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Abstract
In recent papers, Bonus-Malus Scales (BMS) estimated using data have been considered as an alternative to
longitudinal data and hierarchical data approaches to model the dependence between different contracts
for the same insured. Those papers, however, did not discuss in detail how to construct and understand
BMS models, and many of the BMS’s basic properties were not discussed. The first objective of this paper
is to correct this situation by explaining the logic behind BMS models and by describing those properties.
More particularly, we will explain how BMS models are linked with simple count regression models that
have covariates associated with the past claims experience. This study could help actuaries to understand
how and why they should use BMS models for experience rating. The second objective of this paper is to
create artificial past claims history for each insured. This is done by combining recent panel data theory
with BMS models. We show that this addition significantly improves the prediction capacity of the BMS
and provides a temporary solution for insurers who do not have enough historical data. We apply the BMS
model to real data from a major Canadian insurance company. Results are analysed deeply to identify
specific aspects of the BMS model.
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1. Introduction
Insurers have long known that policyholders who make claim will tend to make claim again in the
future. There are several explanations for this. Some policyholders exhibit riskier behaviour than
others, others live in more disaster-prone regions, and some insured property is more susceptible
to damage. The individual characteristics of each insured, often used as segmentation variables in
regression models, may partly explain this situation. However, many of these character-defining
elements simply cannot be measured and used in pricing. For example, a negligent or reckless
insured will make more claims than a conscientious and attentive insured. Thus, the past claim
experience can be used to approximate the effect of these unmeasurable characteristics on the
premium.

Insurers also justify experience-rating models with the fact that normal policyholders will often
have a fear of making claims from their insurer. When insureds have to make a claim, they often
realise that it is very difficult. Consequently, these policyholders often become more willing to
make claim in the future and report accidents that they would not have made claims for before, or
by being less careful, knowing that the insurer will compensate them without issues and that the
consequences of making a claim are not so grave (moral hazard). We can therefore see that from
the insurer’s point of view, it is quite important to put in place a rating structure that “penalises”
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insureds who make claims by increasing their premium and by rewarding insureds who do not
claim. By sending the message that a claim will impact the premium, the insurer makes clear that
it wants its insureds to be cautious and to not make claim when they experience minor accidents.

The general idea of any experience-based ratemaking model is quite simple: the insurer com-
putes the premiums of each insured based on their past claims experience. Many approaches have
been considered to achieve this goal, starting long ago with the individual credibility models of
Bühlmann (1967) or Albrecht (1985), for example. However, credibility models were often diffi-
cult to use in practice. The Bonus-Malus Scale (BMS) model, popularised by Lemaire (2012), was
shown to be a great alternative. A BMS corresponds to a class system with a finite number of lev-
els, where a relativity is assigned to each level. Depending on the transition rule of the BMS, an
insured usually moves down by a level if he does not claim during his contract and moves up a
specific number of levels for each claim made. The insured’s new level at the end of the year is
then used to compute the next annual premium. BMSs can be easily generalised by adding other
transition rules between levels, where the number of consecutive years without making a claim
can be used or by using the cost of each claim, for example. Actuaries traditionally used aggregate
data and transition matrices based on assumptions about the heterogeneity distribution to find
the level relativities. Classic textbooks for BMS with aggregate data are Lemaire (2012) or Denuit
et al. (2007). However, recently, a new scientific interest in finding optimal transition rules for that
type of BMS, via integer programming, can be found in the works of Tan et al. (2015), Gyetvai &
Ágoston (2018) and Ágoston & Gyetvai (2020).

In our case, instead of working with aggregate data, we take advantage of the availability of
granular data from insurers. Indeed, with detailed data about each contract for each insured which
has become available for insurers, new longitudinal models have been proposed to improve and
generalise credibility models. Complex approaches have been proposed to model claim counts:
models based on series of correlated random effects (Bolancé et al. 2007), jitter models (Shi &
Valdez 2014), models with pair copulas or multiple hierarchical copulas (Shi & Yang 2018 and Shi
et al. 2016), time series for count data (Gourieroux & Jasiak 2004; Bermúdez et al. 2018; Bermúdez
& Karlis 2021 or Pinquet 2020), etc. Longitudinal models allowing for complex dependence struc-
tures between many type of claims (Abdallah et al. 2016; Pechon et al. 2019, 2021; Gómez-Déniz
& Calderín-Ojeda 2018) or between claim frequency and claim severity (Shi et al. 2016; Oh et al.
2020) were also proposed recently.

However, like using credibility models in a practical context, these longitudinal models are
often difficult for insurers to implement. To adapt to the new reality, Boucher & Inoussa (2014)
tried to see how the BMSmodels theory could be corrected and generalised using the longitudinal
insurance data now available. Boucher & Pigeon (2019) subsequently showed that these new BMS
approaches using panel data were not only simple and easy to use but that they offer better fit
statistics and predictive measures than those obtained with many advanced panel data models.
Finally, Verschuren (2021) generalised the BMS approach with more flexible estimation methods,
using generalised additive models (GAM) theory.

Despite the generalisations of those recent approaches, the general way BMS models are intro-
duced and how they can now be used with panel or hierarchical insurance data remains confusing.
Indeed, even if BMS models have been correctly defined, it is not always easy to understand how
the BMS model might compare to standard pricing techniques. The first objective of this paper is
to correct this situation by proposing the reconstruction of the whole BMS approach. By using a
step-by-step methodology, we think it will help actuaries to understand precisely what the BMS
approach is, and how and why BMS should be used in practice. This way of approaching BMS will
also help to more precisely identify how the BMS models can be generalised and improved in the
future.

After better defining the BMS model, the second objective of this paper is to create artificial
past claims history for each insured. Indeed, a recurring practical problem with experience-rating
models is the lack of loss history for some insurers. We show that creating an artificial past claim
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history can be a temporary solution before waiting to have enough past years to estimate the full
model. The artificial past claims history is created by combining panel data models with BMS
models. We show that this generalisation of the BMS model significantly increases the prediction
capacity of the BMS model.

The paper has the following structure. In section 2, we will carefully explain how we can con-
struct BMS models with panel data information where basic ratemaking models that use count
regression models will be linked with BMS. A detailed description of the BMS will be provided, as
well as a graphical visualisation of all BMS parameters. In section 3, the BMSmodel will be applied
to real insurance data from a major Canadian insurance company. In section 4, we will see how
BMS can be generalised by creating artificial past claims history for each insured. The last section
concludes with a list of potential generalisations that should be developed in the future to improve
BMS models.

2. Experience Rating
2.1. General definitions
Experience rating and a posteriori ratemaking refer to ratemaking models that use past claims
information to predict the future total amount of claims (also known as “loss costs”). In other
words, the idea of experience rating is to compute a premium for insured i, for a contract of period
T, that will consider all the insured’s past insurance contracts or past claims experience. Formally,
by supposing that the expected value corresponds to the premium (see Denuit et al. 2007 or Frees
et al. 2014 for details about the link between random variables and the premium), it means that
we are looking to compute:

E[Si,T |S∗
i,(1: T−1), Xi,(1: T)] (1)

where :

• Si,T is a general random variable related to claim cost. Usually, it will correspond to the
number of claims, the severity of claims or the total loss costs of contract T of insured i.

• S∗
i,(1:T−1) is a vector containing detailed past claim experience for insured i, through contract
1 to T − 1. For example, this vector could include the cost of each claim, the type of claims,
the date of each claims, etc.

• Xi,(1:T) is a vector containing all covariates used in the ratemaking, from contract 1 to T − 1.
This usually corresponds to information about the age of the insured, the marital status of
the insured, etc. The vector also contains Xi,T the vector of actual covariates of insured i for
contract T.

Other specific terms must be correctly defined to avoid confusion and to construct a more eas-
ily understood approach to ratemaking. A policy is usually associated with a single insured. In
insurers’ databases, a policy is usually identified by a unique number. A policy is often made up of
several insurance contracts. An insurance contract is also often referred to as an insurance term,
and it is usually one year long. Insurance contracts are sometimes shorter, for example three or
six months. Some insurance policies contain only one term, but a significant portion of policies
contain multiple contracts. An insurance contract can also contain several items, such as houses
or vehicles. Finally, for each item, several coverages can apply.

