Temperature and metallicity maps in cool core clusters of galaxies

Silvia Caffi, Fabio Gastaldello, Simona Ghizzardi and Silvano Molendi IASF-CNR Sez. Milano

1. Observation and data analysis

We have analized XMM-Newton data of A2199, a nearby (z = 0.030), relaxed, rich cluster of galaxies, whose X-ray emission is strongly peaked on the central galaxy, NGC6166, suggesting the existence of a cluster cool core (Peres *et al.* 1998).

The background subtraction is performed using an observation characterized by features similar to those of the A2199 observation. We have selected, in the XMM-Newton archive, a field observation presenting the following properites:

- duration of about 90 ksec;
- performed with the same filter as the A2199 observation;

• characterized by a galactic HI column density and a soft X-ray background, the latter being calculated from the ROSAT All-Sky survey diffuse background maps, which differ from those of the A2199 observation ($N_H = 8.7 \times 10^{19} \text{ cm}^{-2}$, $R_{45} = 208.2 \times 10^{-6} \text{ cts/arcmin}^2$) by 3% and 30% respectively.

We have accumulated spectra from 9 concentric annuli, out to 12 arcmin, centered on the X-ray emission peak and have fit them with a single temperature model (mekal * wabs model in XSPEC) in the 1.5 - 10.0 keV spectral band, well suited for temperature measurements in the range $kT \sim [3, 5]$ keV.

We have then deprojected the radial profiles using the technique described in Ettori $et \ al. \ (2002).$

2. Results

2.1. Projected profiles

Here we present the projected profiles of temperature and iron abundance (Fig. 1) plotted together with Chandra and BeppoSAX profiles derived from Johnstone *et al.* (2002) and De Grandi & Molendi (2001, 2002).

While the temperature profiles derived from XMM-Newton and Chandra data show a remarkable agreement, the comparison between BeppoSAX and our data points toward a systematic difference of about 10%, already noted in the Coma cluster: 0.8 keV on a temperature of 8.2 keV (De Grandi & Molendi, 2002).

There is a clear difference in the abundance profiles of XMM-Newton and Chandra. This difference could be due to the proximity of the $Fe - K_{\alpha}$ line at 6.7 keV, used to mesure the metallicity, to the spectral upper limit in Johnstone *et al.*'s analysis (7.0 keV).

2.2. Deprojected profiles

We have deprojected radial profiles using the method indicated by Ettori *et al.* (2002), obtaining three-dimensional profiles for temperature, abundance (see Fig. 2), electron density (n_e) , emissivity (ϵ) , cooling time (t_{cool}) , pressure (see Fig. 3 left panel), entropy, gravitational mass, iron mass and iron mass excess (see Fig. 3 right panel).

Figure 1. Temperature (left) and iron abundance (right) projected profiles: blue, red and black points are, respectively, for XMM-Newton, BeppoSAX and Chandra data.

Figure 2. Temperature and iron abundance deprojected profiles.

The radius within which the temperature (abundance) profile decreases (increases) is about a factor of 2 smaller than the cooling radius, estimated from the t_{cool} profile. The value of r_{cool} is about 95 kpc, in good agreement with previous estimates by Perez *et al.* (1998) and Johnstone *et al.* (2002).

The total iron mass excess is $6.3 \times 10^8 \,\mathrm{M_{\odot}}$, a factor of 2 smaller than previously estimated in De Grandi *et al.* (2003) with BeppoSAX data. The discrepancy could be due to the differences between the projected metallicity profiles (see Fig. 1).

References

Peres C. B. et al. 1998 MNRAS 298 416
De Grandi S. & Molendi S. 2001 ApJ 551 153
De Grandi S. & Molendi S. 2002 ApJ 567 163
De Grandi S. et al. 2003 astro-ph/0310828, A&A, in press

Figure 3. Deproject quantities of A2199: n_e , ϵ , t_{cool} , P in the left panel, entropy (defined as $kT/n_e^{2/3}$), M_{grav} , M_{Fe} and M_{Fe}^{exc} in the right panel.

Ettori S. et al. 2002 A&A **391** 841 Johnstone R. M. et al. 2002 MNRAS **336** 299