pe (ga, χ)

= |Gpe |−1
∑

g∈Gpe

χp(det g)Ipe

(
(ga)1, χ

)
.

In particular we have (8.19). Moreover, note that (ga)1 = (det g)−1a
(

(1, 0)g
)

. Since
Ipe (t y, χ) = χp(t)Ipe (y, χ) for t ∈ (Z/peZ)×, we have

Cpe (a, χ) = |Gpe |−1
∑

g∈Gpe

Ipe

(
a
(

(1, 0)g
)
, χ
)

= |W ′
pe |−1

∑
(u,v)∈W ′pe

Ipe

(
a(u, v), χ

)
,

as desired.

8.4 Unramified Computation

In this subsection, we compute Bpe (a) and Cpe (a, χ) for p - m, that is, when χ is
unramified at p. By (8.9), these depend only on the Gpe -orbit of a. For Cpe , we list
for convenience the values of (1− p−2)Cpe (a, χ).

When e = 1, we have the following.

Proposition 8.12 For e = 1, Bp(a) and (1− p−2)Cp(a, χ) are given by the following
table.

Type of a Bp(a) (1− p−2)Cp(a, χ)

(3) 0 (1− χ(p)2 p−1/3)(1 + p−1)
(21) 1 1− χ(p)2 p−4/3

(111) 3 (1− χ(p)p−2/3)(1 + χ(p)2 p−1/3)2

(121) p+2
p+1 (1 + χ(p)2 p−1/3)(1− p−1)

(13) 1
p+1 1− χ(p)2 p−4/3

(0) 1 (1− p−2)χ(p)2 p2/3.

Proof For the computation of Cpe (a, χ), it is convenient to put

(8.21) x := χ̃p(p)p−1/3 = χ(p)2 p−1/3.

We note that since χ is a cubic character, x3 = p−1. Let

n0
p(σ) = |{a ∈ V p(σ) | a1 6= 0}|, n1

p(σ) = |{a ∈ V p(σ) | a1 = 0, a2 6= 0}|,
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and
n2

p(σ) = |{a ∈ V p(σ) | a1 = a2 = 0}|.

Note that
∑

0≤i≤2 ni
p(σ) = np(σ). Then for a ∈ V p(σ), by (8.18) and (8.13) (respec-

tively by (8.19) and (8.14)), we have

Bp(a) =
n0

p(σ)

np(σ)
· 0 +

n1
p(σ)

np(σ)
· p(1 + p−1) +

n2
p(σ)

np(σ)
· 1,

Cp(a, χ) =
n0

p(σ)

np(σ)
· 1− x

1− x3
+

n1
p(σ) + n2

p(σ)

np(σ)
· 1

x2
.

For (σ) = (121), we see that the ratio n0
p(σ) : n1

p(σ) : n2
p(σ) is (p − 1) : 1 : 1 and

hence

Bp(a) =
1

p + 1
· p(1 + p−1) +

1

p + 1
· 1 =

p + 2

p + 1
,

Cp(a, χ) =
p − 1

p + 1
· 1− x

1− x3
+

2

p + 1
· 1

x2
=

1− x3

1 + x3
· 1− x

1− x3
+

2x3

1 + x3
· 1

x2
=

1 + x

1 + x3
.

The other cases are computed similarly. For (σ) = (3), (21), (111), (121), (13),
and (0), the ratio n0

p(σ) :n1
p(σ) :n2

p(σ) is 1 :0 :0, p : 1 :0, (p − 2) :3 :0, (p − 1) :1 :1,
p : 0 :1, and 0 :0 :1 respectively, and the result follows.

We now consider the case e ≥ 2. In connection with counting cubic fields, we
mainly work for a ∈ V max

pe , i.e., of type (3), (21), (111), (121max), or (13
max). This is

a generalization of results of Datskovsky and Wright [2, Theorem 5.2 and Proposi-
tion 5.3] to unramified characters.

Proposition 8.13 Let e ≥ 2 and a ∈ V max
pe . Then Bpe (a) and (1− p−2)Cpe (a, χ) are

given by the following table.

Type of a Bpe (a) (1− p−2)Cpe (a, χ)

(3) 0 (1− χ(p)2 p−1/3)(1 + p−1)
(21) 1 1− χ(p)2 p−4/3

(111) 3 (1− χ(p)p−2/3)(1 + χ(p)2 p−1/3)2

(121max) 1 (1 + χ(p)2 p−1/3)(1− χ(p)p−2/3)
(13

max) 0 1− χ(p)p−2/3.

In particular, they depend only on the orbital type of a.

Proof For (σ) = (3), (21), (111), VZp (σ) is a single GZp -orbit. Hence, if a is of one
of these types, Lemma 8.9 reduces our calculation to the case e = 1, handled in
Proposition 8.12. Therefore we consider the remaining cases. We put R = Z/peZ,
and again write x = χ(p)2 p−1/3 as in (8.21).

First let a be of type (121max). By Theorem 2.1, each orbit in V pe (121max) contains
some a = (0, 1, a3, a4) where a3 ∈ pR and a4 ∈ pR×. Let g =

( q r
s t

)
∈ Gpe . Then
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the first coordinate (ga)1 of ga is (ga)1 = (det g)−1r(q2 + a3qr + a4r2). Since a3 ∈ pR
and a4 ∈ pR×,

ordp(q2 + a3qr + a4r2) =

{
0 ordp(q) = 0,

1 ordp(q) ≥ 1.

