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Laminar–turbulent transition in boundary layers is characterized by the generation
and metamorphosis of flow structures. However, the process of the evolution from a
three-dimensional (3-D) wave to a Λ-vortex is not fully understood. In order to develop a
deeper understanding of the spatiotemporal wave-warping process, we present numerical
studies of both K-regime transition and bypass transition. A qualitative comparison of
flow visualizations between a K-regime zero pressure gradient (ZPG) case and an adverse
pressure gradient (APG) case is done, based on the method of Lagrangian tracking of
marked particles. In bypass transition, the development of a 3-D wave packet before
the breakdown into a turbulent spot was visualized for both the linear and nonlinear
stages. The underlying vortex dynamics was investigated using a proposed method of
Lagrangian-averaged enstrophy. The study illustrates that a Λ-vortex develops from a 3-D
warped wave front (WWF), which undergoes multiple folding processes. It is observed that
the APG case undergoes a more rapid evolution, precipitating a stronger viscous–inviscid
interaction within the boundary layer. It is hypothesized that the amplification and lift-up
of a 3-D wave causes the development of high-shear layers and a WWF. In order to seek a
relationship between transitional and turbulent boundary layers, Lagrangian methods were
also applied to an experimental data set from a turbulent boundary layer at low Reynolds
number. Similarity of flow behaviours are observed, which further supports the hypothesis
that the amplification of a 3-D wave precipitates low-speed streaks and rotational structures
in wall-bounded flows.
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1. Introduction

The origin of wall-bounded turbulence has been one of the most classic research problems
for the fluid mechanics community. This problem has attracted much attention because of
the fundamental significance in understanding the process of turbulence production and
the considerable difficulties encountered in identifying the building blocks of coherent
structures in laminar–turbulent transition. There have been many reviews related to the
coherent structures in transitional and well-developed turbulent boundary layers (Smith
1984; Robinson 1991; Kachanov 1994; Rempfer 2003; Lee & Wu 2008; Jiménez 2018;
Lee & Jiang 2019; Marusic & Monty 2019). However, most research investigating the
generation or regeneration of turbulent structures usually does not take into account
the early transition stage where three-dimensional (3-D) waves play important roles.
The origin of hairpin vortices that many studies take as the dominant flow structure of
turbulent boundary layers is not well understood (Marusic 2009). In the present study, a
comparative analysis is made between a zero-gradient (Blasius) boundary layer (ZPG) and
a Falkner–Skan (FS) flow with an adverse pressure gradient (APG). In addition, a direct
numerical simulation (DNS) study of a turbulent spot and an experimentally determined
low-Reynolds-number turbulent boundary layer are also presented for comparison with the
transitional flows.

In the classical work of Hama and his colleagues, which employed hydrogen bubble
visualization to observe structures within a transitional boundary layer (Hama, Long
& Hegarty 1957; Hama & Nutant 1963), they observed that a Tollmien–Schlichting
wave (TS) wave warps three dimensionally during amplification, acquiring a longitudinal
vorticity component along its swept-back front. This layer of concentrated high-shear,
which appears as an inflection in vertical hydrogen bubble timelines (i.e. a ‘kink’),
subsequently develops into a hairpin-shaped, discrete vortex. This localized and
intensified warped wave front (WWF) was considered as the source of subsequent
hairpin-shaped vortices. The warping process and kinked profiles were frequently
observed experimentally or numerically in transitional boundary layers (Wortmann 1981;
Laurien & Kleiser 1989; Rist & Fasel 1995; Lee 1998). Jiang et al. (2020a) systematically
investigated the development of a WWF in the early stage of K-, N- and O-regime
transition, demonstrating qualitative similarity between the stages. However, the roles of
a WWF in APG transition are not clear, and the manner in which a WWF originates
and evolves in an APG is not well understand. This emphasizes the need to examine the
details of the warping process and the development of a WWF prior to the emergence of
Λ-vortices in an APG flow.

A hypothesis based on a 3-D wave-like structure, termed a soliton-like coherent structure
(SCS), has been proposed by Lee (1998) to explain the velocity profile ‘kink’. Such a 3-D
wave-like structure was observed within the whole boundary layer, in both the early and
later stages of a transitional boundary layer (Lee & Li 2007; Lee & Wu 2008). Chen (2013)
confirmed the existence of an SCS and its dominant role in the vortex evolution process
using DNS. Zhao, Yang & Chen (2016) investigated the evolution of material surfaces
in channel flow, and determined that a triangular material bulge forms before the roll up
of a vortex sheet, which is similar to the results of Chen (2013) and Lee & Wu (2008).
Their simulation shows that the heads of primary hairpin-like structures develop directly
from those triangular bulges.

A decelerating FS flow (Hartree parameter βH = −0.18) was investigated by Kloker
& Fasel (1995) using DNS. They observed that the resulting breakdown process for
an adverse pressure gradient is dramatically more complex than a K-regime breakdown
for a Blasius flow. They observed that a lower characteristic high-shear layer (HSL)
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Three-dimensional wave structure in boundary layers

formed between the primary Λ-vortex, and plays a key role in precipitating an ultimate
breakdown to turbulence. Borodulin, Kachanov & Roschektayev (2006) implemented an
experimental study of coherent structures for a late-stage APG boundary layer (βH =
−0.115). Formation of Λ-vortices, Λ-shaped 3-D HSLs and ring-like vortices was
observed, and were shown to be qualitatively similar to those found in ZPG boundary
layers. They pointed out that the instantaneous velocity and vorticity fields seem to
correspond qualitatively to those present in the near-wall region of a developed turbulent
boundary layer. Lee (2000) discussed the similarity between the physical mechanisms for
the structure formation in both transitional and developed turbulent boundary layers, and
proposed a universal path to transition based on the concept of SCS. Sayadi, Hamman &
Moin (2013) and Sayadi et al. (2014) evaluated flow statistics and near-wall dynamics
for K- and N-regime breakdown during late stage transition, and proposed late-stage
transition, manifested by hairpin packets, as a reduced-order model of a turbulent boundary
layer. The key structure that supports the similarity is the low-speed streak (LSS),
which plays key roles in turbulence production (Smith et al. 1991; Asai, Minagawa &
Nishioka 2002; Asai et al. 2007). Schoppa & Hussain (2002) investigated a turbulent
channel flow using linear theory and DNS. They identified a streak transient growth
(known as STG) mechanism, by which streaks generate streamwise vortices and hence
sustained turbulence. However, the collective simulation and experimental studies reached
no consensus on the near-wall turbulence production cycle. The relationship between
LSS, Λ (or hairpin) vortices, and the so called ‘bursts’ in both transitional and turbulent
boundary layers merit further investigation. Turbulent spots can be found frequently
in both the bypass transition flow and turbulent flow. Park et al. (2012) investigated
turbulent spots and fully developed turbulence by examining the numerical flow data
of a flat-plate boundary layer with a passively heated wall, and found little difference
in the structure and transport processes between these two cases. Recently, Wu, Moin
& Adrian (2020) observed that two different types of hairpin vortices develop in a pipe
flow: reverse hairpin vortices in the near-wall region and forward hairpin vortices in
core region. A patch of negative skin friction, which is caused by a reverse hairpin
vortex, occurs both in the transitional region and the fully developed turbulent flow
region.

