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1. Introduction. The purpose of this paper is two-fold.
Sections 2 and 3 are motivated by an observation that certain theorems
concerning ""diminishing orbital diameters' (introduced in [1]) are
true under weaker assumptions. Specifically, we investigate the
relationship between that concept and alternate conditions such as
"asymptotic regularity', and in the process we sharpen some metric
space results established in [1;5]. Mention is made in these sections
of examples which show that certain additional weakenings of our
hypotheses cannot be made, but we include in detail only the one
which seemed to us most intricate.

In the fourth section, some new fixed point theorems are
obtained in Banach spaces. These theorems are for nonlinear
mappings T for which V =1~ T is '"convex'" (that is,

X+y

lv( -

the assumption of convexity of I - T 1is stringent, a significant
feature of this section is the inclusion of examples showing that even
in the presence of this assumption, other weakenings of our hypotheses

VI < 172[|vix) || + [|V(y)]]] for x,y € dom T). Although

are not possible.

2. Diminishing orbital diameters. Let f be a mapping of a
metric space M into itself. For x € M, let

2
Ox) = {x, f(x), f (%), ...} ,
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and for A © M, Iet the diameter of A be:
8A = sup{d(x,y): x,y € A}
Definition [1]. If for each x ¢ M it is the case that

limn60(fn(x)) < §0(x) whenever 80(x)> 0, then f is said to have

diminishing orbital diameters on M.

A number of results have been established for mappings of this
type, perhaps the principal one being that every non-expansive
mapping (i.e., a mapping f for which d(f(x), f(y)) < d(x,y),

x,y € dom f) with diminishing orbital diameters which maps a weakly
compact subset of a Banach space into itself always has a fixed point
(see [1;6]; also see [7] for applications of this theorem).

One of the first observations made concerning mappings of this
type was that the condition of diminishing orbital diameters has
strong implications in compact settings.

THEOREM 2.1. Let f:M - M be nonexpansive and have
diminishing orbital diameters. Suppose for some x € M,

Iimkfnk(x) = 2. Then Iimnfn(x) =z and z = £(z) .

This theorem was proved in [1] (a slightly more general version
appears in [5]) using a result of Edelstein [3] which states that for

nonexpansive f , if Iimkfnk(x) = z then z generates an isometric

sequence. (This means that d(f(z), £(2)) = dE" =), 750,
k=0, 1, 2, ... .) More perceptive application of Edelstein's
result makes it clear that the condition of diminishing orbital
diameters is really not the crucial factor in the theorem, but rather
that f be non-isometric on O(x) whenever 60O(x) > 0. Thus, one
can prove:

THEOREM 2.2. let f:M - M be nonexpansive; for each
x € M, assume f{ is not an isometry on O(x) if 60(x) > 0. If

for some x e M, Iimkfnk(x) =z, then limnfn(x) =z and f(z) =z .

482

https://doi.org/10.4153/CMB-1969-062-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-062-9

Proof. If follows immediately from Edelstein's result that
80{(z)) = 0, and thus that f(z) = z .

That Theorem 2.2. implies Theorem 2.1 is easily seen. If
f: M - M has diminishing orbital diameters at x then
60(fn(x)) < 80(x) for some n if 80(x)> 0, and one may infer from

this that f is not an isometry on O(x).

3. Asymptotically regular mappings. In this section we shall be

interested in making some observations about the relationship between
mappings with the "non-isometric on orbits' condition of Theorem 2.2
and asymptotically regular mappings. As before, M denotes a
metric space.

Definition [2]. A mapping f: M - M 1is asymptotically regular

+1
on M if Iimnd(fn(x), & (x)) = 0 for each x € M.

Interest in asymptotically regular maps stems from the fact that
strong conclusions may be drawn concerning convergence of sequences
of iterates of such mappings to fixed points; see Browder-Petryshyn
[2]. In compact settings, the connection with concepts studied here
is firm.

REMARK 3.1. If M is compact and f: M - M nonexpansive,
then the following are equivalent.

1) { has diminishing orbital diameters on M.

2) f is asymptotically regular on M.

3) £ 1is not an isometry on O(x) if 680(x) > 0, x € M.

The equivalence of these conditions follows from the fact that
(2) implies (3) trivially, and existing fixed point theorems imply every
sequence of iterates converges to a fixed point of f under either
assumption (1) or (3). It is also easy to see that in any case, if

f: M - M is asymptotically regular then f satisfies (3). For if
x % f(x) and f is an isometry on O(x) we have

n+1
x),

0 4 d(x,f(x)) = d(f(x), f2(X))= = (e (x)) =0

which is absurd. Thus nonexpansiveness of f 1is not needed.