Hence (ga)1 = 0 if and only if r = 0, and in this case, (ga)2 = q ∈ R×. Hence
by (8.13), B ′pe (ga) = pe(1 + p−1) if r = 0 and 0 otherwise. Since

|{g ∈ Gpe | r = 0}| = p3e(1− p−1)2,

by (8.18) we have Bpe (a) = 1.
We compute Cpe (a, χ) using (8.20) and (8.14). Let (u, v) ∈ W ′

pe . Then a(u, v) =

v(u2 + a3uv + a4v2). If u2 + a3uv + a4v2 /∈ R×, then u /∈ R× and hence v ∈ R×.
Therefore,

ordp

(
a(u, v)

)
=

{
1 ordp(u) ≥ 1,

ordp(v) ordp(u) = 0.

The cardinalities of the subsets {ordp(u) ≥ 1}, {ordp(u) = 0, ordp(v) = m <
e}, and {v = 0} of W ′

pe are p2e−1(1 − p−1), p2e−m(1 − p−1)2, and pe(1 − p−1),
respectively. Hence by (8.20) and (8.14),

Cpe (a, χ) =
p2e−1(1− p−1)

p2e(1− p−2)
· (1− x)px

1− p−1
+
∑

0≤m<e

p2e−m(1− p−1)2

p2e(1− p−2)
· (1− x)pmxm

1− p−1

+
pe(1− p−1)

p2e(1− p−2)
· pexe =

(1 + x)(1− x2)

1− p−2
.

Next let a be of type (13
max). We may assume a = (1, a2, a3, a4) where a2, a3 ∈ pR,

a4 ∈ pR×. Let g ∈ Gpe as above. Then (ga)1 = (det g)−1(q3 + a2q2r + a3qr2 + a4r3).
Since a2, a3 ∈ pR and a4 ∈ pR×, ordp(q3 + a2q2r + a3qr2 + a4r3) ≤ 1, and hence
(ga)1 is always nonzero. Hence Bpe (a) = 0. Also the order of ordp

(
a(u, v)

)
is 0 if

ordp(u) = 0 and 1 otherwise. Hence

Cpe (a, χ) =
p2e(1− p−1)

p2e(1− p−2)
· (1− x)

1− p−1
+

p2e−1(1− p−1)

p2e(1− p−2)
· (1− x)px

1− p−1
=

1− x2

1− p−2
.

This finishes the proof.

As corollaries we have the following. Recall that we introduced fp ∈ C(V p),
Φp,Φ

′
p ∈ C(V p2 ) in Definitions 5.3, 5.10 and the distributions AN ,BN ,CN in (8.8).

Corollary 8.14 Assume that χ is unramified at p. We have

Ap( fp) = Bp( fp) =
1

p
+

1

p2
− 1

p3
, Cp( fp, χ) =

1

p
+
χ(p)2

p4/3
− χ(p)2

p7/3
.
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Proof Let x be as in (8.21). By Lemma 5.2 and Proposition 8.12, we have

Ap( fp) =
p(p2 − 1)

p4
+

(p2 − 1)

p4
+

1

p4
=

1

p
+

1

p2
− 1

p3
,

Bp( fp) =
p(p2 − 1)

p4

p + 2

p + 1
+

(p2 − 1)

p4

1

p + 1
+

1

p4
=

1

p
+

1

p2
− 1

p3
,

Cp( fp, χ) =
p(p2 − 1)

p4

1 + x

1 + x3
+

(p2 − 1)

p4

1− x4

1− x6
+

1

p4

1

x2
= x3 + x4 − x7,

as desired. Again we note that x3 = p−1.

Corollary 8.15 Assume that χ is unramified at p. Then

Ap2 (Φp) =
1

p2
+

1

p3
− 1

p5
, Ap2 (Φ ′p) =

2

p2
− 1

p4
,

Bp2 (Φp) =
2

p2
− 1

p4
, Bp2 (Φ ′p) =

2

p2
− 1

p4
,

Cp2 (Φp, χ) =
χ(p)

p5/3
+

1

p2
− χ(p)

p11/3
, Cp2 (Φ ′p, χ) =

χ(p)

p5/3
+

2

p2
− χ(p)

p8/3
− 1

p3
.

Proof Let x be as in (8.21). By (8.10), we have

Cp2 (Φp, χ) = p−8
∑

a∈V nm
p2

Cp2 (a, χ) = 1− p−8
∑

a∈V max
p2

Cp2 (a, χ).

Hence by Lemma 5.6 and Proposition 8.13,

Cp2 (Φp, χ) = 1− p4(p2 − 1)(p2 − p)

p8

1− x2

1− x6

×
( 1− x + x2

3
+

1 + x2

2
+

(1 + x)2

6
+

1 + x

p
+

1

p2

)
= 1− (1− x3)(1− x2)(1 + x2 + x3 + x4 + x6) = x5 + x6 − x11,

and the result follows. By adding the contribution from V p2 (13
max), we also have

Cp2 (Φ ′p, χ) = 1− (1− x3)(1− x2)(1 + x2 + x3 + x4) = x5 + 2x6 − x8 − x9,

as desired. The other formulas are proved similarly.