The inception mechanism for turbulent spots is a common concern in the study of
bypass transition. Wu et al. (2017) observed that the transitional–turbulent spot inception
mechanism is analogous to the secondary instability of a transitional boundary layer, with
a spot originating from a spanwise vortex filament and a Λ-vortex. They also observed
turbulent–turbulent spots in the inner layer of a developed turbulent boundary layer, which
coincide with local concentrations of high levels of enstrophy. Lee & Wu (2008) pointed
out that the turbulent spot is a composite structure, which is a combination of several
3-D wave structures (SCS) and the residual vortices within the spot boundaries. However,
there is still a lack of understanding of the process by which a wave packet develops into a
turbulent spot.

There are many methods that have been used to study the dynamic process behind the
visualized metamorphosis of flow structures, either using Eulerian approaches (Chong,
Perry & Cantwell 1990; Jeong & Hussain 1995; Tian et al. 2018) or Lagrangian approaches
(Haller 2005; Green, Rowley & Haller 2007). Lagrangian coherent structures (LCS) are
distinguished as surfaces of trajectories in a dynamical system that form the skeletons of
Lagrangian particle dynamics over a time interval of interest (Haller & Yuan 2000; Haller
2015). Lagrangian-averaged vorticity deviation (LAVD) is one of the representative LCS
detection methods that extract the influence of vortices on nearby flow behaviour (Haller
et al. 2016). However, due to the non-uniformity of background vorticity in boundary
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layers, the value of LAVD may rely on the selected initial fluid volume. Recently, the
determination of isosurfaces of the enstrophy field has been applied to stratified flows to
identify turbulent/non-turbulent interfaces (known as TNTI) (Neamtu-Halic et al. 2020).
The evolution of enstrophy is closely related to vortex stretching effects, which is a
critical kinematic mechanism in a shearing process. In the present work, a method of
Lagrangian-averaged enstrophy (LAE) is employed to analyse wall-bounded flows, using
the integral of the enstrophy (i.e. |ω|2) along fluid trajectories over a finite time interval of
interest.

The objective of the present paper is to characterize the development of 3-D waves
during transition, and to understand the underlying dynamic process that gives rise
to Λ-vortices, especially in APG cases and for turbulent spots. We also examine the
connections between transitional flows and turbulent flows. The remainder of this paper
is organized as follows: in § 2, the methods of nonlinear parabolized stability equations
(NPSE) and DNS are described, including the method of Lagrangian tracking; in § 3,
a comparative study of numerical flow visualization and corresponding LCS based
on LAE is presented for ZPG and APG cases; in § 4, the development of a 3-D
wave packet into a turbulent spot is illustrated, including an analysis of the enstrophy
intensity; in § 5, Lagrangian methods, the same as employed for the transition cases,
are applied to an experimental data set from a turbulent boundary layer, attempting to
understand the streak behaviour in near-wall turbulence; in § 6, the underlying physical
mechanisms for the three different flows are discussed; concluding remarks are given
in § 7.

2. Numerical approaches

2.1. PSE
The methods of NPSE is suitable for investigating linear and weakly nonlinear evolution
of disturbances. The detailed formulation of NPSE can be found in Bertolotti, Herbert &
Spalart (1992) and Chang & Malik (1994). The implementation of NPSE in the present
work is the same as employed by Jiang et al. (2020a). The code was verified in Chen, Zhu
& Lee (2017), and the details of the operators in the governing equations for the shape
functions of each mode can be found in Zhu et al. (2018).

Here, NPSE was utilized to study the flow patterns for K-type transitions, for both a ZPG
and an APG. In the language of frequency–wavenumber, the notion (ω, β) is used, where
ω and β denote the streamwise frequency and spanwise wavenumber, respectively. For
simplicity, ω and β are normalized on the corresponding primary waves. For K-regime
transition with a ZPG, a two-dimensional (2-D) TS wave of normalized frequency F =
106 × 10−6 (corresponds to period T = 148.2) and a pair of oblique waves at the same
frequency were introduced at the inlet (x0 = 400) with a relatively smaller amplitude, i.e.
modes (1, 0) and (1, ±1).

For K-regime transition with an APG, a 2-D TS wave of normalized frequency F =
435 × 10−6 (corresponding to period T = 56.0) was forced at the inlet by a pair of
oblique waves at the same frequency (x0 = 258). The profile of an FS boundary layer
is characterized by a power-law dependence on the free stream velocity U∞ in the
streamwise coordinate direction, i.e. U∞(x) = Cxm. The Hartree parameter, related to m by
βH = 2m/(1 + m) ≈ −0.062, is a measure of the strength of the mean pressure gradient.
The detailed information for the wave components forced at the inlet of the simulation for
these transition scenarios is shown in table 1.
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Three-dimensional wave structure in boundary layers

2-D wave 3-D wave

Case mode F × 106 A mode F × 106 β A Hartree parameter (βH)

ZPG (1, 0) 106 0.2 % U∞ (1, ±1) 106 0.05 0.14 % U∞ 0
APG (1, 0) 435 4 % U∞ (1, ±1) 435 0.18 0.2 % U∞ −0.062

Table 1. Numerical settings for the two K-regime transition simulations. A normalized notation (ω, β) is used
in mode description. The first digit indicates multiples of the fundamental streamwise frequency. The second
digit refers to multiples of the fundamental spanwise wavenumber.
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Figure 1. Neutral stability curves for a Blasius boundary layer based on PSE (red line) and linear stability
theory (LST) (blue line), and an FS boundary layer based on NPSE (green line). The input normalized
frequency for the Blasius boundary layer is F = 106 × 10−6. The corresponding data of Bertolotti et al. (1992)
are represented by triangles and circles, respectively. The Hartree parameter for the FS boundary layer is
βH = −0.062, with an input normalized frequency of F = 435 × 10−6.

The neutral curves for both the ZPG and APG are shown in figure 1. The frequency
and amplitude of disturbance input for the two cases are different, thus only a qualitative
comparison is made, focusing on the development from 3-D waves to Λ-vortices. The
corresponding data of Bertolotti et al. (1992) are also represented by triangles and circles,
respectively. In figure 1, R = √

U∞x∗/ν, where ν is the fluid kinematic viscosity, and
x∗ is the physical streamwise distance. Note that R0 = √

U∞x∗
0/ν is the value at the

inlet position, which is 400 and 258 for ZPG and APG boundary layers, respectively.
In parabolized stability equations (PSE), x = x∗/δ0/(2 − βH), where δ0 = √

(νx∗
0/U∞)

is the initial thickness of the boundary layer.
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Figure 2. Mode amplitude evolution for K-regime transitions with ZPG (dashed lines) and APG (solid lines).

The development of the y-maxima of the selected Fourier amplitudes for both the
transitions of ZPG and APG are shown in figure 2. For the ZPG boundary layer, after the
initiation of a fundamental 2-D TS wave (1, 0) and oblique waves (1, 1), streak modes
(0, 1) progressively develop downstream, exceeding the amplitude of the fundamental
disturbance (1, 0) at approximately R = 680 (x ≈ 1156). A similar growth in the amplitude
of the streak modes and oblique modes is observed for the APG case, the amplitude
exceeding the initial characteristics at approximately R = 345 (x ≈ 224). The NPSE
simulation for the ZPG case becomes invalid at R = 728 (x = 1325), while the APG
simulation becomes invalid at R = 377 (x = 267).