Mathematically, using the standard approach to ratemaking, the premium P of a single
insurance contract of a specific policy can be expressed as:

P = E[S]=
C∑
c=1

Pc =
C∑
c=1

E[Sc]=
C∑
c=1

Ic∑
j=1

P(j)c =
C∑
c=1

Ic∑
j=1

E[S(j)c ]
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whereC is the number of coverages, Ic is the number of items for coverage c (for c= 1, . . . , C), and
S(j)c is the total loss cost of item j for coverage c. To avoid working with too many subscripts, we
will use a simplified approach in this section and will only work with Pc for c= 1 for each insured
i. In other words, we assume that we will analyse only one coverage per contract. Generalising to
other items and other coverages will be discussed later.

2.2. Constructing the model
We try to estimate the joint distributions of Si,t between all contracts t = 1, . . . , Ti of the same
insured i. This kind of modelling approach is often called panel data modelling, or longitudinal
modelling, which are much more complex than univariate modelling. For non-Gaussian random
variables, and particularly for count data, following the categories of Molenberghs & Verbeke
(2005), Boucher & Inoussa (2014) classify three kinds of models for panel data:

• Subject-specific models, which include models with static or dynamic random effects that
affect all the contracts of the same insured. The classic credibility model of Bulhmann, based
on a credibility factor Z, can be seen as part of the subject-specific models category;

• Marginal models, where multivariate distributions that fit all the contracts of a single insured
are developed. Common shock model, generalised estimating equations (GEE) models or
models with copulas1 can be seen as marginal models;

• Conditional models, where the values of past realisations of the random variables to be mod-
elled can be used directly. BMS approaches, such as the one proposed in this paper, fall in this
category.

We used risk characteristics as covariates in regression models, so the computed premium of
each insured can differ depending on sex, age, the value of the goods to be insured, etc. By the
same token, we could use past insured experience as a covariate to compute the premium. For an
insured i with T − 1 years of experience, we could then use the following form:

E[Si,T |S∗
i,(1:T−1), Xi,(1:T)]= μi,T = g(X′

i,Tβ +Wi,T
′γ )

for a link function g(.), where:

• Xi,T is the vector of actual covariates of insured i for contract t;
• β is a vector of parameters for covariates Xi,T to be estimated;
• Wi,T is a (T − 1)× 1 vector containing all useful past claim experience that could be used to

predict Si,T .
• γ is a (T − 1)× 1 vector of experience-rating parameters to be estimated.

For example, as we commonly see in the literature, we can consider the past number of claims
as good predictors when computing the premium. Other past information about claims, such
as the cost of the claims, the number of claims from a specific coverage, the number of claims
higher than a certain amount, can also be used. However, for the sake of simplicity, we will focus
on W′i,t = (ni,T−1, ni,T−2, . . . , ni,1), meaning we use the number of claims for each T − 1 past
annual contracts. In this case, the predictive expected value of contract T of insured i could be
expressed as:

μi,T = exp (X′
i,Tβ + γ1ni,T−1 + γ2ni,T−2 + · · · + γT−1ni,1),

where parameters γ1, γ2, . . . , γT−1 are used to measure the impact of past claims. However, this
approach would involve using many parameters if T is large. We can probably do better. One of
the purposes of statistical theory is to summarise information. One classic approach employed by

1Identifiability issues can arise when a continuous copula distribution is paired with count distributions.
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the actuarial community is to use a summary of past claims. For example, we can instead use:

μi,T = exp (X′
i,Tβ + γ ni,•)

where, for insured i, ni,• =∑T−1
t=1 ni,t corresponds to the total number of past claims.

The major problem with this approach is that we cannot differentiate new insureds from
insureds with many years of experience. Indeed, like a good insured without claims, a new insured
will also have ni,• = 0. However, not having claims is not the same as not having past insurance
experience. Actuaries know that insureds without insurance experience claim a lot more than the
average. Consequently, they should not be confused with experienced insureds without claims
(who usually claim less than other insureds). To distinguish between these two types of insureds,
by introducing the indicator variable κi,t = I(ni,t = 0), a solution would be to use:

μi,T = exp (X′
i,Tβ + γ0(− κi,•)+ γ1ni,•) (2)

where κi,• =∑T−1
t=1 κi,t =∑T−1

t=1 I(ni,t = 0) is the sum of policy periods without claims for
insured i. Using −κi,• as the covariate instead of κi,• will have a purpose later. With this model, we
can differentiate new insureds from insureds without claims. Indeed, if we suppose we are dealing
with a new insured, the insured will have κ1,• = n1,• = 0. An insured with insurance experience
would also have n2,• = 0, but will have κ2,• > 0.

2.3. Kappa-Nmodel
Another way of understanding the mean parameter of the model with κ• and n• is to rewrite μi,t
as follows:

μi,t = g(X′i,tβ + γ0(− κi,•)+ γ1ni,•)
= g(X′i,tβ∗ + γ0(100− κi,•)+ γ1ni,•)

= g(X′i,tβ∗ + γ0 (100− κi,• + γ1
γ0

ni,•)︸ ︷︷ ︸
Claim Score �i,t

)

= g(X′i,tβ∗ + γ0�i,t), with �i,t = (100− κi,• + γ1
γ0

ni,•)

A constant of 100 has been added at the second line, which changes the intercept β0 (thus explain-
ing β∗ instead of β) but not the overall model. With this parametrisation, the new covariate �i,t ,
which summarises all past claims, can be seen as a claim score. In other words, based on their past
claims experience:

• Insureds with a high value of �i,t indicates an insured with bad past claim experience;
• Insureds with a low value of �i,t indicates an insured with good past claim experience.

Using this simple regression model, called a Kappa-N model, we can obtain good and usable
properties for the implied ratemaking structure:

• For an insured i without insurance experience, we would have ni,• = 0, and κi,• = 0, which
implies an initial claim score of 100. In other words, we can suppose that a new insured
entering the portfolio should have a claim score of 100.

• Each annual contract without a claim will decrease the claim score by 1;
• Each claim increases the claim score by � = γ1

γ0
, called the jump parameter. For convenience,

without losing too much precision, we can even round � to obtain an integer value. This
could help to better explain the ratemaking structure to insureds, brokers and administrators,
among others.
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Table 1. Insureds with claims experience.

Insured Years

i 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 −κi,• ni,•
1 0 0 0 0 0 0 0 0 0 0 −10 0

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 2 0 1 0 0 0 2 0 1 0 −6 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 4 1 2 0 0 0 0 0 0 0 −7 7

• The impact of a single claim on the premium is then roughly equal to � years without claims.
In other words, if an insured claims, it would take � years without claims to return to the
premium the insured had prior to the claim;

• The penalty for a claim is an increase of ( exp (�γ0)− 1)% of the premium.
• Each year without a claim decreases the premium by (1− exp (− γ0))%.

These basic results are found and computed easily. This way of computing surcharges and dis-
counts would clearly be useful to anybody involved in the insurance industry. It is quite simple to
explain to insureds the penalties of claiming, and how long the penalties for that claim will last.

2.3.1. Limits for the claim score
One obvious problem with the Kappa-N model is the possible values of the claim score �i,t for
the whole portfolio. Indeed, the Kappa-N model has no minimum or maximum values. With the
database used in section 4, for example, we can see that the some insureds may have a past claims
experience of up to 10,15 or 20 claims. Even if there are many years without claims, premiums for
these insureds would include an extreme surcharge of exp (20�γ0)− 1 times the basic premium.
Similarly, as there is no discount limit for insureds who did not claim in the last 10, 15 or 30 years,
the Kappa-N model can generate large discounts.

A solution could be to limit the value of the actual claim score �i,t in the modelling. For
example, we can limit the claim score to be between �min and �max, such as having

μi,t = g
(
X′i,tβ∗ + γ0�

∗
i,t
)
, with �min ≤ �∗

i,t ≤ �max.

The problem with this solution is that it only limits the actual claim score. Suppose, for example,
that we have insureds from Table 1, where the insurance experience is shown for three insureds.
Suppose a decrease of one for each year without a claim and a jump parameter � of 4, meaning
that each claim penalises the insured with an increase of 4 to the claim score. If we start at level
100 in 2011, that means insureds would respectively be at levels 90, 118 and 121 in 2021. If we
suppose limits to the claim score, for example �min = 95 and �max = 115, insureds would be rated
in 2021 with corrected levels �∗ of 95, 115 and 115. Even if this approach limits the spectrum of
possible premiums, it has many undesirable consequences:

1. Insured #1 would not receive any premium surcharge if he claims one time in 2021. Indeed, by
being at level �1,2021 = 90, a claim in 2021 wouldmean he would have a claim score of �1,2022 =
90+ 4= 94, meaning �∗

1,2022 =max (94, �min = 95)= 95. Insured #1 was already rated with
�min = 95 in 2020, meaning he will stay at the same level even if he claims once.