For its own interest, when e = 2 we compute Bpe (a) and Cp2 (a, χ) for a ∈ V nm
p2

also. By Lemma 8.8 (iii), we may assume a ∈ V nm
p2 \ pV p2 .
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Proposition 8.16 Let a ∈ V p2 be of type (121∗), (13
∗) or (13

∗∗). Then Bpe (a) and
(1− p−2)Cp2 (a, χ) are given in the following table.

Type of a Bp2 (a) (1− p−2)Cp2 (a, χ)
2p+1
p+1 (p 6= 2)

(121∗)
4
3 (p = 2, a = (0, 1, 0, 0))

(
1 + χ(p)p1/3

)
(1− p−1)

5
3 (p = 2, a = (0, 1, 2, 0))

(13
∗) 1

(
1 + χ(p)p1/3

)(
1− χ(p)p−2/3

)
(13
∗∗)

1
p+1

(
1 + χ(p)p1/3

)(
1− χ(p)p−2/3

)
.

Proof Since the proof is quite similar to Proposition 8.13, we shall be brief. Let
R = Z/p2Z.

Let a = (0, 1, a2, 0) ∈ Dp2 (121∗). We first compute Cp2 (a, χ). Let (u, v) ∈ W ′
p2 .

Then

ordp

(
a(u, v)

)
= ordp

(
uv(u + a2v)

)
=

{
2 u ∈ pR,

ordp(v) u ∈ R×.

Hence by (8.20) and (8.14),

Cp2 (a, χ) =
(1− p−1)2

1− p−2
· 1− x

1− p−1
+

p−1(1− p−1)2

1− p−2
· (1− x)px

1− p−1

+
p−1(1− p−2)

1− p−2
· p2x2

=
1 + x−1

1 + p−1
.

We consider Bp2 (a). Let a = (0, 1, 0, 0) and g =
( q r

s t

)
∈ Gp2 . Then (ga)1 = 0 if and

only if r = 0 or q ∈ pR. Moreover, if r = 0 then (ga)2 ∈ R×, and if q ∈ pR then
(ga)2 ∈ 2qR×. Then by (8.18) and (8.13), if p 6= 2 we have

Bp2 (a) =
p−2(1− p−1)

1− p−2
· p2(1 + p−1) +

p−1(1− p−1)2

1− p−2
· p(1 + p−1)

+
p−2(1− p−1)

1− p−2
· 1

=
2p + 1

p + 1
,

and if p = 2 we have

Bp2 (a) =
p−2(1− p−1)

1− p−2
· p2(1 + p−1) +

p−1(1− p−1)

1− p−2
· 1 =

p + 2

p + 1
=

4

3
.

When p 6= 2, V p2 (121∗) is a single orbit by Proposition 5.12, and hence this is enough.
When p = 2 we see numerically that there is one other orbit represented by a =
(0, 1, 2, 0) in V p2 (121∗), and by a similar consideration we have Bp2 (a) = 5

3 for this a.
This finishes the proof for type (121∗). The arguments for types (13

∗) and (13
∗∗)

are similar and easier, so we omit the details.
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8.5 Ramified Computation

In this subsection, we compute Cpe (a, χ) for p | m, that is, at the primes p where χ is
ramified. Since χ is cubic, either p ≡ 1 (mod 3) or p = 3, and the conductor pc of χ
is

pc =

{
p p ≡ 1 (mod 3),

p2 p = 3.

We assume e ≥ c. We mainly work for p ≡ 1 (mod 3). For p = 3, the computation
seems to be more complicated theoretically. Fortunately there are only finitely many
cases, so we simply use PARI/GP [19] for evaluation.

We first treat the case e = 1 and (hence) p ≡ 1 (mod 3). The following is a
refinement of [2, Proposition 5.4]. As in [2], we encounter a curious “cubic character
sum of a cubic polynomial” which was evaluated by Wright [30].

Proposition 8.17 Assume p ≡ 1 (mod 3). Let e = 1. We have

(1− p−2)Cp(a, χ)

=


p−2τ (χp)3χp

(
P(a)

)
for a of type (3), (111),

−p−2τ (χp)3χp

(
P(a)

)
for a of type (2),

0 for a of type (121), (0),

χp(det g)2 for a of type (13), a = g(1, 0, 0, 0), g ∈ Gp.

Here τ (χp) =
∑

t∈F×p
χp(t) exp(2πit/p) is the usual Gauss sum.

Proof If a is of type (121) or (0), then χp ◦ det is nontrivial on Gp,a and hence
Cp(a, χ) = 0. We consider the other cases. By (8.20) and (8.15) we have

Cp(a, χ) =
1

(p2 − 1)(1− p−1)

∑
(u,v)∈F2

p ,a(u,v)6=0

χp

(
a(u, v)

)
.