2.2. DNS
The simulation of bypass transition in this paper is governed by the compressible
Navier–Stokes equations, which are listed in appendix A. The code was developed and
verified by Li, Fu & Ma (2008). The calculations were performed on the TianHe2 at the
GuangZhou Supercomputer Center.

A high-order finite-difference method was used in this case. The viscous terms were
discretized using an eighth-order central finite-difference scheme. The convection terms
were discretized using a seventh-order weighted, essentially non-oscillatory (known as
WENO), scheme. For the time step, a third-order accurate Runge–Kutta method was used.

The mesh number (streamwise × wall normal × spanwise) is 1600 × 150 × 150, and
physical length of the computation zone is 400 mm × 40 mm × 120 mm, respectively. The
mesh was refined near the wall surface in the wall normal direction and was kept uniform
in the streamwise and spanwise directions. An example schematic of the mesh is shown in
figure 3.

The basic parameters in this case are shown in table 2, where Re0 is the unit Reynolds
number, T0 is the stagnation temperature and Te is the static temperature. The velocity and
temperature are normalized on the inlet free stream; lengths are normalized on 1 mm.
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Figure 3. Schematic mesh of DNS.

Ma Re0/m−1 Pr T0/K Te/K xb/mm xe/mm zb/mm ze/mm ω R0/mm

3.0 6 × 106 0.72 350 125.0 8 12 58 62 2.09 2

Table 2. The DNS parameters.

For boundary conditions, the inflow boundary is set as the laminar flow at x = 10 mm to
reduce the computational cost. Free stream parameters are applied at the upper boundary,
and a non-reflecting boundary condition is used for the upper and outflow boundary.
No-slip and isothermal conditions are specified at the wall surface, where Twall/Te = 5,
and the localized disturbance generated by blowing and suction is added at x ≈ 20 mm.
A periodic condition is applied in the spanwise direction.

An initial calculation of a laminar flow was specified as the initial flow. To generate
a localized wave packet, a disturbance was initiated at x = 10 mm from the inlet. The
function for the disturbance is given by (2.1)

vbs = A0 cos3(πx0) cos3(πz0) sin(−ω(t − ts)), ts < t < ts + 2π

ω
, (2.1)

x0 = x − (xb + xe)/2
xe − xb

, z0 = z − (zb + ze)/2
ze − zb

, (2.2a,b)

√(
x − xb + xe

2

)2

+
(

z − zb + ze

2

)2

< r0. (2.3)

Here, vbs is the blowing or suction velocity at the wall surface; A0 denotes the amplitude
of the disturbance, and is set to 0.05 for this case; parameter ts represents the start time of
the simulation, and is 0 for this case. The disturbance is only applied for a time of 2π/ω,
where ω is the disturbance frequency. The subscript ‘b’ denotes where the disturbance
begins and ‘e’ denotes where the disturbance ends; r0 is the radius of the circle where the
disturbance was initiated, and is 2 mm in this case.

2.3. Method of Lagrangian tracking of marked particles
In this paper, results are primarily based on marked particles which are followed
using Lagrangian tracking methods. Flow visualizations that are reconstructed from the
NPSE velocity field data are termed ‘NPSE visualization’ (Jiang et al. 2020a). A brief
introduction to the Lagrangian tracking method employed is given here.

The trajectory of a marked particle is also called a pathline, which is determined by
integrating (2.4) over real time,

V (X (t), t) = dX (t)/dt. (2.4)
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Figure 4. Lagrangian tracking of marked particles: (a) pathline; (b) tracking of a material surface consisting
a grid of particles; (c) streakline; (d) timelines.

A pathline provides information on the positional history of a specific particle, as shown
in figure 4(a). If a grid of particles is traced, the evolution of a material surface that is
comprised of the particles can be obtained, as shown in figure 4(b). A streakline provides
a more intuitive physical view than a pathline, because it consists of a series of fluid
particles that are repeatedly released from a fixed location. Figure 4(c) shows a streakline
at t = t6 which includes seven particles in succession. The position of each particle at t6
is calculated from (2.4) over a time interval [ti, t6], where the subscript i indicates the
release time of the particle. Timelines are lines connecting a series of particles released
from adjacent locations at the same time. A timeline pattern, similar to a hydrogen bubble
visualization, is shown in figure 4(d), which is generated by a series of periodically
released timelines. Streaklines can also be illustrated by connecting sequential particles
released from the same location, as illustrated by the dashed line in figure 4(d).

3. K-type transition with ZPG and APG

3.1. Numerical flow visualization
The typical pattern for the K-regime is characterized as peak and valley regions, with
structures of 3-D waves and Λ-vortices aligning in the streamwise direction. In order to
illustrate the structure development from a 2-D TS wave to a Λ-vortex, timelines were
initiated at a near-wall position, y = 1.71, with a spanwise range covering a whole peak
region. Figure 5(a) shows the evolution of flow structures for K-regime transition with
ZPG from x = 1011.2. The colour of the particles indicates the wall-normal distance
from the wall. Figure 5(a) clearly shows that a Λ-vortex appears at x ≈ 1250, well
downstream of a 3-D WWF. According to hydrogen bubble studies by Hama & Nutant
(1963), the deformation of the band of accumulated particles represents the deformation
of the vorticity field. The concentration of particles occurs initially at the front of the
2-D TS wave, then deforms laterally, creating a 3-D WWF, and finally evolves into the
legs of a Λ-vortex. Note that the tip of the Λ-vortex is observable in figure 5(a), rather
than as an ‘open’ Λ-shaped vortex, as observed in some investigations (Hama & Nutant
1963; Wortmann 1981; Lee & Wu 2008). There are several regions where the timelines
are strongly retarded, labelled with a K in figure 5(a), located near the bottom of the 3-D
WWF and the Λ-vortex. These low-speed regions are considered to illustrate the formation
of an incipient transition streak (Jiang et al. 2020a).

For K-regime transition with an APG, figure 5(b) shows a qualitatively similar timeline
pattern (initiated at x = 164.5), including the development of a Λ-vortex, albeit much
more intense and rapidly developing than the ZPG case. However, the back-swept HSL of
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Figure 5. Timelines initiated at y = 1.71 (≈ 24 % δ) for K-type transition with (a) ZPG, and (b) APG.
Particles released at x = 1011.2 and 164.5 for ZPG and APG, respectively.

the WWF is not observed, with the Λ-vortex appearing initially as a bow-shaped structure
at x ≈ 235, which seems to originate from a tilted transverse vortex tube upstream. Farther
downstream, the Λ-vortex develops into an Ω-shaped vortex, with its round tip moving
rapidly away from the main body, creating a Λ-vortex with an open tip.