2. Insureds #2 and #3 would not receive any premium reduction if they do not claim in 2021.
They are respectively at levels �2,2021 = 118 and �3,2021 = 121, resulting in a corrected claim
score �∗ of 115 for both of them. By having a claim-free year in 2021, they will be at levels
�2,2022 = 117 and �3,202e = 120, meaning that they will both in fact be rated at the corrected
levels �max = 115 in 2022.
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3. Similarly, insureds #2 and #3 will not have any premium surcharges if they claim in the next
four or seven years, respectively. It would also take four and seven consecutive years without
claims for these two insureds to obtain a premium reduction.

This kind of past claims rating structure is not desirable for an insurer because it greatly reduces
incentives for insureds to not claim.

2.3.2. Discussion
In recent actuarial literature, many models using machine learning, statistical learning or neu-
ral network techniques have been used for ratemaking (see Denuit et al. 2020a or Denuit et al.
2020b for examples). In most cases, these approaches aim to find the best covariates, or functions
of covariates, to model random variables, such as the number of claims. With the possibility of
using ni,T−1, ni,T−2, . . . , ni,1, as well as κi,T−1, κi,T−2, . . . , κi,1, one might argue that this ratemak-
ing problem comes down to simply finding the best relations between those covariates and the
random variable we want to predict. It is not that simple because as we just saw, we must consis-
tently limit the spectrum of possible premiums to avoid extremes, but we also want a consistent
rating structure that, for example, aims to give an incentive for insureds to not claim.

Indeed, pricing is not just a one-time, one-year prediction. It should be seen as something that
will be repeated each year. Because the same insured will be priced each year, it is necessary to
ensure temporal consistency in computing annual premiums. More precisely:

• Premium increases and decreases based on loss experience must be logical: it is not expected
that the premium will decrease following a claim or that the premium will increase fol-
lowing a year without a claim. Indeed, an approach that tries to explain and model a
phenomenon must not only be predictive but must also offer an explanation for this phe-
nomenon. Empirical studies and analyses of policyholders’ behaviour indicate an increase in
future claims frequency following a claim (see Abbring et al. 2003 for an exhaustive analysis of
occurrence dependence and moral hazard in insurance), so the pricing model should reflect
that behaviour.

• Additionally, insurers want to promote insureds’ good behaviour by rewarding them as much
as possible for each year without a claim or conversely by penalising them for each claim;

• If possible, the experience-based pricing structure should be easily understood, so that the
system can be explained to the legislative authorities that regulate pricing, as well as to the
various administrators of insurance companies and policyholders.

2.4. Bonus-Malus System
To satisfy these pricing objectives, a better way to deal with extreme situations that result from a
Kappa-N model would be to again limit the value of all claim scores, but to limit them for all past
insurance contracts. We can use the insureds in Table 1 again as an example.

To compute premiums in 2021, instead of applying maximum and minimum values to the
2021 claim scores, we apply the same limits but to all claim scores the insureds had in the past.
Figure 1 shows how the limits applied on past contracts impact the actual claim score for all three
insureds. For example, we can see that the claim score of insured #3 is limited as early as 2012.
With this approach, we see that many of the problems mentioned earlier are solved. Indeed:

1. Even if insured #1 has the minimum claim score, i.e. �1,2021 = 95, he will receive a surcharge
if he claims in 2021. However, as in the Kappa-N approach, he will not receive any other
discounts for a claim-free year, but because there are only two possibilities: he either claims
or does not claim, so there is a clear incentive to not claim in 2021.

2. Insureds #2 and #3 would receive premium reductions if they do not claim in 2021.
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Figure 1. Insureds with claim experience, with and without limits.

3. Insured #3 greatly improved his claiming behaviour in the last 6-7 years and has been
rewarded with premium reductions in recent years.

This way of dealing with claim scores appears to more closely resemble with how insurers want
to deal with their insureds: discouraging claims by giving surcharges, rewarding insureds who do
not claim, forgiving old claims, etc. By adding maximum and minimum claim-score values for
past contracts, the Kappa-N approach developed so far has been transformed into what is usually
called a BMS system, or simply BMS, where the claim score can be seen as a BMS level, or simply
a level. The BMS can now be seen as a class system with a finite number of levels (when the jump
parameter � is an integer), where a relativity is assigned to each level. For this first BMS model
presented so far, the transition rule is simple: an insured moves down by one level if he does not
claim during his contract and moves up by � levels for each claim.

That means that, at minimum, BMS models can be defined with the following structural
parameters:

1. The entry level, �0;
2. The jump parameter, � ;
3. The minimum level of the system, �min;
4. The maximum level of the system, �max.

The BMS model presented in the previous example, in Figure 1, could then be defined as
(�0;� ;�min;�max)= (100;4, 95;115). This way of presenting BMS models is slightly different than
usual. Indeed, in the BMS literature, the lower level of the BMS is usually fixed at 0 (or 1), while the
entry level must be estimated with data. By fixing the entry level at 100, however, we think that the
BMS approach becomes more intuitive because the link between BMS and a count distribution
with covariates of equation (2) is clearer.

2.4.1. Visualisation
For a specific insured, as defined by Boucher & Pigeon (2019), a more formal way to define BMS
is to define the claim score, or the BMS level, of contract t as:

�i,t+1 = �i,t − κi,t + � × ni,t , with �min ≤ �i,t+1 ≤ �max.

A way to better visualise the BMS models is shown in Figure 2. This figure shows how the past
claims relativities depend on level � and allows us to understand the impact of the jump parameter
� = 4 on the premium calculation. The blue curve, related to the value of exp (γ0 × (� − 100)),
mainly indicates the discount for a year without a claim, while the combination of the blue curve
and the jump parameter indicates the surcharge for a claim. Starting at level 100, we can see how
an insured would move across all the BMS levels and what relativities he will have depending on
whether he claims (+� in red) or not (−1 in green).

https://doi.org/10.1017/S1748499522000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000100


44 Jean-Philippe Boucher

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

65 70 75 80 85 90 95 100 105 110 115
BMS Level

R
el

at
iv

ity

+ Ψ− 1
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

97 98 99 100 101 102 103 104 105 106 107
BMS Level

R
el

at
iv

ity

Figure 2. Example of BMS Relativities with γ0 = 0.0325 (left: all levels, right: zoom on levels around 100).

The same figure also shows the spectrum of all relativities for a BMS model, as limits �min = 66
and �max = 115 are shown.With those limits and a value of γ0 = 0.0325, the maximum relativity is
then limited at exp ((115− 100)× 0.0325)= 1.628, while the lower relativity is exp ((66− 100)×
0.0325)= 0.331. A figure illustrating the Kappa-N model, which corresponds to a BMS model
without any limit, would be similar, with the difference that no maximum or minimum values of
the relativities would be shown.

3. Numerical Application
3.1. Practical considerations
The Kappa-N and BMSmodels presented in the last section are now completely defined. However,
that does not mean that they can easily be applied with real insurance data. Indeed, data have
limitations and must be transformed to be suitable for any rating models. Consequently, in this
section of the paper, before explaining how to estimate the models with insurance data, we first
explain several practical elements.

3.1.1. Data transformation
To better understand the practical elements to consider before using experience-rating models,
we use a specific insurance product as an example. We use farm insurance data from a major
insurance company in Canada. We were able to use contracts from 2014 to 2019. The general
form of the data used in experience rating looks like the sample shown in Table 2. Each line of
the database corresponds to the specific coverage of an annual contract. On each line, we find
information about the insured, the contract, the items covered, but we also see the date of the
first insurance contract with the insurer. This date is very important in constructing Kappa-N and
BMS models. Information about claims over that period of time is also available. A meta-variable
ξ has also been computed to summarise the information at the item level. Details about how this
specific database was constructed can be found in the Appendix.

By supposing independence between each line of the database, standard GLM approaches can
be used to model the number of claims, the severity of the claims or the loss costs to estimate the
impact of specific covariates in the model.

In our case, to illustrate Kappa-N and BMSmodels, we decided to model the number of claims.
This is done to avoid dealing with open claims where the final cost of the claims is unknown.
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Table 2. Fictive Data Sample – Contract Level.