The sum in the right hand side was studied by Wright [30]. Let

J(χp, χp) =
∑

t∈F×p ,t 6=1

χp(t)χp(1− t)

be the Jacobi sum. If a is of type (3), (21) or (111), then by [30, Theorem 1],∑
(u,v)∈F2

p ,a(u,v) 6=0

χp

(
a(u, v)

)
= ±(p − 1)χp

(
P(a)

)
J(χp, χp),

where the sign is + if a is of type (3) or (111), and − if a is of type (2). Since χ2
p =

χp 6= 1, we have

J(χp, χp) = τ (χp)2/τ (χp) = τ (χp)2 · χp(−1)τ (χp)/p = τ (χp)3/p,
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and the result follows. Let a be of type (13). We have a = ga0 for some g ∈ Gp, where
a0 = (1, 0, 0, 0). Then Cp(a, χ) = χp(det g)2Cp(a0, χ) and∑

(u,v)∈F2
p ,a0(u,v)6=0

χp

(
a0(u, v)

)
=

∑
u∈F×p ,v∈Fp

χp(u3) =
∑

u∈F×p ,v∈Fp

1 = p(p − 1).

Hence we have the formula.

We now study the case e ≥ 2. When e = 2 and a ∈ V nm
p2 , this is fairly easy. As

before we may assume a /∈ pV p2 .

Proposition 8.18 If a is of type (121∗), then Cp2 (a, χ) = 0. Let a be of type (13
∗) or

(13
∗∗). We may assume a = (1, a2, a3, 0) is in Dp2 (13

∗) or Dp2 (13
∗∗), and for these a,

(1−p−2)Cp2 (a, χ) =

{
1 p ≡ 1 (mod 3),
1
3

(
1 + χp(1 + a2 + a3) + χp(1− a2 + a3)

)
p = 3.

Proof If a is of type (121∗), then by Lemma 5.11 (i), χ ◦ det is nontrivial on Gp2,a.
Hence Lemma 8.8 (i) implies that Cp2 (a, χ) must vanish.

We put R = Z/p2Z. Let a = (1, a2, a3, 0) with a2, a3 ∈ pR. Depending on the
type of a, a3 is in pR× or 0. For (u, v) ∈W ′

p2 , a(u, v) = 0 if u ∈ pR. Hence by (8.20)
and (8.15),

(1− p−2)Cp2 (a, χ) = p−4(1− p−1)−1
∑

u∈R×,v∈R

χp(u3 + a2u2v + a3uv2).

By changing v to uv and using that χp is cubic,

(1− p−2)Cp2 (a, χ) = p−2
∑
v∈R

χp(1 + a2v + a3v2).

If p ≡ 1 (mod 3), then χp(1 + a2v + a3v2) = 1 since the conductor of χp is p. If
p = 3, then χp(1 + a2v + a3v2) is determined by (v mod 3) ∈ {0,±1}. Hence we have
the formula.

For e ≥ 2, we now compute Cpe (a, χ) for a ∈ V max
Zp

or a ∈ V max
pe . For stating our

result as well as applications to counting cubic fields [28], it is convenient to instead
compute a quantity closely related to Cpe (a, χ). Let a ∈ V max

Zp
. We choose e ≥ c such

that

(i) Gpe a + peVZp is a single GZp -orbit,

(ii) the value χ̃p

(
P(a)/pordp(P(a))

)
depends only on a mod pe,

and define

C̃pe (a, χ) := (1− p−2)
Cpe (a, χ)

χ̃p

(
P(a)/pordp(P(a))

) .
This depends only on the GZp -orbit of a, and only on a mod pe. Hence this depends
only on the Gpe -orbit of a mod pe. For each a, we can choose such e ≥ c satisfying (i)
and (ii) as follows.
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Lemma 8.19

(i) Let p ≡ 1 (mod 3). For a of type (3), (21), or (111), e = 1 is enough. For a of
type (121max) or (13

max), e = 2 is enough.
(ii) Let p = 3. For a of type (3), (21), or (111), e = 2 is enough. For a of type (121max)

or (13
max), e = 3 is enough.

Proof By Propositions 5.14, 5.15, these e satisfy (i). We check (ii) for each orbit
individually. For elements of type (3), (21), (111) this is trivial, so we work for the
remaining cases. Assume p = 3 and a ∈ VZp (13

max). A set of representatives of the
various GZp -orbits are given in the second table of the next proposition. If a lies, say,

in the orbit of arep = (1, 3, 0, 3) and a ′ ≡ a (mod p3), then ordp

(
P(a)

)
= 4. Let

a = garep. Then g−1a ′ ≡ arep (mod p3). If we write g−1a ′ = (a1, a2, a3, a4), then by
the definition of the polynomial P, we have

P(g−1a ′) ≡ −4a3
2a4 − 27a2

1a2
4 ≡ P(arep) (mod p6).

This shows that P(a ′)/p4 ≡ P(a)/p4 (mod p2). Hence the values of χ̃p for a, a ′

coincide; recall that the conductor of χ̃p is p2. This proves (ii) for this GZp -orbit.
The elements a in other orbits are treated similarly, and we omit the detailss.

We now give the value of C̃pe (a, χ) for each GZp -orbit in V max
Zp

. We also list the

minimal e, |P(a)|−1
p and |GZp ,a| for convenience. The result for p ≡ 1 (mod 3) is due

to Datskovsky and Wright [2, Proposition 5.4].