Figure 6 shows two stages of flow structure development for both the ZPG and
APG cases illustrated by the deformation of a continuous timeline surface, similar to a
continuous hydrogen bubble pattern obtained experimentally. The surface is displayed in
greyscale, with the vertical location of the surface indicated by the scale to the right of
the images. For the ZPG case in figure 6(a), it is observed that the surface appears to
develop a new fold (labelled ‘2nd F’), which projects outward and above the portion of
the surface marking the WWF (corresponds to the first fold, labelled ‘1st F’). This second
fold corresponds to the HSL labelled in figure 5(a), where marked particles accumulate in
a back-swept delta shape. Figure 6(b) shows that as time progresses, the second fold moves
upward and develops into a Λ-shaped structure at t = 7.1T , corresponding to the Λ-vortex
that was observed and labelled in figure 5(b). Figure 6(b) also shows the development of
two streamwise vortices, labelled SV1 and SV2 near the legs of the Λ-vortices.

For K-regime transition with the APG, two stages of timeline surface development at t =
3.2T and t = 4.2T are shown in figures 6(c) and 6(d), respectively. The tilted transverse
vortex tube mentioned above is more clearly observed in figure 6(c), and is actually the
second fold of the surface wrapped by the first fold of a WWF, similar to the N-regime
transition in Jiang et al. (2020a). This second fold differs from that observed in the ZPG
case, in that it does not project outward and above the surface of the WWF. By the t =
4.2T stage, figure 6(d), the second fold develops into a Λ-shaped structure within the
amplified and lifting WWF. The HSL for the APG case develops closer to the wall with
a stronger transverse vorticity concentration (ωz). This is hypothesized as the effect of
the APG creating a more inflectional U( y) profile, and precipitating a stronger inviscid
instability. Above the Λ-vortex, the delta-shaped topology of the WWF is discernable.
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et al. 2020a) and (b) adverse pressure gradient.

Longitudinal rotation (labelled SV1 and SV2) and localized retardation (labelled LSS) of
the timeline surface are similar for the two cases.

Figure 7 shows the deformation of an initially flat material surface initiated at y = 3.83,
for the two transition cases at t = 1T . The black contour lines illustrate respective changes
in y height, and show the development and growth of 3-D waves. In figure 7(a), the
K-regime transition with zero pressure gradient, an upstream 2-D TS wave progressively
amplifies into an apparent 3-D wave, appearing at approximately x ≈ 1200. This 3-D wave
subsequently amplifies with its wave front (labelled P) lifting-up, accompanied by regions
of depression along and in front of the wave (labelled S1 and S2). For the K-regime
transition with APG, shown in figure 7(b), the deformation of the material surface is
similar to the case of the ZPG. As the 3-D wave develops downstream, a region of
depression (labelled S1) develops into a larger depression in front of the rising 3-D wave,
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Three-dimensional wave structure in boundary layers

labelled S2. These depressions appear to be caused by the downward sweep of fluid from
the outer layer due to the lift-up of the 3-D waves.

3.2. LCS
Understanding the behaviour of marked particles relies on the assessment of such
properties as vorticity distributions or detection of coherent vortices. In the present
study, LAE is applied to numerical and experimental flow data, to provide a simplified
understanding of the overall flow geometry, which can help assess the flow physics creating
the visualized patterns shown in § 3.1.

3.2.1. LAE
In this work, the identification method used to extract vortical structures is based on the
integral of enstrophy over a finite time interval of interest. We define the LAE as

LAEt1
t0(x0) :=

∫ t1

t0
|ω(x(s; x0), s)|2 ds, (3.1)

where x0 is the initial position of a specific fluid volume, which is subsequently tracked
from t0 to t1; x(t, x0) denotes the fluid trajectory starting at x0 at time t0; ω is the vorticity
along fluid trajectories defined as ∇ × u (u denotes the velocity); and |ω|2 is termed the
enstrophy.

According to Wu, Ma & Zhou (2006), the time evolution of the enstrophy is

D
Dt

(
1
2
ω2

)
= −ω · B · ω + ω · (∇ × a), (3.2)

where a = Du/Dt; and B is the surface deformation tensor. The first term of the right-hand
side of (3.2) is the vortex stretching effect, which is a critical kinematic mechanism in the
shearing process, and it is regarded as one of the most important keys to understanding
vortical flows. Vortex stretching is responsible for the cascade process in turbulence,
by which large-scale vortices become smaller and smaller with increasingly stronger
enstrophy (Wu et al. 2006). The second term of the right-hand side of (3.2) contains
the viscous effect. Thus, the LAE in (3.1) represents the combination of both inviscid
stretching effects and viscous effects occurring between time t0 and t1.

3.2.2. LAE-based structures in transitional flows
Figure 8 shows 3-D structures and 2-D contours identified using the LAE method, based on
the integral of the enstrophy (i.e. |ω|2) along fluid trajectories in K-regime transition with
ZPG. The fluid domain x0 is initiated at 1020 < x < 1270, 75 < z < 175 and 0 < y < 6.
To assure that the traced fluid domain x(t, x0) is within the geometry range of the PSE
data sets, a tracking time interval of [t0, t1] is set as [0, 0.34T].

Three-dimensional isosurfaces of LAE are extracted (LAE0.34T
0 = 1.56 s−1), as shown

in figure 8(a). The surface colours reflect the respective wall-normal position. The surfaces
clearly show the development from a 3-D wave-like structure into a Λ-shaped structure.
Prior to the appearance of a Λ-shaped structure, a tongue-shaped bulge appears (labelled
B), which is analogous to the ’triangular bulge’ observed in the transitional channel
flow investigated by Zhao et al. (2016). Structure B agrees with the back-swept HSL
of the WWF in figure 5(a), which is responsible for the second fold behaviour of
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Figure 8. The LAE for K-type transition with a ZPG: (a) 3-D isosurfaces based on LAE detection (LAE0.34T
0 =

1.56), coloured by wall-normal position; (b) contours of LAE in x–y plane at z = 114.7; (c) contours of LAE in
z–y plane at x = 1228, using the same colourbar as panel (b).

the timelines. Note that the tongue-shaped head (labelled C) of the Λ-vortex is different
from a conventional one. This is because the LAE field for the boundary layer represents
stretching caused by either a background field, or induced locally by the vortex itself. It
is known that there already exists transverse vorticity (ωz) in a boundary layer, which
cannot be distinguished in (3.1) from the transverse vorticity created by a developing
vortex within the boundary layer. Thus, an increased concentration of LAE near the
head of a Λ-vortex will be reflected by the isosurface of LAE initially manifesting as a
tongue-shaped structure.

The contours of LAE in an x–y plane at z = 114.7 (near the centreplane) and a z–y
cross-section at x = 1228 are shown in figures 8(b) and 8(c). The strongest stretching
is observed to occur at two locations: one is in the region labelled H in figure 8(b),
representing strong transverse stretching; the other is in two near-wall regions labelled L2
and R2 in figure 8(c), representing strong streamwise stretching, which appears coincident
with the regions labelled SV1 and SV2 in the timeline surface of figure 6(b). These
patterns are considered to be quasi-streamwise vortices reflecting the legs of a previous
hairpin (residing under the region labelled D in figure 8a). As time progresses, these legs
move toward the wall (R1 → D), with their inclination angle decreasing, and the head
of the Λ vortex moving upward from the main body. The behaviour of the enstrophy
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1.8, coloured by wall-normal position; (b) contours of LAE in x–y plane at z = 17; (c) contours of LAE in z–y
plane at x = 243, using the same colourbar as panel (b).

distributions from the regions E–F to G–H agrees with the wave–vortex development of
marked particles, as illustrated in figure 5(a).