Policy Number Effective First Number of Costs
number of items date insurance Coverage . . . Province ξ claims Costs

1 2 2017-01-15 1995-01-15 MACHINERY . . . Ontario 0.015 2 186,592


1 2 2018-01-15 1995-01-15 MACHINERY . . . Ontario 0.003 0 0


1 2 2019-01-15 1995-01-15 MACHINERY . . . Ontario 0.041 1 87,112
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 5 2017-03-22 2003-03-22 MACHINERY . . . Quebec 0.045 0 0


2 4 2018-03-22 2003-03-22 MACHINERY . . . Quebec 0.023 1 18,889


2 7 2019-03-22 2003-03-22 MACHINERY . . . Quebec 0.081 1 7,444

Indeed, with the farm data, approximately 25% of the claims that occurred in last three years are
still open. Severity modelling or loss costs modelling would then imply, for example, the use of an
algorithm that would project the final cost of each claim. This is an interesting solution, but this
was not our focus for this project.

3.1.2. Availability of past information
Even though we model the number of claims of a specific coverage, we also decide to use all types
of claims to define the claim score for the Kappa-N and the BMSmodel. This allows us to be more
precise and to define two other aspects of any past claims rating:

1. The variable to model and to predict, named the target variable;
2. The information used to define what we consider as past claim experience, named the scope

variable.

In our case, the target is the number of claims for the machinery coverage of the farm insurance
product, while the scope is the claims from any coverages of the farm insurance product. Based on
the reason why past claims rating exists, which was mentioned in the introduction, we think that
a scope variable that includes all types of coverage, or insurance products, seems more coherent.
Indeed, claim-prone individuals will claim on all coverages of their insurance contract. Similarly,
the reason why an insured is no longer afraid of the claims process may be due to a claim made
on another coverage. That means that, ideally, the scope variable should not only be all coverages
of the farm insurance product but probably all insurance coverages: farm, automobile, home, etc.
Multi-product pricing models are thus strongly justified (see Pechon et al. 2021 for an application
of multivariate credibility models between insurance products).

If all past contract information and past claims were available for all insureds from the port-
folio, the Kappa-N and BMS models could easily be directly applied. However, and this has been
mentioned many times in the literature, one major problem with past claims rating refers to the
availability of past information. Often, insurers cannot access all past information about their
insureds. In many cases, not only are insurers not able to obtain past information from other
insurers, but they are also often unable to use information from their own old contracts. Indeed,
insurers often modify their operating systems, and past databases are simply erased or are no
longer useful.

Classic past claim rating models often normalised the past experience of each insured i by using∑
t ni,t∑
t λi,t

in the model instead of simply using ni,•. The Buhlmann-Straub credibility model is a well-
known example of this kind of normalisation. On the other hand, standard Kappa-N and BMS
models shown in the previous section do not need to link past claims with past covariates2 . That

2This generalisation of the BMS is one of our teams’ current areas of research.
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Figure 3. Distribution of the number of years of experience with the insurer.

means that for BMS and Kappa-N models, our main interest in the information from the past is
solely past claims, and not in past covariates:

• In automobile insurance, some jurisdictions have a central agency that collects claims from
all insurers. In this situation, it is then possible to use (some) past claims from other insurers.
However, for other insurance products, we are often unable to access past claims information
from other insurers.

• In such cases, one possibility would be to rely on each insured’s declaration concerning past
claims experience. However, a quick analysis of the data available showed us that this kind of
data is highly biased and unreliable. Indeed, the insured has a real incentive to lie to obtain a
lower premium.

For our dataset, Figure 3 shows the distribution of the numbers of years of experience with the
insurer. As opposed to automobile insurance in Canada, where insureds will frequently move
from one insurer to another, we see that farm insurance has more stable insureds. Indeed, in our
case, the average number of years with the insurer is 18.4, and the maximum observed years is
593 . The maximum available number of past claims experience for all insureds is 15 years, and
only insurance experience from within the insurer is available. That means that we considered
that the first year of insurance for any insured corresponds to the insured’s first year with the
insurer. In other words, if a farm is first seen in the database in 2003, we will consider this farm to
be a new insured without any prior experience in 2003.

3.1.3. Evolution of past claims
One of the characteristics of a BMS system is its Markovian property, which can be explained by
saying that by knowing the actual BMS level at time t, �t and the actual number of claims nt , we
are able to obtain the future BMS level at time t + 1, �t+1. More formally, it means that:

Pr (Ni,t+1|ni,1, . . . , ni,t , �i,t)= Pr (Ni,t+1|ni,t , �i,t)
3Farms are sometimes passed from generation to generation. Insurance experience would not be reset in these cases.
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This is a well-known property of BMS (see Lemaire 2012 or Denuit et al. 2007). BMS is even
used occasionally as a simple example of a Markov process in introduction courses to stochastic
processes. However, in reality, this property does not completely hold. Indeed:

• The premium for a renewal is calculated x weeks before the renewal and is sent to the insured.
That means that a claim that is made after the premium calculation cannot be considered in
the ratemaking. In other words, for the premium calculation of insured i for contract T, we
should use n∗

1,(1:T−1), a subset of n1,(1:T−1), which excludes claims that are made between the
premium renewal calculation and the end of the contract. However, to keep the Markovian
property, a simple time transformation could probably be applied to solve the issue.

• Some past claims are forgiven or closed without any payments. Those claims are usually not
considered by insurers in any past claims rating scheme (even if they probably should be).
However, insurers might consider that any open claims with a positive case reserve should be
penalised in the premium computation. This is logical because claims can take many years
to close and it does not make any sense to not consider them in premiums calculation if the
insurer thinks that they will ultimately generate positive payments.

However, it means that it is also possible for a claim with a positive case reserve to finally close
without payment. In such a case, we could therefore have a situation where a claim would first
be used to penalise an insured in the calculation of the premium. Several years later, if this
past claim finally closes at zero, the claim would no longer be considered in the premium
calculation. For that reason, the Markovian property of BMS no longer holds. That means
that the BMS rating algorithm of insured i for contract T should not be based only on �i,T−1
and ni,T−1, but should be programmed to always look at all past years of insurance in the
computation of the premium.

Interestingly, in that specific fictive case, after the claim closes at zero, the insured will
receive an important discount. Indeed, the claim score would decrease by � (if the minimum
value �min is not reached) because one claim will no longer be considered in the computation
of the premium. It is up to the insurer to decide if past premiums (“incorrectly” computed
with a claim) should be partially reimbursed or not. Analysing this type of situation could be
interesting.

3.2. Count distributions and estimation
To model the number of claims (our target variable), the first approach to try is to look at basic
count distributions used without any covariates linked to experience rating. In this case, we have
independence between all policyholders as well as between all contracts, meaning that we can
write

Pr
(
Ni,t+1 = n|N i,t , Xi,1, . . . , Xi,t+1

)= Pr
(
Ni,t+1 = n|Xi,t+1

)
and we can simplify our prediction problem in the following way:

E
[
Ni,t+1|N i,t , Xi,1, . . . , Xi,t+1

]= E
[
Ni,t+1|Xi,t+1

]= λi,t+1 = exp (X′i,tβ).

The base model is usually the Poisson distribution, with a probability mass function defined as:

Pr
(
Ni,t = n|Xi,t

)= (
λi,t
)n exp (−λi,t

)
/n!,

and 0 elsewhere. To account for overdispersion, a standard alternative is the Negative Binomial
distribution of type 2 (NB2) with parameters τ and λi,t and probability mass function given by

Pr
(
Ni,t = n|Xi,t

)= 
(n+ 1/τ )

(n+ 1)
(1/τ )

(
λi,t

1/τ + λi,t

)n ( 1/τ
1/τ + λi,t

)1/τ
, n= 0, 1, 2, . . .
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and 0 elsewhere. A slightly different version of the Negative Binomial distribution (NB1) with
parameters λi,t and τ for which the probability mass function is

Pr
(
Ni,t = n|Xi,t

)=


(
n+ λi,t

τ

)

(n+ 1)


(
λi,t
τ

) (1+ τ)−λi,t/τ
(
1+ 1

τ

)−n
, n= 0, 1, 2, . . .

and 0 elsewhere, is often used.
All three count distributions are then be used with the following experience-rating models:

1. StandardModel: This model refers to basic count distributions that do not use any covariates
linked to experience rating;

2. Kappa-N Model: This approach corresponds to a generalisation of the count distribution,
where a claim score linked to the past claims experience has been added. In other words, two
other covariates −κi,• and ni,• are added to the base model.

3. BMSModel: This model is similar to the Kappa-Nmodel, but minimum andmaximum limits
to the claims score (�min and �max) were added.