Proposition 8.20 Let a ∈ V max
Zp

. If p ≡ 1 (mod 3), we have the following table.

Type of a a ∈ VZp e ≥ C̃pe (a, χ) |P(a)|−1
p |GZp ,a|

(3) a 1 τ (χp)3/p2 1 3

(21) a 1 −τ (χp)3/p2 1 2

(111) a 1 τ (χp)3/p2 1 6

(121max) (0, 1, 0, pα), α ∈ Z×p 2 χp(2)χ′p(p)2 p−1/3 p 2

(13
max) (1, 0, 0, pα), α ∈ Z×p 2 χp(α) + χp(α)2χ′p(p)2 p−1/3 p2 3

If p = 3, we have the following table.

Type of a a ∈ VZp e ≥ C̃pe (a, χ) |P(a)|−1
p |GZp ,a|

(3) a 2 τ (χp)3/p4 = χp(2)/p 1 3

(21) a 2 τ (χp)3/p4 = χp(2)/p 1 2

(111) a 2 τ (χp)3/p4 = χp(2)/p 1 6

(121max) (0, 1, 0,±3) 3 ±
(

1− χp(4)
)
χ′p(p)2 p−4/3 p 2

(1, 0, 3, 3) 3
(
χp(2)− 1

)
/p p3 1

(1, 0, 6, 3) 3
(

2χp(2) + 1
)
/p p3 1

(13
max) (1, 3, 0, 3) 3 χp(4)χ′p(p)2 p−1/3 p4 1

(1,−3, 0, 3α), α = 1, 4, 7 3 χp(α)2 + χ′p(p)2 p−1/3 p4 3

(1, 0, 0, 3α), α = 1, 4, 7 3 χp(α)2χ′p(p)2 p−1/3 p5 1
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Proof Let p ≡ 1 (mod 3). By Lemma 8.9, for orbits of type (3), (21), (111) this
follows from Proposition 8.17. We consider orbits of type (σ) = (121max) or (13

max).
By Lemma 8.9 we may assume e = 2, but for potential further applications of our
argument we let e ≥ 2 be arbitrary. We use (8.20) and (8.15) for computation. Let
R = Z/peZ. For 0 6= x ∈ R, let χ̃p(x) = χ̃p(x̃) where x̃ ∈ Zp is an arbitrary lift
of x. This is well defined since the conductor of χp is p. Also if x ∈ pmR× for some
0 ≤ m < e and y ∈ x + pm+1R, then χ̃p(y) = χ̃p(x).

(i) Let a ∈ V pe (121max). We may assume a = (0, 1, a3, a4) where a3 ∈ pR and
a4 ∈ pR×. Let (u, v) ∈W ′

pe . If u ∈ pR, then v ∈ R× and hence a(u, v) ∈ a4v3 + p2R.

This implies χ̃p

(
a(u, v)

)
= χ̃p(a4v3) = χ̃p(a4). If u ∈ R×, then a(u, v) 6= 0 if and

only if v 6= 0, and in this case a(u, v) ∈ v(u2 + pR) and hence χ̃p

(
a(u, v)

)
= χ̃p(u2v).

Hence by (8.20), (8.15),

Cpe (a, χ) =
1

p + 1

χ̃p(a4)p2/3

1− p−1
+

1

p2e(1− p−2)

∑
u∈R×,v∈R\{0}

χ̃p(u2v)|v|−2/3

1− p−1

=
χ̃p(a4)p−1/3

1− p−2
+

1

p2e(1− p−2)(1− p−1)

×
∑

u∈R×

χ̃p(u2)
∑

0≤m<e

p2m/3
∑

v∈pmR×

χ̃p(v).

Since χ̃p induces a nontrivial character on each (Z/pe−mZ)× for m < e, we have∑
v∈pmR×

χ̃p(v) = χ̃p(p)m
∑

v ′∈(Z/pe−mZ)×

χ̃p(v ′) = 0.

Hence Cpe (a, χ) = (1 − p−2)−1χ̃p(a4)p−1/3. In particular for a = (0, 1, 0, pα) ∈
VZp , α ∈ Z×p ,

C̃pe (a, χ) =
χ̃p(pα)p−1/3

χ̃p(−4α)
= χ̃p(2p)p−1/3 = χp(2)χ ′p(p2)p−1/3.

Note that the last equality follows from Lemma 8.1.
(ii) Let a ∈ V pe (13

max). We may assume a = (1, a2, a3, a4) where a2, a3 ∈ pR and
a4 ∈ pR×. If u ∈ R×, then a(u, v) ∈ u3 + pR and hence χ̃p

(
a(u, v)

)
= 1. If u ∈ pR,

then a(u, v) ∈ a4v3 + p2R and hence χ̃p

(
a(u, v)

)
= χ̃p(a4). Hence by (8.20), (8.15),

Cpe (a, χ) =
p

p + 1

1

1− p−1
+

1

p + 1

χ̃p(a4)p2/3

1− p−1
=

1 + χ̃p(a4)p−1/3

1− p−2
.