For the APG transition, 3-D and 2-D contours identified using the LAE method are
shown in figure 9. The fluid domain x0 was initiated at 170 < x < 250, 12 < z < 36 and
0 < y < 6, focusing on the stage where the Λ-vortex develops from a 3-D wave structure.
The time interval was set as [0.3T, 0.7T] to assure the domain is within the geometry range
of the data set during the period.

Figure 9(a) shows the isosurface of LAE0.7T
0.3T = 1.8, again coloured by wall-normal

position. Compared with the ZPG case, the structure development from a 3-D wave to
a Λ-vortex is more rapid for the APG, with the Λ-vortex appearing to be inclined at
a steeper angle. It is worth noting that the isosurface of LAE is not the boundary of
vortices, but reflects the trajectory of the vorticity concentration over a specified period.
The deformation of the isosurface appears coincident with the deformation of the timeline
patterns (WWF → Λ-vortex) in figure 5(b). The warped head of a Λ-vortex is observed
in the C region, which is different from the of ZPG case. Jiang et al. (2020a) proposed that
the vorticity concentration and HSL at the border of the WWF are the result of a lifting
3-D wave, which further develops into a Λ-vortex. The visualized structures may represent

914 A4-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1023


X.Y. Jiang, D.W. Gu, C.B. Lee, C.R. Smith and P.F. Linden

150 200 250 300 350

40

60

80

x

z

A B C

Figure 10. Turbulent spot development using isosurfaces of λ2 criteria at non-dimensional times
t = 180, 270, 360 at Ma 3(from left to right), λ2 = −0.001.

Lagrangian-averaged shear layers developing in front of the WWF, where high vorticity
concentrations are present.

The feature of a warped head is also clearly shown in figure 9(b), which shows a stronger
transverse shear layer in front of the head region, leading to a downward sweep of the outer
flow. The multiple folding process of the timelines in figure 6 and the large depression (S2)
in figure 7(b) can be explained by this enstrophy concentration. In the near-wall region,
another concentration of LAE is observed, labelled K in figure 9(b), indicating high-shear
layers evolving close to the wall at this location. The observation of the lower vortices
agrees well with the study by Kloker & Fasel (1995), who pointed out the existence of a
‘lower inverted HSL’ in a decelerated flow with βH = −0.18.

Figure 9(c) shows contours of LAE in an end-view z–y section at x = 243, which shows
the presence of a pair of primary vortices near the wall (one is labelled E), as well as
small vortices above them (one is labelled D). The distribution of these vortices is similar
to those shown in figure 8(c) for the ZPG case. There is also a concentration of LAE
in the middle region, in accordance with the vortex head labelled C, indicating a stronger
spanwise and streamwise stretching process occurring for the APG case, as compared with
the ZPG case.

4. Turbulent spot in bypass transition

4.1. Development of the turbulent spot
The DNS was performed on a flat plate at Ma 3. A turbulent spot was generated by
introducing a localized disturbance on the wall surface near the leading edge. Figure 10
shows the development of a turbulent spot from a linear wave packet until nonlinear
breakdown. Time has been normalized by length 1 mm and free stream velocity. At
t = 180, the wave packet transports within a linear region, which is initiated by a small
point disturbance. Due to instability of the boundary layer, the wave packet becomes
3-D (labelled A). The first-mode wave transports fastest as an oblique wave, and the
second-mode wave is not important in this case. By t = 270, the wave packet has travelled
farther downstream, is of a larger amplitude (labelled B), undergoes a nonlinear growth,
and is close to breakdown. The wave packet propagates in both lateral and streamwise
directions. As the wave packet becomes more unstable, the rear wave grows more 3-D,
like a Λ structure (see the stage at x ≈ 250). By t = 360, the wave packet amplitude has
grown to a point of unstable breakdown (labelled C). Following the breakdown, a turbulent
spot develops as an arrowhead-shaped structure. The shape of the spot is consistent with
the typical structure described by Krishnan & Sandham (2006) and others.
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Figure 11. Timelines of wave packet development within the linear and nonlinear regions: (a) timelines
initiated within the linear region at x = 182, (b) timelines initiated within the nonlinear region at x = 270.
(See the supplementary movies 1 and 2 for the complete evolution.)

4.2. Timelines and material surfaces
To examine the details of the spot development, timelines are initiated in x = 182 and x =
270 to illustrate the timeline patterns within the linear and nonlinear regions. Figure 11(a)
shows the evolution of the wave packet within an early linear region (see supplementary
movie 1 available at https://doi.org/10.1017/jfm.2020.1023 for the complete evolution).
The colour of the points indicates the wall-normal distance. There are two wave fold
structures (labelled B and C), with an HSL forming between the two waves. As a result,
fewer particles are present in this position, e.g. at the centre of the wave packet z = 60, a
‘bubble-free heart-shaped’ region (labelled H) appears at x = 220–235 due to the HSL.
The ‘heart-shaped’ region caused by a sequential wave folds is analogous to the hydrogen
bubble visualizations shown in Acarlar & Smith (1987a) that are caused by the induced
flow of two sequential hairpin heads. In the region between x = 202–214, timelines show
a high-speed streak (HSS) developing on the centreline, accompanied by two tilted LSS
to either side of the centreline. The HSS just follows an LSS caused by the wave fold B,
which creates a squeezing effect at position x = 216. Another wave fold is generated at
this location, which causes the wave packet to grow in the streamwise direction.

The nonlinear development of the wave packet is shown in figure 11(b), which is close
to the breakdown region. Here, the timelines are initiated at x = 270 and z = 42–74. An
apparent Λ-vortex is observed in the middle of the packet, which causes particles to roll
up near the location of the hairpin legs. Two LSS appear at the rear of the wave packet,
which looks markedly similar to conventional LSS observed in a turbulent boundary layer.
However, these LSS are clearly observed to develop from a weak wave structure (region
labelled A in figure 11a), and not from the presence of vortices. The particles between the
two wave folds move toward the edges between the LSS and HSS, where an HSL develops
(see supplementary movie 2 for the complete evolution).

Figure 12 shows the evolution of material surfaces in proximity to the spot at different
wall-normal distances, i.e. y = 2.4 and y = 0.98. The contour colours (with contour lines)
show the distance from the wall surface. Within the upper material surface at y = 2.4,
the influence of the spot appears as a pair of oblique waves due to the 3-D instability.
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Figure 12. The evolution of material surfaces initiated at y = 0.98 and 2.5: (a) t = 194; (b) t = 209;
(c) t = 224. (See the supplementary movie 3 for the complete evolution.)

During the development, an apparent 3-D wave appears within the middle of the packet
(labelled A). For the material surface initiated at y = 0.98, 3-D waves also form close to the
wall, labelled as B in figure 12(b). By t = 224, figure 12(c) shows that for the material sheet
at y = 0.98 three 3-D waves align into a streamwise pattern, which has the appearance of
an LSS. This pattern is similar to the O-regime transition in Jiang et al. (2020a).