The following theorem is proved in [5].
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THEOREM 3.1. Suppose M is compact and let f: M - M be
continuous and have diminishing orbital diameters on M. Then

n
every sequence {f (x)} contains a subsequence which converges to
a fixed point of f .

A similar result holds for asymptotically regular maps. We
state this theorem without proof since it is a consequence of Theorem
3.3 and Remark 3. 3.

THEOREM 3.2. Theorem 3.1 remains true if the assumption
of diminishing orbital diameters is replaced by asymptotic regularity.

In general, a continuous mapping f may be asymptotically
regular and yet not have diminishing orbital diameters, even in a
compact set. Thus the hypothesis of Theorem 3.2 does not imply
the hypothesis of Theorem 3.1. It is also the case that a mapping
may have diminishing orbital diameters on a set, yet not be
asymptotically regular. However, we note the following:

REMARK 3.2. If M is compact, f: M - M continuous with
diminishing orbital diameters, then for each x € M, if

+1
limnd(fn(x), T (x)) exists, it must be zero.

Proof. Let x € M. By Theorem 3.1 some subsequence of

{fn(x)} converges to a fixed point of f. Say fnk(x) -z = f(z).
Thus,

nmkt”k“(x) =z,
SO

n ny+1
lim, d(¢ Kix), £ ¥ (x)) = 0.

Therefore, if the indicated limit exists, it must be zero.
That this limit need not always exist, however, is seen by the
following example. In this example M 1is compact, f: M - M is

continuous and has diminishing orbital diameters, but f is not
asymptotically regular.
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EXAMPLE 3.1. Consider the following points in the plane,

"
-
[\N]

a =(1/n,0), n

i
N
=]
1l
o
5N
N

x. =(0,1/n), k

and define the remaining points x as indicated in the figure (Fig. 1).

Then M = U{a , x , (0,0)} is a compact subset of the plane.
n n

Define f: M - M as follows:

x
' 0
x, ;
X.1 > 3
. 5 *6
4 > - ¥
x8 = }): > x12
X
9 *10 *11
0 Se. Je S a
5'4 a3 az 1
Figure 1
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f = s =0, 1, 2, ... ;
(Xn) Xn+1 n

fla )=a ,n=2,3, ... ;
n n-1

f(a,) = (0,0) =£((0, 0)).

Then 60(fn(xk))> 1 while lim 60(fn(xk))=1. Clearly,
n

{d(fn+1(xo), fn(xo))} does not converge.

A very trivial example shows that Theorem 3.2 is not true
with "asymptotically regular' replaced by the condition of Theorem
2.2, namely '"f is not isometric on O(x) whenever 60O(x) > 0",
and Theorem 3.1 and 3.2 cannot be jointly generalized using this
condition. We can achieve a unifying of 3.1 and 3.2 as follows:

THEOREM 3.3. Let M be compact and suppose f: M - M is
continuous and has the property that for each x € M with 60(x) > 0

there exists an integer n such that O(fn(x)) :} O(x). Then every

sequence {fn(x)} contains a subsequence which converges to a
fixed point of f .

Because its proof is a routine modification of the proof of
Theorem 3.1 [5, Theorem II], we only show how Theorem 3.3
implies Theorem 3.1 and 3.2. In fact we can take a ""mixed"
hypothesis.

REMARK 3.3. Let x € M and suppose f: M - M is
continuous. If either f has diminishing orbital diameters at x or
if f is asymptotically regular at x, and if &O(x) > 0, then for

some n, O(fn(x)) 4 O(x) .

Proof. Choose x e M with &60O(x) > 0. If f has diminishing

orbital diameters at x, then for some n, 60(fn(x)) < 60(x) ;

hence O(fn(x)) =+ O(x) . Suppose, then, that f is asymptotically
regular at x. 860(x) > 0 implies x =} f(x). Suppose x € O(f(x)).

. Nk ny n
Then x = 11mkf (x) for some subsequence {f "(x)} of {f (x)}.
ny +

Therefore f(x) = Iimkf (x). Hence
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ny +1

Kx), £ 5 (x) = d(x, £(x)).

n,
lim_d(f
k

Asymptotic regularity of f at x implies x = f(x) contradicting
50(x) > 0; thus x £ O(f(x)) so O(x) :# O(f(x)).
By the comment following the example we see that our '""mixed"

hypothesis in the above remark cannot contain as an alternative the
""non-isometry on O(x)" condition. That is, being non-isometric on

O(x) is not sufficient to imply O(x) # O(f%(x)) for some n . It canbe
shown, however, that the latter is true if f is nonexpansive.