The result in the table follows from this. This finishes the proof for p ≡ 1 (mod 3).
Let p = 3. Then since Q×p = pZ × Z×p and (Zp/p2Zp)× ∼= (Z/9Z)× is generated

by 2 ∈ Z×p , χ̃p is determined uniquely by χ̃p(p) and χ̃p(2). Now the results in the
second table are verified by explicitly evaluating the sum (8.20) using PARI/GP [19].
Note the identity χp(2) = p−3τ (χp)3.
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Remark 8.21 We now explain how Theorem 1.2 follows from our arguments. The
functional equations of ξ(s, a) and ξ(s, χ, a) are obtained as special cases of Theo-
rem 4.3, due to F. Sato, and for ξ(s, χ, a) we stated this as Proposition 4.8. By Propo-
sition 3.4, the residues of ξ(s, a) are obtained from those of ξ(s, χ, a). By Propo-
sition 8.2, ξ(s, χ, a) is entire if χ3 is nontrivial, and Theorem 8.5 and Lemma 8.11
express the residues of ξ(s, χ, a) as a sum over GN for χ cubic. When a corresponds
to a maximal cubic ring for all p | N, explicit residue formulas are proved in Propo-
sitions 8.13 and 8.20. When N is cube-free, explicit formulas are proved in Proposi-
tions 8.12, 8.17 for p || N, and Propositions 8.13, 8.16, 8.18, 8.20 for p2 || N.

9 Examples: Bias of Class Numbers in Arithmetic Progressions

Let χ be a primitive Dirichlet character of conductor m. For each sign we define

(9.1) ξ±(s, χ) :=
∑

x∈SL2(Z)\V±Z
(P(x),m)=1

| Stab(x)|−1χ
(

P(x)
)

|P(x)|s
,

where V±Z = {x ∈ VZ | ±P(x) > 0} and Stab(x) denotes the stabilizer group of x
in SL2(Z). This is also a standard construction of L-functions from Shintani’s zeta
functions ξ±(s). In this section we apply our analysis to describe the residues of these
zeta functions and their relatives, and prove biases of class numbers in arithmetic
progressions. We also discuss how these results relate to Theorem 1.6.

Let h ∈ C(Vm) be the function defined for a ∈ Vm by

h(a) =

{
χ
(

P(a)
)

if P(a) ∈ (Z/mZ)×,

0 otherwise.

Then h ∈ C(Vm, χ
2), and by Proposition 4.6, ξ(s, h) = t

(
ξ+(s, χ), ξ−(s, χ)

)
. Propo-

sition 8.6 asserts that each of ξ±(s, χ) is holomorphic if χ6 is nontrivial.
Assume χ6 = 1. We consider the case where m is a power of an odd prime p.

(Since m is the conductor of χ, χ6 = 1 implies that m = p except for the case p = 3,
and χ is not quadratic where m = p2.) Let λp ∈ C(V p) be as follows: λp(a) = 1 if a
is of type (3) or (111), λp(a) = −1 if a is of type (21), and λp(a) = 0 otherwise.

If χ is quadratic, then Proposition 8.6 implies that ξ±(s, χ) has possible simple
poles at s = 1 and 5/6. We compute the quantity Cp(h, 1) defined in (8.8). In this
case h = λp, and by Proposition 8.12 with Lemma 5.2,

Cp(h, 1) = (1− p−1)
{ (1− p−1/3)(1 + p−1)

3
− 1− p−4/3

2

+
(1− p−2/3)(1 + p−1/3)2

6

}
= 0.

Similarly Ap(h) = Bp(h) = 0. Hence ξ±(s, h) is in fact entire.
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Now assume that χ2 6= 1 but χ6 = 1, i.e., χ is either cubic or sextic. Then ξ±(s, χ)
has a possible simple pole at s = 5/6 and is holomorphic elsewhere. Let m = p 6= 3.
By Proposition 8.20,

Cp(h, χ2) = p−4
∑

P(a)6=0

χ
(

P(a)
)
Cp(a, χ2) =

p−6τ (χ2)3

1− p−2

∑
P(a)6=0

λp(a)χ
(

P(a)
) 3

=

{
0 if χ is cubic,

p−2(1− p−1)τ (χ2)3 if χ is sextic.

If m = p2 = 32, we have

Cp2 (h, χ2) =

{
p−4(1− p−1)τ (χ2)3 if χ is cubic,

0 if χ is sextic.

So ξ±(s, χ) has a pole at s = 5/6 when Cpe (h, χ2) does not vanish.
Now let m be an arbitrary odd integer. Since A,B,C have Euler products, based

on the computations above we get the following residue formula. Recall the decom-
position χ =

∏
χp we introduced at the beginning of Section 8.

Theorem 9.1 Assume that the conductor m of χ is odd and m 6= 1. Then the ξ±(s, χ)
are holomorphic except for a simple pole at s = 5/6, which occurs if χp is of order 6 for
all 3 6= p | m and in addition χ3 is of order 3 if 3 | m. In this case the residues are

Ress=5/6 ξ±(s, χ) = K±
2π2

∏
p|m(1− p−1)

9Γ(2/3)3m2
τ (χ2)3L(1/3, χ−2).

Here K+ = 1,K− =
√

3, τ (χ2) =
∑

t∈(Z/mZ)× χ
2(t) exp(2πit/m) is the Gauss sum,

and L(s, χ) is the usual Dirichlet L-function. If χ is of odd conductor m > 1 but does
not satisfy the properties above, then the ξ±(s, χ) are entire.