4.3. LAE contours within the turbulent spot
Figure 13 shows the LAE for the turbulent spot, integrated from time t = 180 to t =
270. Figure 13(a) shows an isosurface of LAE270

180 = 20 s−1, coloured with wall-normal
distance. The upper layer at y ≈ 1.8 reveals a pattern of oblique waves, which is consistent
with the upper material surface pattern of figure 12. Figure 13(b) shows an isosurface of
LAE270

180 = 26 s−1, which appears as three parts. The first part (labelled A) is a near-wall
structure. This part distributes laterally due to the transverse vorticity which is large near
the wall surface. However, the head of structure A shows a streamwise concentration of
enstrophy, which is associated with LSS within the near-wall region, whose presence were
shown previously in figure 12(c). The second part (labelled B) is a Λ-shaped structure,
which is at a wall-normal distance y ≈ 1.5. The nearby fluid particles rotate around the
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Figure 13. The LAE (LAE270
180) for a turbulent spot: (a) 3-D isosurfaces of LAE (LAE = 20), coloured with

wall-normal position; (b) 3-D isosurfaces of LAE (LAE = 26); (c) contours of LAE in x–y plane at z = 65;
(d) contours of LAE in z–y plane at x = 163. The same colourbar applies for panels (c) and (d).

centreline of the legs of a Λ-vortex, which agrees with the behaviours of timeline particles
in figure 11. The third part (labelled C) shows two streamwise vortices in front of the
Λ-shaped structure, with the mechanism for their formation being unclear.

Figure 13(c) shows the contours of LAE in the x–y plane at z = 65, as there is no special
structure on the centreline z = 60. The main LAE contours concentrate at y ≈ 1.0 ∼ 1.5
(labelled D), which is consistent with the Λ-vortex structure shown by figure 13(b). The
contour lines are weakly inclined at a small angle in the streamwise direction, which
means the Λ-vortex has a weak lift-up influence on the nearby fluid particles. An apparent
interface is observed at y ≈ 1.7, appearing as a wave-like undulation. This interface
separates the strong mixing zone (D) from the non-mixing zone (N). Figure 13(d) shows
the LAE contours in the z–y plane at x = 163. The structure labelled E is one leg of a
Λ-vortex, while the hump structure near the wall surface (labelled F) is an LSS formed by
3-D waves, as was also shown by figure 12(c).

5. Turbulent boundary layer

5.1. Description of data set
The experimental data set used in this study was obtained using tomographic particle
image velocimetry (Tomo-PIV), which is the same as Jiang et al. (2020b). A brief
introduction of the experiment is given here. The experiment was performed in the Peking
University water tunnel (PUWT), which is an open-surface recirculating water channel
with a cross-section of 0.4 m × 0.4 m and length of 6 m. The tunnel free stream velocity
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Figure 14. Experimental set-up for Tomo-PIV (Jiang et al. 2020b).

range is from 0.1 to 1.3 m s−1, with a turbulence level of 0.77 % for tunnel velocities of
0.1 to 0.3 m s−1. The plate has a chord length of 1.8 m, a span of 0.8 m and a thickness of
15 mm. The flat plate was mounted vertically on the centreline of the tunnel at zero angle
of attack. A trailing flap was mounted at the end of the plate to introduce circulation and
thus adjust the stagnation point on the leading edge. There would be a separation bubble at
the tip of leading edge without using a flap. Adjusting the trailing flap to a suitable angle
caused early boundary layer transition to turbulence at x ≈ 400 mm. This is similar to
using a trip wire to initiate transition. Hydrogen-bubble timelines visualization was used
to monitor the flow state during the adjustment process, starting from a laminar flow. The
angle of the flap was gradually reduced until intermittent flows with random LSS began to
appear in the hydrogen bubble pattern.

The free stream velocity employed for Tomo-PIV was approximately 0.17 m s−1,
and the distance, xd, from leading edge to the centre of the measurement region was
502 mm. The Tomo-PIV configuration is shown in figure 14. Four high-speed cameras
(Photron FASTCAM SA4) with a resolution of 1024×1024 pixels were used, in a
cross-configuration arrangement. The cameras are fitted with Nikon lenses of 200 mm
focal length. The Tomo-PIV sampling frequency was 500 Hz, i.e. time increments �t+ ≈
0.42 viscous time units. Illumination was provided by a high-speed laser generator from
Beijing ZK Laser, DCQ-30Q, a single-cavity double-pulse laser system with a beam
wavelength of 527 nm. The four camera/laser system was synchronized using a LaVision’s
PTU timing controller. The mean diameter of the tracing particles is 11 μm. Experiments
were conducted at a particle image density of 0.098 particles per pixel.

Volume self-calibration (Wieneke 2008) was used on the preprocessed particle images.
Volume reconstruction was achieved by sequential motion tracking enhancement (known
as SMTE) (Lynch & Scarano 2015). The reconstructed volume was 1041 × 1048 × 187
voxels. A multipass approach of four steps was carried out for the volume correlation,
and the interrogation volume size for the final pass was 16 × 16 × 16 voxels with a 75%
overlap. The spatial resolution was 12.52 wall units, with grid spacing of 3.13 wall units.
As a final step, a Gaussian smoothing filter of 3 × 3 × 3 subvolume (2.3 wall units) was
applied to the velocity data. Proper orthogonal decomposition analysis was finally applied
to the smoothed velocity data sets, and the first four leading-order proper orthogonal
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Figure 15. (a) Turbulent boundary layer mean velocity profile plotted on log–linear coordinates (Jiang et al.
2020b). Fitting curves using model of Musker (1979): κ = 0.41; B = 5.0. (b) Variation of friction velocity
calculated by fitting the mean velocity profile. Here x∗ is the physical streamwise distance relative to the
calibration centre of the Tomo-PIV measurement.

decomposition modes are extracted for noise removal and the extraction of higher modes
(Wu 2014; Deng et al. 2018).

Based on 3400 frames of velocity field obtained from the Tomo-PIV data at a sampling
rate of 500 Hz, the mean turbulent boundary layer velocity profile obtained from the
Tomo-PIV data is shown in figure 15, compared with a universally fitted curve for turbulent
boundary layers according to the model of Musker (1979). The friction velocity is obtained
by fitting the curve of Musker (1979) to the experimental data. An iterative optimization
procedure based on a gradient descent algorithm was used for the fitting process. The
result gives an average of uτ = 0.0104 m s−1, with a root mean square variation of
1.77 × 10−4, as shown in figure 15(b). The average friction velocity was used to normalize
the coordinate and time parameters in this study.

5.2. Flow visualization
Figure 16 shows plan-view timeline patterns for LSS. The LSS were identified by tracing
the peak of the timelines with a narrow or elongated retardation region, as was identified
in the literature (Kline et al. 1967; Kim, Kline & Reynolds 1971; Smith & Metzler 1983).
The plan-view timelines were generated at y+ = 27. The figure shows that the timelines,
which flank the low-speed region, appear to temporally intersect and crimp, as shown in
the regions labelled A and B in figure 16, which appear similar to the pattern labelled
LSS1 in figure 11(b). Figure 16 also illustrates two phenomena: (i) the locations of the
LSS are adjacent to the locations of higher wall-normal position; and (ii) the flank of the
LSS is usually the most unstable region that initiates the breakdown of the LSS pattern,
by attracting or repelling neighbour particles.