As this paper’s proposed approach only deal with the form of the mean, straightforward gener-
alisations can be made to use other count distributions than Poisson, NB2 or NB1. For example,
various Poisson-inverse Gaussian, hurdle or zero-inflated distributions can be used. See Cameron
& Trivedi (2013) or Winkelmann (2008) for a nice overview of count distributions or Boucher et
al. (2008) for a survey of claim counts for automobile insurance.

3.2.1. Estimation Algorithm
For the Standard and Kappa Models, simple GLM estimation techniques could be used for the
Poisson distribution, such as the ones already programmed in R or SAS for example. For the NB2
or NB1 distributions, direct optimisation of the log-likelihood can be performed. However, for
the BMS model, finding the best values for structural parameters � , �min and �max is not sim-
ple because they cannot be estimated directly. For the Kappa-N model, which does not have any
limits, the jump parameter � can be estimated directly, as we saw previously. However, limiting
the claim score values by �min and �max for all contracts of each insured in the database means
recomputing the claim score path of each insured from their first contract.

When � , �min and �max are known, the model can be estimated easily. To find the structural
parameters, because they are integer, as done by Boucher & Pigeon (2019), one obvious solu-
tion is to test all possibilities of the structural parameters and choose the best combinations4 .
This method obviously works, but it is time consuming. We used a simpler and faster iterative
technique that works as:

1. Estimate a standard model with κ• and n•. We already saw that it can be seen as a BMS
without any limits.
• We then have a first estimate of our jump parameter � ;

2. For this value of � and �min = 0, find the best value of �max by looking at all values between
100 and a reasonnable maximum value of �max;

3. With this new value of �max and �min, find the best value of � by looking at all values between
1 and a reasonnable maximum value of � ;

4. With this new value of �max and � , find the best value of �min by looking at all values between
0 and 100;

5. Repeat lines 2, 3 and 4 until convergence.
4We restrict the BMS model to have integer values for structural parameters � , �min and �max, because it is clearly

easier to use and easier to explain to everyone involved in the insurance industry. The difference between a model with
integer structural parameters and a BMS model with continuous parameters is negligible.
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Table 3. Results for all models (training dataset).

Standard model Kappa-Nmodel BMSmodel

Dist. Loglik. AIC BIC Loglik. AIC BIC Loglik. AIC BIC

Poisson −8,562.36 17,138.72 17,204.41 −8,506.24 17,030.48 17,114.94 −8,490.03 17,002.06 17,105.29


NB2 −8,555.54 17,127.08 17,202.15 −8,499.32 17,018.64 17,112.48 −8,485.29 16,994.58 17,107.19


NB1 −8,552.38 17,120.76 17,195.83 −8,497.79 17,015.58 17,109.42 −8,482.99 16,989.98 17,102.59

Table 4. Results for all models (test dataset).

Distribution Standard model Kappa-Nmodel BMSmodel

Poisson 2,872.13 2,858.35 2,857.03
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NB2 2,869.35 2,856.06 2,854.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NB1 2,871.88 2,857.06 2,855.27

Several models with structural parameters near the values found with this algorithm are finally
checked to be sure that a local maximum has not been found. This simple algorithm allows us to
estimate the BMS model in minutes using a simple laptop, when using the dataset used in this
paper.

3.2.2. Results and estimated parameters
All models have been fit with the data, and the results are shown in Table 3, where the log-
likelihood, the AIC and the BIC are shown. For the standard, the Kappa-N and the BMS models,
based on both the AIC and the BIC, the NB1 distribution always exhibits a better fit than the
Poisson or the NB2. Between model types, the AIC and the BIC show that the Kappa-N model,
using two more parameters, is always significantly better than the standard model for the Poisson,
the NB1 and the NB2. The AIC and the BIC for the BMS models are also better than the Kappa-N
models, even if two other parameters are needed. Finally, for all distributions, for all model types,
the BMS model with a NB1 distribution shows the best AIC and the best BIC. For the test dataset,
the results are shown in Table 4. The logarithmic score defined as

∑n
i=1 − log ( Pr (ni;λ̂i)) has been

used (see Roel et al. 2017 for details or description of other scores) to define the prediction quality.
Results are similar regarding the ranking of the types of model, but for the underlying distribution,
the NB2 distribution seems to always outperform the NB1. It should be noted that the Poisson-
inverse Gaussian 1 (PIG1) distribution and the PIG2 distribution were also tested with the same
dataset, and the results obtained were similar to NB1 (for PIG1) and NB2 (for PIG2); see Boucher
et al. (2007) for a comparison between the NB and the PIG distributions for the number of
claims.

Estimated parameters related to experience rating are shown in Table 5. With a lower jump
parameter � and a lower parameter γ0, we see that the Kappa-Nmodel penalises less a claim than
the BMS model, but also gives a smaller discount for a contract without claim. For the standard
model with Poisson, NB1 and NB2 distributions, as well as for all distribution of the Kappa-N
model, confidence interval for all estimated parameters can be found easily because the asymptotic
variance of the parameters can be calculated by any pre-programmed procedure, such as the glm
function in R. Similarly, the confidence intervals for all parameters of any BMS model can also
be found on the assumption that the structural BMS parameters � , �min and �max are known.
However, because those parameters are also estimated from the data, an extra variation must be
considered and bootstrap methods should be considered.
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Table 5. Some parameters for all Kappa-N and BMSmodels.

Kappa-Nmodel BMSmodel

Distributions �̂ γ̂0 �max �min �̂ γ̂0

Poisson 3.72 0.0254 116 85 6 0.0312
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NB2 3.85 0.0259 115 85 6 0.0298
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NB1 3.71 0.0254 116 85 6 0.0287
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Figure 4. Splines form the Poisson GAMmodel.

In the same Table 5, we also see that the three underlying distributions have approximately
the same estimated parameters, where the only difference is that the NB2 distribution has �max =
115 instead of 116 like the others. For privacy reasons, but also because this is not the focus on
the paper, β parameters associated with covariates or with the meta-variable ξ are not shown
in the table. However, as explained and shown clearly in Boucher & Inoussa (2014), compared
with a priori rating, many β parameters might change significantly when past claims experience
is included in the modelling.

To add another comparison, we also show the result of a Poisson GAM model, where spline
functions are used on κ• and n•. Figure 4 shows the resulting smoothing functions. We note an
almost linear function of κ•, meaning that the claims frequency always decreases when the number
of years without claims increases. In relation to objectives of section 2.3.1, the linear form of the
smoothing function of κ• is not a problem and simply indicates that the insurer should reward
each year without a claim by a fixed percentage discount. This is logical and can easily be used in
practice.

Conversely, the smoothing function of n bullet is more problematic. Indeed, if an insurer wants
to directly use this result, he would have to use a ratemaking structure that would decrease the
penalty of each additional claim. At some point, the model would even give discount for each new
claim. Not only is it not logical, but it seems to be a bad way of explaining how and why insureds
claim.

3.2.3. Discounts and surcharges
Compared with Kappa-N models, a way to explain the success of the BMS model is related to
how the model deals with old claims. Indeed, adding a maximum BMS level �max to a Kappa-N
model means that the BMS model can allow insureds to improve over time, as older claims can be
forgiven, and not always be considered in all future premiums.

This, in some way, solves one problem already mentioned by Young & De Vylder (2000), who
used credibility theory to correct past claims rating models for “unlucky” insureds. The authors
find that credibility models penalise insureds with claims too severely. In our case, with a BMS
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Figure 5. Predicted versus observed results for each level of the BMS (training and test datasets).

with �max = 116 for the NB1 distribution, bad luck seems to be limited. With a jump parameter
� of 6, and �max = 116, more than two claims in the first years of insurance will not be severely
penalised. More precisely, to better understand the results obtained for the BMS model, we can
compute the discounts and surcharges of the model, based on the number of past claims. More
concretely, we then have:

• The jump parameter � is equal to 6, meaning that each claim increases the BMS level by
6. After a claim, an insured would need six years without a claim to return to the original
premium.

• The value of γ0 is now 0.0287. That means that the penalty for a claim is equal to
exp (0.0287× 6)− 1= 18.8%, and each year without a claim decreases the premium by
1− exp (− 0.0287)= 2.83%.

• The maximum BMS level is �max = 116, meaning that the maximum surcharge, compared to
level 100, is exp (0.0287× 16)− 1= 58.2%;

• The minimum BMS level is �min = 85, meaning that the maximum surcharge, compared to
level 100, is 1− exp (− 0.0287× 15)= 35.0%.