Proof We assume χ6 = 1 and compute the residue at s = 5/6; the residue computa-
tion at s = 1 is similar. Since χ is primitive, χ6 = 1 implies that each χp is quadratic,
cubic, or sextic.

We first consider the case 3 - m. Then m is square free. Let us write h =
∏

p|m hp,

where hp ∈ C(V p) satisfies hp(a) = χp

(
P(a)

)
if P(a) ∈ (Z/pZ)× and hp(a) = 0

if P(a) = 0. Then by (8.7) and (8.8), CN (h, χ2) =
∏

p|m Cp(hp, χ
2). Cp(hp, χ

2) is

computed as above; it is p−2(1 − p−1)τ (χ2
p)3 if χp is sextic and 0 if χp is quadratic

or cubic. Hence CN (h, χ2) = 0 if any χp is not sextic. Thus assume that all χp

are sextic. Then by the decomposition formula for the classical Gauss sum (recalled
before Proposition 4.11),

1

m2
· τ (χ2)3 =

1

m2

∏
p|m

χp(m/p)6τ (χ2
p)3 =

∏
p|m

τ (χ2
p)3

p2
,
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and we conclude that

CN (h, χ2) =
τ (χ2)3

m2

∏
p|m

(1− p−1).

Hence (9.1) follows from Proposition 8.6 and (8.1).
The case 3 | m is similarly done; CN (h, χ2) = 0 unless χ3 is cubic and χp is sextic

for all 3 6= p | m, and in this case we have (9.1) because of the identity

1

m2
· τ (χ2)3 =

τ (χ2
3)3

34

∏
p|m

τ (χ2
p)3

p2
.

From this result we can prove the two main terms of the function counting the
class numbers of integral binary cubic forms in arithmetic progressions. This result
implies that there is a bias in the second main term if and only if the odd modulus
admits a character of order 6.

Theorem 9.2 Let h±(n) be the coefficients of Shintani’s original zeta function ξ±(s),
i.e., ξ±(s) =

∑
h±(n)/ns. Let N be an odd integer and a an integer coprime to N.

Then ∑
0<n<X

n≡a(mod N)

h±(n) = C ′±
π2
∏

p|N (1− p−2)

9N
· X

+ K1(N, a)
2K±π2

9Γ(2/3)3N
· X5/6

5/6
+ ON,ε(X3/5+ε),

where C ′+ = 1,C ′− = 3/2,K+ = 1,K− =
√

3, and

K1(N, a) =
∑ ′

χ6=1

χ(a)−1 τ (χ2)3L(1/3, χ−2)

m2
χ

∏
p|N,p-mχ

(
1− χ(p)−2 p−4/3

)
.

Here the sum above is over primitive characters χ whose conductor mχ is a divisor of N
(including the trivial character modulo 1) such that if we write χ =

∏
p|mχ

χp, then

each χp has exact order 6 for p 6= 3 and χ3 has exact order 3 if 3 | mχ.

By the Delone–Faddeev correspondence, we can also state Theorem 9.2 as a for-
mula counting discriminants of cubic rings in arithmetic progressions.

Proof Let χ be a primitive Dirichlet character whose conductor mχ is a divisor of N.
We define ξN

±(s, χ) by the formula (9.1) with the sum restricted to those x with P(x)
coprime to N (rather than mχ). Then Proposition 8.6 and Corollary 8.14 imply

Ress=1 ξ
N
±(s, 1) = Ress=1 ξ±(s, 1)

∏
p|N

(1− p−1)(1− p−2),

Ress=5/6 ξ
N
±(s, χ) = Ress=5/6 ξ±(s, χ)

∏
p|N,p-mχ

(1− p−1)
(

1− χ(p)−2 p−4/3
)
,
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where if χ6 6= 1, the second formula means the formal equality 0 = 0. On the other
hand, Sato–Shintani’s Tauberian theorem [24, Theorem 3] asserts that

∑
0<n<X,(n,N)=1

h±(n)χ(n) = Ress=1 ξ
N
±(s, χ)X + Ress=5/6 ξ

N
±(s, χ)

X5/6

5/6
+ ON,ε(X3/5+ε).

Now the theorem follows from the residue formulas in Theorems 8.4 and 9.1 with
the orthogonality of characters. Note that ϕ(N) = N

∏
p|N (1− p−1).

Let P be a finite set of primes. We define the P-maximal L-function ξP±(s, χ) by
the formula (9.1) with the sum restricted to those x satisfying (x mod p2) ∈ V max

p2

for all p ∈ P. Note that
(

P(x),m
)

= 1 implies (x mod p2) ∈ V max
p2 for p | m,

hence only primes p ∈ P coprime to m are relevant for the definition. Then ξP±(s, χ)
again has a pole under the same condition for ξ±(s, χ), and by Proposition 8.6 and
Corollary 8.15 the residues are

(9.2) Ress=5/6 ξ
P
±(s, χ) = Ress=5/6 ξ±(s, χ)

∏
p∈P,p-m

(1− p−2)(1− χ2(p)p−5/3).