In order to further assess 3-D behaviour of an LSS in a turbulent boundary layer and its
relationship to a 3-D wave and hairpin vortices, the LSS in figure 16 was further examined.
Figure 17 is an oblique view of the development of vertical material sheets initiated
in the z–y plane at x+ = −416 from t+ = 0–32 at time intervals of t+ = 8. These 3-D
representations of the material sheet evolution (within a cross-section) show clearly that
near-wall fluid moves upward (labelled L) in a region of an LSS, flanked by the movement
of outer region fluid downward at the sides of the streak (labelled S), as indicated by the
yellow arrows. As shown in figure 17, as time progresses the fluid in the LSS regions
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Figure 16. Timelines initiated at y+ = 27 at t+ = 0. The colour contours indicate the wall-normal position of
the timeline surface.

(e.g. regions labelled L1, L2, L3) develops into bulge structures at a downstream position
(labelled A, B, C), creating apparent inflectional profiles, which is analogous to the typical
bursting behaviour observed by Kim et al. (1971). The inflectional region moves away
from the wall, creating the same type of kinking behaviour observed in the hydrogen
bubble visualizations of Hama & Nutant (1963). According to simulations of early (Jiang
et al. 2020a) and late (Zhao et al. 2016) transitional flow, a bulge is present before the
development of hairpin-like structures, which indicates the bulges may be 3-D structures
within the boundary layer. In the region labelled C in figure 17 (corresponding to the A
region in figure 16), a bulge appears to rotate at the flanking boundaries (labelled R) and
begins to roll up into what is interpreted as counter-rotating streamwise vortices.

The evolution of x–z material surfaces, initiated at a series of y locations, and spanning
the region −133 < z+ < 74 where LSS appear, is shown in figure 18. As illustrated, these
surfaces undergo significant transverse warping, revealing substantial spanwise variations.
The evolution of the ‘peak-valley’ patterns reflected by the deformation of the initially
planar material surfaces shows strong movement upward, away from the wall, revealing
a lift-up behaviour (labelled L1 and L2), which is consistent with the behaviour of the
vertical material surfaces shown in figure 17. The lift-up behaviour initiates near the wall,
and progressively develops a 3-D wave-like pattern. Note that two new kinks appear to
the sides of the two main peaks within the near-wall region (indicated by arrows labelled
L3 and L4 on figure 18c), which destabilize the LSS, indicating the flank of LSS is most
unstable.

5.3. LAE contours within the turbulent boundary layer
Figure 19 shows LAE contours in the x–z and z–y planes, and the identified Lagrangian
vortex boundaries via isosurfaces of LAE, in the region adjacent to the location of LSS.
Two integral intervals with the same time span were applied in computing LAE, i.e.
t+ = [0, 40] and t+ = [10, 50]. Figures 19(a) and 19(b) are contours of LAE40

0 at y+ = 17
and x+ = 104, respectively, with isosurface of LAE40

0 = 4500 s−1 being superimposed
on figure 19(a). Two apparent vortices are detected at z+ ≈ 65 and z+ ≈ 100, which are
located to either side of the L2 of figure 18. The vortex core to the right (marked B in
figure 19a) is almost twice the LAE value as that of vortex core A. This means that the
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Figure 17. Temporal evolution of vertical material sheets in z–y plane initiated at x+ = −416 from
t+ = 0–32. Vertical material sheets in the z–y plane are released at time intervals of t+ = 8.
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Figure 18. Evolution of material surface initiated at y+ = 22, 32, 42, 52 and 62: (a) t+ = 0; (b) t+ = 20;
(c) end-view of panel (b). The initial range of the surfaces: −133 < z+ < 74; −372 < x+ < −74.

vorticity is more concentrated on the right-hand side of the streak. Note that vorticity
concentrations in regions labelled C and D in figure 19(b) are considered to be weak,
which is closely related to the lift-up of streak L1 of figure 18(c).

Figures 19(c) and 19(d) show the contours of LAE50
10 for the same planes as figures 19(a)

and 19(b), taken �t+ =10 after figures 19(a) and 19(b). The streamwise structures
shown in figure 19(c) are isosurfaces of LAE50

10 = 4500 s−1, which evolve from the main
structures shown in figure 19(a), though with some deviation from their previous locations.
A comparison of figures 19(a) and 19(c) suggests a persistence and dominance of the right
vortex B after �t+ = 10, which may explain the new lift-up of L4 in figure 18(c) and the
rotation C in figure 17. Two LAE concentration regions in figure 19(c), labelled C and D
at z+ ≈ −156 and z+ ≈ −83, seem to develop from the weaker regions within the dashed
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Figure 19. Contour of LAE in a turbulent boundary layer: (a) contours of LAE40
0 at y+ = 17, superimposed

with an isosurface of LAE40
0 = 4500 s−1; (b) end-view contours of LAE40

0 at x = 104; (c) contours of LAE50
10 at

y+ = 17, superimposed with an isosurface of LAE40
0 = 4500 s−1; (d) end-view contours of LAE50

10 at x+ = 104.

circles in figure 19(b). Note that regions D and E develop on the left and right flanks of the
LSS labelled L1 in figures 17 and 18.

The 3-D evaluation of the tomographic timelines demonstrates that the LSS is closely
associated with 3-D wave behaviour (figure 16), which is similar to the pattern shown
for the transitional boundary layer (figure 5) and bypass transition (figure 11). The
spatio-temporal deformation of an advected material surface (figure 18) also reveals a
3-D wave behaviour of the LSS, with the subsequent breakdown resulting in ejections
and sweeps associated with the bursting process. The quasi-streamwise vortices detected
using 3-D LAE criteria shown in figure 19, are identified as the roll up occurring at the
high shear interface of 3-D waves on a streak, which are hypothesized to be generated by
the amplification and breakdown of the 3-D wave behaviour of the LSS.

6. Discussion

The presence of an APG causes the flow structure to develop more rapidly than for a
ZPG case. It is well known that bursting activity increases in an APG turbulent flow, and
the advection of hairpin vortices (particularly the legs) relative to the wall is decelerated
by an APG (Kline et al. 1967; Smith et al. 1991). However, it is difficult to determine a
quantitative relationship for the differences and similarities between flows of an APG and
a ZPG. Based on the results of the LAE, an APG promotes the development of 3-D waves,
enhances the vorticity concentration near the boundary of the waves, which facilitates
the breakdown of the transitional flows. As is mentioned in § 3.2, LAE represents the
averaged effect of both inviscid stretching effects and viscous effects during the time of
interest. Viscous effects are the most important in the inner regions near the wall, having
a significant role in dissipation. The trailing legs of the hairpin vortex move progressively
down toward the surface where they will either dissipate (for weak legs), or to provoke an
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eruption of fluid and/or vorticity away from the wall (for strong legs). However, above
the inner viscous layer, flow evolution is primarily inviscid, with wave/vortex–vortex
interactions (Hall 2018) and vortex stretching (Kline et al. 1967) occurring frequently.
A comparison between figures 8 and 9 shows that LEA concentrations are much stronger
for the APG case, which indicates a presence of stronger eruption activity. This will
inevitably precipitate a more active inner–outer (or viscous–inviscid) interaction within
the boundary layer, in a process similar to the autonomous cycle (Jiménez & Pinelli 1999)
or self-sustaining process (Waleffe 1997) in turbulent boundary layers. Compared with a
global adverse pressure gradient, transient local APGs are more common in transitional
and turbulent boundary layers. In the presence of an HSL or hairpin vortex, a local pressure
gradient is induced, which promotes a bursting process and regeneration of hairpin
vortices. Although turbulent spots were not observed in our turbulent study, figure 19
reveals that enstrophy concentrations in proximity to the wall are closely related to
streamwise vortex tubes in the turbulent boundary layer. However, the local concentrations
of high levels of enstrophy are coincident with turbulent–turbulent spots in Wu et al.
(2017). This suggests that there is connection between turbulent spots and streamwise
vortices in a turbulent boundary layer, and that flow structures primarily originate from
the wall.