4. Mappings in Banach spaces. ILet K be a convex subset of
a Banach space X. A mapping V:K - X is called convex if

IVEDT < 172ve ] + [V )

for all x,y € K.

THEOREM 4.1. Let K be a nonempty, weakly compact, con-
vex subset of a Banach space X . Suppose T:K - K is continuous
and suppose I - T is convexon K . If 11;11}'{”:; - Tx” =0, then T
bl 3 st o e = x =

has a fixed point in K.

Proof. For each r > 0, let
H ={ze¢K: ||z -Tz]| < r}.
r =
Because inf [|[x- Tx| =0, H 4 # if r > 0. Convexityof I1-T
xeK r

easily implies H 1is convex and continuity of T implies Hr is
r

closed. As closed convex subsets of the weakly compact set K, the
set H are also weakly compact and it follows that
r

NH £ 0
r>0r

487

https://doi.org/10.4153/CMB-1969-062-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-062-9

yielding at least one fixed point for T.

THEOREM 4.2. Let K be as in Theorem 4.1. Suppose
T: K - K is nonexpansive and suppose I - T is convex on K. Then
T has a fixed point in K.

Proof. By a result of Gdhde [8] we have ian [x - Tx|| = 0;
Xe

hence 4.2 follows from 4.1.

THEOREM 4.3. Let K and X be as in Theorem 4.1. Suppose
T: K - K is nonexpansive and suppose I - T is convexon K. If

: . n
T is asymptotically regular on K, then every sequence {T x}
contains a subsequence which converges weakly to a fixed point of T,
and moreover, every such weakly convergent subsequence has a fixed

point of T as limit.

Proof. let x € K. Because K is weakly compact, some

n
subsequence {Tnkx} of {T x} converges weakly, say to w. Thus,

0 — n
W € ﬂk conv{Tn}Sc, T k+1x, -.- 3.

The fact that I - T is convex is readily seen to imply that, for
each Kk,

[w- Tw| < sup ”Tnix - T(T ix) Il
i>k

Therefore, using asymptotic regularity of T ,
Ilw - Tw ] < 1im [T - T(T"R) | = 0

and w is fixed under T.
EXAMPILE 4.1. Let B be the unit ball in any infinite

dimensional Banach space X and let

B, = (xex|xl < 1/2).
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Let ¢ be any continuous function mapping B—»B“2 which has no

fixed point. (Because B'1/2 is not compact, such a mapping will

exist.) Let [x, ¢(x)[ be the half-line emanating from x which
contains ¢(x). Then the length of [x, ¢(x)[N B 1is at least 1/2.

Define Tx to be the point of this ray with distance 1/2 from x.

Then T:B-B and ”x— Tx” = 1/2, x€B. Thus I- T is convex.
T 1is continuous because ¢ is. Since X may be chosen so that B
satisfies the hypotheses on K in Theorem 4.1 (e.g., assume X is
reflexive), this example shows that inf ”x - Tx” = 0 cannot be
removed in Theorem 4.1, nor can nonexpansiveness of T in Theorem
4.2 be replaced by continuity of T.

EXAMPLE 4.2. Now consider the space C[0,1] of continuous
functions. Let
= {fe c[0,1]:£0) = 0, £1) = 1, 0 < £(x) < 1}.
Define ¢:K —~ K as follows:

o(f)(x) = xf(x), f € K.

As seen in [4], ¢ is nonexpansive on K and has no fixed point.
Let f, g e K.

- o8| = supf el JHEGD <o, 4))

< sup{%(1 - x)f(x):x € [0,1]}
+ sup{%('l - x)g(x):x € [0, 1]}

=1/2{ £ - (D) + g - () ]I} -
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Thus I - ¢ is convex on K. Also,

o (£) - S | =sup{ 5" (x)-x" () [ % € [0, 1)

sup{ (xn—xn+1)f(x):x e [0,1]}

sup{ (xn—xn+1):x e[0,1]}

IA

— n+1

so ¢ is asymptotically regular on K. Therefore the hypothesis
of weak compactness is essential in each of the Theorems 4.1 - 4. 3.

It might be noted that the procedure of Example 4.1 could be

used to obtain a continuous map T:B - B suchthat ||x - Tx| =k,

x € B, for any fixed k, 0 < k < 1. An interesting question arises

as to whether such T exists for which |x - Tx| =1, x ¢ B.
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