As we can see, those basic results are found and computed easily. This way of computing the
surcharges and discounts would clearly be useful to any insureds, brokers or administrators. It is
quite simple to explain to insureds how large their penalties for a claim will be, and how long the
penalty for that claim will last. Another interesting conclusion about the BMS model is that all
insureds will have a premium located between 0.650 and 1.582 times the basic premium for a new
insured, at level 100. This narrowly limits the range of premiums.

3.2.4. Distribution over BMS levels
Figure 5 illustrates the predicted and the observed claims frequency for all levels of the BMSmodel
on the training and the test datasets. The BMS model seems to fit the data quite well, and we can
observe that classifying insureds by their claim score works well because the insureds with higher
levels have worse claims experience than insureds with lower levels. On the test dataset, a similar
conclusion can be made, even if we observe more variations. Insureds at level 100 or higher, who
have reported claims at least once before, exhibit significantly higher claims frequency.

Distribution of insureds over all BMS levels for the test dataset is shown in Figure 6 (a similar
graph is obtained for the training dataset). We see that most of the insureds are located at levels
100 or lower. A peak at level 85, corresponding to �min, is also observed. Because the maximum
number of past claim experience is 15 years, that means that a significant proportion of insureds
in the portfolio did not report at all.
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Figure 7. Time Frame of Past Claims Information for insured i.

4. Past Experience
In our numerical applications, we were lucky because we were able to use many years of past
claims experience in our experience-rating models. However, in many situations, insurers are not
able to get that much information. Section 3.1.2 detailed some situation regarding the availability
of past information for many insurance products.

Figure 7 illustrates the situation, where the timeline of insurance experience of a specific
insured i is divided in two sections:

1. The Past Claims Information section, from τ
(1)
i to τ

(2)
i . This corresponds to the time period

where past claims information were available to compute ni,• and κi,•, or the Bonus-Malus
level.

2. The Artificial Information section, from τ
(0)
i (the date of the first insurance contract of insured

i) to τ
(1)
i . When τ

(2)
i − τ

(1)
i is small, experience-rating models might be difficult to estimate

because the amount of information needed to compute the bonus-malus level, for exam-
ple, is too small. Moreover, if the past claims information is small, it also means that the
insurer will not be able to compute an adequate BMS level for new insureds, meaning that the
rates between the insureds who only have a few years of experience and those who have been
insured for a much longer time will be similar.

In other words, it could happen that many contracts from the rating database are censured when
we want to compute ni,• and κi,•, or the Bonus-Malus level. A solution to this problem is to create
artificial past claims experience. Artificial claims history allows us to use more years of past claims
in the modelling. As we do not have limits in creating artificial past claims, we can take this idea
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even further by creating a full claims history for all insureds in the database, starting from τ
(0)
i to

τ
(1)
i , as long as we have access to the date any insured began to be insured.

4.1. Methods for creating artificial past claims experience
In the actuarial literature, two methods have been proposed to generate an artificial past claims
history:

1. Boucher & Pigeon (2019) suppose that each unobserved year of experience would be con-
sidered a year without claims because the authors showed that this is the most probable
outcome. Indeed, with a small claims frequency, the vast majority of insureds will not claim
in a single year. Under this construction, we would have an updated version of n∗

i,• = ni,• and
κ∗
i,• = κi,• + (τ (1)i − τ

(0)
i ), where (τ (1)i − τ

(0)
i ) corresponds to the number of artificial years that

have to be created. For the BMS model, that would mean that each artificial year would cor-
respond to a decrease of one level. Even if this method of creating artificial past claims history
is quick and efficient, it will, on average, underestimate the overall claim frequency because it
is almost certain that some of those insureds claim in the past.

2. Another method is to suppose that all unobserved years of experience involve an average
expected number of claims μ̃, as Boucher & Inoussa (2014) have proposed. That would mean
that a corrected version of ni,• and κi,• could be computed as:

n∗
i,• = ni,• +

τ
(1)
i −1∑
t=τ

(0)
i

μ̃ = ni,• + (τ (1)i − τ
(0)
i )μ̃

κ∗
i,• = κi,• +

τ
(1)
i −1∑
t=τ

(0)
i

Pr (N = 0;μ̃)= κi,• + (τ (1)i − τ
(0)
i ) Pr (N = 0; μ̃)

where τ1 − τ0 represent the time period where an artificial past claim should be created. By
supposing a Poisson distribution, Pr (N = 0;μ̃)= exp (− μ̃), that could simply be seen as the
probability of not claiming for a single year. Regarding the BMS model, using the corrected
version of ni,• and κi,• would also mean that, for t ∈ (τ (0)i , τ (1)i − 1), the BMS levels of each
artificial year correspond to:

�i,t = �i,t−1 − Pr (N = 0;μ̃)+ �μ̃

We favour the second approach because it considers the possibility that past years of insur-
ance include years with claims. There are many ways to estimate μ̃i for insured i. Boucher &
Inoussa (2014) estimate μ̃i based on the first available covariates of insured i, i.e. at time t∗ = τ

(1)
i .

That would mean using μ̃i = exp (X′i,t∗β), with covariates Xi,t∗ , corresponding to the time the first
contract of insurance of insured i was observed on the rating database.

We propose to improve this approximation by using a panel data model to obtain a better esti-
mate of each μ̃i, which will then help us to construct better artificial claims histories for all insureds
in the portfolio. To improve our approximation of μ̃i for all insureds i= 1, . . . , n, we will model
the joint distribution of available past claims history for each insured i, i.e. data from the Past
Claims Information section of Figure 7. Formally, suppose that for each insured i, we have a vector
containing all past numbers of claims ni,t for contracts beginning at time t = τ

(1)
i , . . . , (τ (2)i − 1).

For an insured observed over all years for that period, we then want to compute the following
joint distribution (subscript i is removed for simplicity):

Pr [Nτ (1) = nτ (1) , . . . ,N(τ (2)−1) = n(τ (2)−1)].
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Many possible joint distributions can be used. In our case, we will suppose that it will be con-
structed by adding an unobserved individual random effect that affects all random variables Ni,t
of the same insured i. Conditionally on this random effect �i, all those random variables Ni,t of
the same insured i are supposed to be independent. The joint probability mass function is then
defined by:

Pr [Nτ (1) , . . . ,N(τ (2)−1)]=
∫ ∞

−∞

⎛⎝τ (2)−1∏
k=τ (1)

Pr [Ni,k = ni,k|θi]
⎞⎠ dG(θi).

where G(θi) is the cumulative distribution function of the random effect. Many possibilities exist
for the conditional distribution and the random effect distribution. In our case, we will suppose:(

Ni,k|�i = θi
) ∼ Poisson

(
θiλi,k

)
and �i ∼Gamma(α = ν, γ = ν).

This Poisson-gamma combination leads to what is called the multivariate binomial negative
(MVNB) distribution, which can be expressed as:

Pr [Nτ (1) , . . . ,N(τ (2)−1)]=
⎛⎝τ (2)−1∏

k=τ (1)

(λi,k)ni,k
ni,k!

⎞⎠ 
(ni,∗ + ν)

(ν)

(
ν

λi,∗ + ν

)ν (
λi,∗ + ν

)−ni,∗ , (3)

with:

ni,∗ =
τ (2)−1∑
k=τ (1)

ni,k and λi,∗ =
τ (2)−1∑
k=τ (1)

λi,k

Usually, the panel count data distributions such as the MVNB are used to compute future pre-
miums using the past number of claims. Based on the fact that collecting information on the
ni,t , t = 1, · · · , T − 1 improves the knowledge of the individual random effect �i of insured i, we
usually use the predictive mean to compute the expected number of claims for year T as:

E[Ni,T |ni,1, . . . , ni,T−1]= λi,T

(
ν +∑T−1

k=1 ni,k
ν +∑T−1

k=1 λi,k

)
.

In our situation, we do not want to estimate the future number of claims of insured i, but want to
use the same approach to create artificial past claims history. That means that in our situation, the
MVNB distribution will not be used to predict the future number of claims, but will be used back-
ward to approximate the number of past claims before τ (1). Even used backward, the approach is
still valid because we use all claims of insured i to improve our knowledge about the individual
random effect �i. The updated expected value of N would then be used as an approximation of
past claims history. Formally, by reversing the time order, that means that we have:

μ̃i = E[Ni,τ∗ |ni,τ (2)−1, . . . , ni,τ (1) ]= λi,τ (1)

(
ν + ni,∗
ν + λi,∗

)
. (4)

for any time τ ∗ < τ (1). Note that because past risk characteristics are not available before τ (2),
we use the oldest available risk characteristics of insured i, Xi,τ (2) like Boucher & Inoussa (2014).
We then have λi,k = λi,τ (1) for all the Past Claims Information timeframe. This means that we can
simplify λi,∗ = (τ (2) − τ (1) + 1)λi,τ (1) . This way of creating μ̃i certainly improves the quality of the
artificial past claims history because each insured i will have his own artificial history based on his
observed claims experience.