The poles at s = 5/6 of ξP±(s, χ), as well as of ξ±(s, χ), are the source of the biases
we described in Theorem 1.6. Indeed, for χ as in Theorem 9.1, we prove in [28] that

(9.3)
∑

[F:Q]=3,0<±Disc(F)<X
(Disc(F),m)=1

χ
(

Disc(F)
)

=
K±(χ)

2

X5/6

5/6
+ O(m8/9X7/9+ε),

where K±(χ) is the limit of (9.2) as P tends to the set of all primes:

K±(χ) :=
4K±τ (χ2)3

3Γ(2/3)3m2
∏

p|m(1 + p−1)

L(1/3, χ−2)

L(5/3, χ2)
.

The 2 in the denominator of K±(χ)
2 in (9.3) is the index [GL2(Z) : SL2(Z)]. This ap-

pears because the Shintani zeta functions count SL2(Z)-orbits, while cubic fields cor-
respond to GL2(Z)-orbits.

We briefly explain other variations as well. Suppose first that the conductor m is a
power of p = 2. Then there are no cubic nor sextic characters, but are three quadratic
characters χ. One is of conductor 4, and the two others are of conductor 8. To
compute the residues, we note that for a ∈ VZ2 of type (3), (21), or (111), P(a) mod 8
is given by

(9.4) P(a) ≡

{
1 mod 8 for a of type (3), (111),

5 mod 8 for a of type (21).

This is easily verified for the representatives

(1, 0, 1, 1) ∈ VZ2 (3), (0, 1, 1, 1) ∈ VZ2 (21), (0, 1, 1, 0) ∈ VZ2 (111),
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and hence is true for any element a, because P(ga) = (det g)2P(a) and (det g)2 ∈
(Z×2 )2 = 1 + 8Z2. Let χ be of conductor 4 = p2. By (9.4), h(a) = χ

(
P(a)

)
is always

1 when P(a) ∈ (Z/4Z)×, and we have

Ap2 (h) = Bp2 (h) = (1− p−1)(1− p−2), Cp2 (h, 1) = (1− p−1)(1− p−4/3).

Hence ξ±(s, χ) has poles both at s = 1 and s = 5/6 for this χ. But this is fairly
reasonable, because P(x) is always≡ 0, 1 (mod 4) for x ∈ VZ, and so ξ±(s, χ) simply
counts orbits with P(x) ≡ 1 (mod 4) without a twist. On the other hand, if χ is
either character of conductor 8 = p3, by (9.4) h(a) = 1 if a is of type (3) or (111),
h(a) = −1 if a is of type (21), and h(a) = 0 otherwise. Hence we have Ap3 (h) =
Bp3 (h) = Cp3 (h, 1) = 0, and the ξ±(s, χ) are entire.

Second, this observation for m = 2c allows us to extend Theorem 9.1 to m even.
This consists of case by case descriptions corresponding to conditions on χ2, and we
omit the details.

Third, let r be a positive integer. Then

(9.5) ξ±(s, r, χ) :=
∑

x∈SL2(Z)\V±Z
r|P(x),(P(x)/r,m)=1

| Stab(x)|−1χ
(

P(x)/r
)

|P(x)|s

is also a natural L-function. Since t
(
ξ+(s, r, χ), ξ−(s, r, χ)

)
= ξ(s, h) for an appro-

priate h ∈ C(VN , χ
2), we can study these as well. In particular it is entire if χ6 6= 1,

and we can describe their residues explicitly when χ6 = 1 for the case we can apply
the residual computations. This includes the case when r is cubefree and p - m for all
p2 | r. As a simplest example, let m = r = p 6= 2, 3. Then h ∈ C(V p2 , χ2) is given by

h(a) =

{
χ(P(a)/p) if a ∈ V p2 (121max),

0 otherwise.

For χ quadratic, by Proposition 8.13 with Proposition 5.12 (i) (ii), we see that
Ap2 (h) = Bp2 (h) = Cp2 (h, 1) = 0. For χ cubic or sextic, by Proposition 8.20 we
have

Cp2 (h, χ2) =
∑

a∈V p2 (121max)

χ
(

P(a)/p
)
Cp(a, χ2) =

χ(4)p−1/3

1− p−2

∑
a∈V p2 (121max)

χ3
(

P(a)/p
)

=

{
χ(4)(1− p−1)p−4/3 if χ is cubic,

0 if χ is sextic.

Hence the ξ±(s, p, χ) are entire unless χ is cubic, in which case their residues at
s = 5/6 are

Ress=5/6 ξ±(s, p, χ) = K±
2π2χ(4)(1− p−1)

9Γ(2/3)3 p4/3
L(1/3, χ−2).
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This again is a source of the bias in Theorem 1.6 for m = p2 and (m, a) = p.
Moreover, if r = r(XN ) for a union of GN -orbits XN in VN is well defined, then

we can define ξ±(s,XN , χ) by (9.5) with the sum restricted to those x satisfying
(x mod N) ∈ XN . This is in fact possible if XN detects certain maximal cubic rings
over Zp for each p | N, and as we computed the contributions to the residues for all
a ∈ V max

pe in Propositions 8.13 and 8.20, we can describe the residues explicitly. This
enables us to impose local specifications while counting cubic fields in arithmetic
progressions. For details, see [28, Section 6.4].
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