Apart from the MVNB, other panel data count models can be used, such as those proposed in
the recent literature on claim counts (see references mentioned in the introduction). An obvious
alternative to the MVNB is the NB-beta, which has proven to be particularly suitable for insur-
ance data (see Boucher et al. 2008 e.g.). Another interesting alternative would be to use advanced
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Figure 8. Time Frame of Information for insured i.

models that weight past claims by their age. Note, however, that if this kind of approach has to be
used to create past claims history, we must be careful to use it backward. That would mean that
more recent claims should have less impact than older claims in the panel data model because we
want to create even older artificial claims.

4.1.1. A Warning from a simple example
To better understand how to construct an artificial claims history, a simple example is given. We
suppose an insured observed for two contracts, in 2016 and in 2017. Those two contracts are
used to estimate the parameters of the experience-rating models, such as the Kappa-N or the
BMS models. The values of ni,• and κi,• come from the Past Claims Information period, which
corresponds to years 2012–2015. We also suppose that the first insurance contract of that insured
was in 2007, but we do not have information about his claim experience for his contracts of years
2007–2011. Figure 8 illustrates this example and generalises Figure 7 by adding a Rating Database
section, that corresponds to the time period used to estimate the experience-rating models.

The objective of creating an artificial past claims is to consider at least partially the time period
2007–2011 in the rating model, even if we do not know the real insurance experience for that time.
As explained in the previous section, we use the Past Claims Information period, i.e. contracts
2012, 2013, 2014 and 2015 to compute μ̃, from equation (4). More precisely, we have:

μ̃ = λ2016

(
ν̂ + n∗
ν̂ + λ∗

)
with n∗ = n2012 + n2013 + n2014 + n2015 , λ∗ = 4× λ2016.

The parameter ν̂ comes from the estimation of MVNBmodel (see equation (3)), that uses the Past
Claims Information period for the whole porfolio. For the contract of 2017, the values of ni,• and
κi,• are again estimated from the Past Claims Information period, but can also be updated using
the claims experience of the contract from the year 2016. Indeed, for example, we could now use
n2016 to compute n∗.

Using Rating Database contracts to improve the artificial claims history can be interesting but
would also create a lot of undesirable consequences. For example, this approach would mean that
each additional contract experience will always modify the artificial claims history, which will in
turn will modify ni,•, κi,• or the BMS levels that come from past contracts. In our example, if we
are using a BMS model, a claim in 2016 can produce the following consequences:

• An increase5 of the BMS level for the contract 2017, i.e. �2017 = �2016 + � ;
• An increase of μ̃, which will potentially increase all past BMS levels, starting from year 2012

to year 2016.

On the other hand, if the insured does not claim in 2016, for the same reason, all BMS levels,
starting from year 2012 to year 2016, will be modified retroactively because of the new computed
value of μ̃. Constant re-evaluation of the artificial claims history means that any surcharges and
discounts following a contract will become extremely difficult to predict: in other words, we will

5If the BMS level is not limited by �max.
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lose one of the greatest advantages of BMS models. For this reason, creating an artificial claims
history must only be made once for each insured i, based on the Past Claims Information time
period, and never be modified by the claim experience observed in the Rating Database period.

4.2. Numerical application
Using the same database as the one used in section 3, we compared the three methods. We defined
artificial history (AH) methods as follows:

• no-AH: no artificial claims history is created;
• AH1 : each unobserved year of experience has a number of claims equal to the average

expected number of claims computed with the available covariates (i.e. Poisson regression
model);

• AH2 : each unobserved year of experience has a number of claims equal to an updated average
expected number of claims based on covariates and the past claims history (i.e. the MVNB
regression model);

• AH3 : each unobserved year of experience would be considered as a year without claims.

We also used different lengths of time from the Past Claims Information timeframe to compare
AH methods. For all those time lengths, it means that the artificial claims history methods can be
evaluated in at least two ways:

1. AH methods can be evaluated by comparing the artificial history with the observed claims
history. For example, if we use Y years of past claims history to create an artificial claims
history between Y and 15 years, this prediction can be compared with the real past claims
history observed between Y and 15 years;

2. The artificial claims history can also be used to obtain BMS levels at time τ (1) for each insured,
which in turn will be used to obtain all BMS levels needed for the BMS models. AH methods
can then be evaluated on their prediction quality for the model used for the Rating Database.

Because the objective of creating an artificial claims history is to improve the experience-rating
model, we will focus on the second type of evaluation.

4.2.1. Comparison betweenmethods
We have up to 15 years of past information in the database used in section 3. Our objective is to
analyse the impact of using less than 15 years in BMSmodels. We divided the training dataset into
five binds for cross-validation, where four of the five are used to estimate the parameters and one
is used to check for prediction, and tried a BMS-Poisson model by varying the number of years
used as past information. Except for the no-AHmethod which does not create any claims history,
the other AH methods were used to complete the 15 years of past information needed for the
model. Figure 9 shows the average logarithmic on the prediction fold. Several observations can be
made:

1. As we should expect, the more years of past information we used, the more predictive the
model is, for all AH methods.

2. The marginal improvement in the quality of prediction decreases with the number of years
used. For example, for all AH methods, the logarithmic score improves a lot more between
year 1 and year 7, than between year 7 and year 15.

3. Method AH1 is always the worst method to use. AH1 is even worse than the no-AH method,
meaning that it seems better to not create an artifical claim history than to try to create it with
the AH1 method.

4. AH2 and AH3 are the best methods, from a predictive point of view. Obtaining good results
with AH2 was expected. However, the good result obtained using method AH3 is surprising
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Figure 9. Cross-validation results for the BMSmodel with artifical claims history.

because it supposes that each year of past experience is considered claim-free. This good per-
formance can probably be explained by the fact that policyholders who do not claim stay with
the same insurer for a longer time, which means that their past claims experience could be
better than the average loss experience.

4.2.2. Estimated parameters
Instead of selecting the best AH method based on their predictive quality, we can also compare
the methods by analysing the structural parameters of the BMS obtained for each model. Table 6
shows all the BMS parameters from a Poisson distribution, with 5, 7 and 9 years of experience used
to construct the artificial claims history. Even if we see in Figure 9 that the average logarithmic
scores were close between all four AH methods for those years, we can see that the estimated
parameters are clearly different. Once again, several observations can be made:

1. Deciding to not create artificial claim history, i.e. using method no-AH, means that the best
BMS level an insured could have is 100− X for X = 5, 7, 9 years, representing X consecutive
years without claim. The other methods do not have this limit, and method AH3 using only
5 years, for example, has a minimum BMS level of 85, which represents 15 years without
claims. If the objective of the insurer is to eventually use a ratemaking structure using 15
years of past claims experience, but they do not have yet this amount of information, the no-
AHmethod cannot obtain BMS relativities for levels smaller than 100− X. That means that if
the ratemaking structure is put in production, several insureds already located at level 100− X
will not receive another discount even if they do not claim in the future. Other methods, on
the other hand, give a solution to the insurer in its rating structure, in waiting to have enough
past years to estimate the model with real data.

2. The jump parameter � is much higher for method AH3 than for the other methods. Because
the AH3method supposes that all unobserved past experience (up to 15 years) is rewarded by
a decrease of one level, some bad insureds might be rewarded toomuch just because they have
lot of experience. In consequence, to distinguish between good and bad insureds, the penalty
for a single claim could be higher to compensate.
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Table 6. Parameters of the BMSmodel for years 5, 7 and 9.

5 years 7 years 9 years

AH Type �max �min �̂ γ̂0 �max �min �̂ γ̂0 �max �min �̂ γ̂0

no-AH 108 95 4 0.0456 112 93 5 0.0422 111 91 6 0.0400


AH1 107 96 5 0.0501 113 87 6 0.0349 113 85 6 0.0330


AH2 113 85 6 0.0286 115 87 7 0.0308 113 85 6 0.0322


AH3 124 85 14 0.0152 123 85 11 0.0210 120 85 10 0.0226

3. Structural parameters for the AH2method are more stable over time and are close to the ones
obtained with the BMS model using all 15 years of experience (see Table 5 with the Poisson-
BMS model). This is interesting because it means that creating an artificial past claim history
can be a temporary solution while waiting to have enough past years to estimate the complete
model.

As mentioned earlier, all AH methods are worse than using real insurance data, which means
that insurers should consider systematically keeping their insureds data in a longitudinal form.
However, if the insurers do not have the data they want to create a BMS model, based on our
comparison and analysis, it seems clear that an artificial claims history is a solution they can use
to compensate. Among the three methods used to create an artificial claims history, the AH2
method was shown to be the best as it predicts adequately well and it seems capable of generating
structural BMS parameters that approach those finally obtained when we use all 15 years of data.

5. Conclusion
Recent papers on BMS models showed that they are a good alternative to credibility models and
panel data models. Past research showed that BMS models are at least as predictive as classic
Poisson-gamma models (MVNB), while being much easier to apply in practice and easier to gen-
eralise for smoothing or to include dependence between different types of claims. This paper
proposed an exhaustive analysis of how BMS systems should now be used with the actual data
insurers collect. Even if we can find literature from the 80s or 90s about BMS models, the tech-
niques proposed to estimate and calibrate the BMS models needed to be improved, because more
granular data are now available. Other recent papers generalised the BMS theory with panel data,
but none of them took the time to go into details and explain what the foundations of the model
were. By linking BMS models with a simple count model with covariates that are associated with
the past claims experience (Kappa-N model), this paper helps to understand how BMS model
works. Figure 2 is a good example of a nicer way to illustrate BMS as it better explains the link
between all parameters used in BMS. We explained how to deal with practical constraints while
allowing for maximum usage of all data available. Finally, we used real insurance data from farm
insurance to fit the BMS.

Often, insurers do not have all the past claims experience of their insureds, so we proposed a
new way to create artificial past claims history for all insureds.While allowing for maximum usage
of all data available, this new generalisation improves the fit of the model as well as its prediction
capacity. Again, we used real insurance data from farm insurance to show the difference between
several methods to create artificial claims history.

Highlighting in greater detail the ways BMS can be interpreted allows us to more clearly iden-
tify how the model should be improved in the future. Indeed, BMS models can be generalised in
many ways:
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1. Special transition rules: instead of only rewarding insureds when they do not claim in a single
year, we can study if other rewards should be given. Three, five or ten consecutive years with-
out claim, for example, could reward a decrease of additional levels. Lemaire (2012) provides
an impressive list of bonus-malus systems, where many different transition rules are used.

2. Multiple scope variables and multiple target variables: we model the number of claims on
the machinery coverage and used all types of claims to compute BMS levels. Different jump
parameters, one for past machinery claims and another one for other types of claims, could
be analysed.

3. BMSs applied to the claim severity.
4. Combining the BMS model with statistical learning approaches to improve risks segmenta-

tion in ratemaking.

Future research on BMS, or any other past claims rating system, should approach these challenges
in the future.
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A. Appendix: Farm Insurance and Structure of the Data
The dataset comes from farm insurance contracts that range from January 1, 2014 to December 31,
2018. We focus our analysis on farm insurance and more specifically on machinery coverage. This
coverage, as the name implies, covers damages to any farm machinery, which includes tractors,
and also swathers, combines, etc.

A.1 Item and Contracts
Table A.1 shows an example of the available data for the machinery coverage of the farm insurance
product. We see that each observation of the database corresponds to information at the item
level. An item, for machinery coverage, corresponds to a specific tractor, or combine, from which
specific information is available. The table shows that some covariates are at the item-coverage
level (such as the type of machinery), while other covariates are at the contract level meaning that
they are similar for each item of the same contract (e.g. the province).

Table A.2 shows summary statistics from the database by year at the item level, as well as at
the contract level. The total number of claims for the machinery coverage is also shown. We can
see that the total number of claims at the item level (3,206) is not the same as the total at the
contract level (2,783). This is because a unique incident can affect many items at the same time.
The purpose of experience pricing is to analyse past claims to predict future claims experience, so
we should make sure that an insured would not be penalised more than once for the same event,
simply because a single disaster affected more than one item.

With a total of 692,949 items insured for 117,324 contracts, the average number of items
insured by contracts is around six. The distribution of the number of items insured by contract can
be seen in Figure A.1. It is interesting to note that almost 50% of all farms only have one insured
items, while approximately 10% of farms have more than 20 insured items. More precisely, 40
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Table A.1. Fictive Data Sample – Item Level.

Policy number Item Eff. date Coverage . . . Province Type # Claims Loss costs

1 1 2017-01-15 MACHINERY . . . Ontario HARVEST 2 174,147
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 2 2017-01-15 MACHINERY . . . Ontario SWATHER 1 12,445
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 2018-01-15 MACHINERY . . . Ontario HARVEST 0 0


1 2 2018-01-15 MACHINERY . . . Ontario SWATHER 0 0


1 1 2019-01-15 MACHINERY . . . Ontario HARVEST 0 0


1 2 2019-01-15 MACHINERY . . . Ontario SWATHER 1 87,112

Table A.2. Summary statistics at the item level.

Item level Contract level

Year Number Claims Freq. (%) Number Claims Freq. (%)

2014 126,515 556 0.439 22,347 500 2.237
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2015 131,275 522 0.398 22,782 457 2.006
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2016 136,757 655 0.479 23,246 591 2.542
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2017 144,057 771 0.535 24,010 642 2.674
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2018 154,345 702 0.455 24,939 593 2.378
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 692,949 3,206 0.463 117,324 2,783 2.372

farms have more than 100 insured items, with a maximum of 212 for a single contract in 2016.
The difference between small farms and larger farms is important, and it should be a priority to
analyse the consequences of this difference in the BMS models in the future.

Meta-variable for the contract level
We saw with equation (2) that covariates used for a priori ratemaking can be used with the

claim score. That would mean that the a priori premium, based on the covariates of each item of
a contract, could be computed. We then start at the item level and suppose that the number of
claims from item j, for contract t of insured i, has the following distribution:

N(j)
i,t ∼ Poisson(λ(j)i,t ), with: λ

(j)
i,t = d(j)i,t exp (X

(j)
i,tβ

(j)).

The variable d(j)i,t represents the risk exposure (in time) of item j, X(j)
i,t represents risk character-

istics of item j from contract t of insured i, and β(j) are parameters of the model to be estimated.
Some covariates at the item level for the vector X(j)

i,t were as follows:

• Coverage Amount;
• Machinery Type;
• Machinery Make;
• Machinery Age;
• etc.

Because the Poisson distribution was supposed, an estimation by maximum likelihood, using any
GLM package, was performed to obtain β̂(j). With the estimated parameters, for each item of any
contract, we were then able to have an estimation of E[N(j)

i,t ], which can be seen as the a priori
frequency part of the premium for each item.
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Figure A.1. Distribution of the number of items by contract.

Because the experience-rating algorithm is normally applied at the contract level and because
we think that past claims will identify insureds that tend to claim more, for our illustration, we
decided to analyse the loss experience of each insured at the contract level. That means grouping
all items of a single contract into a single observation. This will also correct the situation men-
tioned previously where a single event resulted in damage to multiple items. The main problem
with our goal of analysing the number of claims at the contract level is that the majority of impor-
tant covariates to be used in the rating only make sense at the item level. To correct this situation,
we created a meta-variable ξ at the contract level representing the total risk of all items of the
contract. More formally, we have:

ξi,t =
I∑
j

λ̂
(j)
i,t =

I∑
j

d(j)i,t exp (X
(j)
i,t β̂

(j))

with I being the number of items from contract t of insured i. The meta-variable ξi,t represents the
sum of expected claims frequency of each item of a contract. It can then be seen as an interesting
risk measure using all the item information.With standard GLMmodelling, the sum of prediction
is equal to the sum of the observations. In other words, the

∑
i
∑

t
∑

j N
(j)
i,t would be the same

as the sum of all claims at the item level. Because we have fewer claims at the policy level, we
cannot use ξi,t directly. Consequently, at the contract level, the number of claims can now be
expressed as:

Ni,t ∼ Poisson(λi,t), with: λi,t = exp (X′i,tβ + βp+1 log (ξi,t)) (A.1)
where Xi,t is the vector of dimension p that could include covariates at the contract level, such
as the province, the civil status of the owner, the year of the contract. We finally obtain a dataset
at the contract level. Table 2 of section 3.1 is an example. We then split the overall dataset into a
training dataset (75%) and a test dataset (25%).

Cite this article: Boucher J-P (2023). Bonus-Malus Scale models: creating artificial past claims history, Annals of Actuarial
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