One commonality between transitional and turbulent boundary layers is the appearance
of LSS, as shown in figures 5, 11 and 16. The evolution of timelines for a turbulent spot
indicated the development of Λ-vortices and LSS structures during the propagation of
the wave packet. In figure 11(a), a ‘bubble-free heart-shaped’ region occurs within a HSL
between two waves, which was also shown by Acarlar & Smith (1987a) to appear between
a sequence of hairpin heads. In the present study, the HSL is caused by a sequence of wave
folds within the wave packet, which also represents folding behaviours of the wave front
similar to K-regime transition shown in figure 5 and those shown in Jiang et al. (2020a).
In figure 13(b), a Λ-vortex structure is observed to develop prior to the breakdown of the
wave packet, which is similar to the observation of Wu et al. (2017). They pointed out that
a transitional turbulent spot originates from a Λ-vortex (and spanwise vortex filament)
rather than a streak, but that streaks contribute to the growth of a spot. But in the present
study, both the Λ-vortex and LSS are found to develop from a 3-D wave packet itself. In
figure 11, two kinds of LSS are labelled: an LSS1 that develops from an oblique wave,
and an LSS2 that is formed between the rotational legs of a Λ-vortex. Near the wall
surface, the LSS structure consists of several 3-D waves (labelled C in figure 12c) (see
also the supplementary movie 3), similar to the hypothesis of a SCS in Lee & Wu (2008).
Based on the visualization results and LAE images (figures 11–13), we observed that an
LSS, Λ-vortex and streamwise vortices originate from the deformation of a wave packet.
Thus, the final breakdown of the packet is hypothesized to be caused by the interaction
between vortices and LSS, and that turbulent spots form in a way of lateral and streamwise
regeneration of vortices similar to Haidari & Smith (1994).

As a middle course between K-regime transition and turbulence, bypass transition
holds similarity for both of the flows. Based on the results of the flow visualization and
LAE distributions, the development of a 3-D wave and its underlying vortex dynamics
are qualitatively the same for K-regime transition (ZPG and APG cases) and bypass
transition. Here, a wave-induced model is proposed to describe the process. As a generated
3-D wave travels downstream at a slower speed than the free stream velocity, it moves
upward causing a retardation of the outer fluid. This deflection of the outer fluid results
in inflections in streamwise and transverse velocities, leading to the development of a 3-D
inflectional profile, as depicted in Smith (1984). Note that a tongue-shaped or triangular
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bulge (corresponding to an initial LSS) appears in the near-wall region at this stage.
The ejections and sweeps that are stimulated by the 3-D wave lift-up will create a high
vorticity concentration (or HSL), which subsequently breaks down, rolling up into discrete
hairpin or Λ-vortices. This process is similar to the advected instability caused by the 3-D
separation from a hemisphere or a transverse fluid injection from the wall (Acarlar & Smith
1987a, b; Sabatino & Rossmann 2016). At this stage, another kind of LSS that is produced
by the induction of hairpin vortices becomes dominant in timeline visualizations.

With the development of hairpin vortices, a stronger viscous–inviscid interaction occurs,
leading to the breakdown of the 3-D wave packet as well as the regeneration of hairpin
vortices (Zhou et al. 1999). As mentioned above, an interaction between vortices and
LSS, in a way similar to the self-sustaining process of Waleffe (1997), leads to either a
turbulent spot or quasi-streamwise vortices. The spot inception mechanism is by systematic
generation of secondary and subsidiary vortices, initiating lateral spreading of the flow
deformations, as shown by extensive hydrogen-bubble visualization in Haidari & Smith
(1994). The quasi-streamwise structures in the near-wall region (such as those shown
in figure 19) indicate the presence of legs or streamwise vortices generated during
the development of a hairpin vortex, which agrees with the LAE results shown in
figures 8, 9 and 13. Although not shown in this paper, the regeneration and interaction
of hairpin vortices also produces hairpin packets, superstructures and very large-scale
motions within the outer layer (Adrian 2007; Marusic & Monty 2019). The presence
of hairpin packets, which originate from the legs of fragmented Λ vortices, is found
to be instrumental in the breakdown during bypass transition (Wu & Moin 2009). The
wave-induced model provides a logical bridge between the transitional and turbulent
boundary layers, employing the viscous–inviscid mechanism within the framework of 3-D
wave packet behaviour to explain the observed visualized flow patterns during the flow
structure development.

It should be noted that the method of LAE is helpful in revealing the flow physics behind
observed visualization patterns. This is different from the method of LAVD, in which a
spatial average of vorticity is subtracted at each time step. In the case of wall-bounded
shear flows, the vorticity subtraction or deviation may underestimate/overestimate shear
strength below/above a certain wall-normal level. The LAE measure may be a superior
metric in those cases, since one never observes the mean in an instantaneous snapshot
and the LAE field computed within the boundary layer reflects stretching caused by either
a background shear field or induced locally by the vortex itself. The isosurface of the
LAE may not exactly coincide with vortical structures in the boundary layers. However,
Lagrangian-averaged vorticity intensity represented by LAE is able to provide a picture
that may illustrate regions where the presence of vortical structures are highly probable.
Similar to other vortical identification schemes (Chong et al. 1990; Jeong & Hussain 1995),
the method of LAE is inevitably hampered by an arbitrariness in the selection threshold,
thus further effort is required to investigate the enstrophy dynamics revealed using this
technique.

7. Concluding remarks

In the present study, both transitional and turbulent boundary layers are investigated
using Lagrangian tracking methods. The transitional flows investigated includes K-regime
transition and bypass transition. Flow structures in K-regime transition with a ZPG and
an APG (Hartree parameter βH = −0.062) are first examined using timeline and material
surface visualization synthesized from data sets obtained using NPSE. The underlying
mechanism that gives rise to the deformation of the material surfaces is also studied
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using the method of LAE. A comparative study shows that the development process of
structures in the APG case is markedly similar to that in a non-gradient (Blasius) boundary
layer, i.e. 3-D wave structures progressively develop into Λ-vortices, accompanied by
multiple folding wave behaviour. However, the structures in the APG flow are more
complex and evolve much more rapidly. There are stronger quasi-streamwise vortices that
develop beneath the legs of the primary Λ-vortices in the APG case, which suggests
that these vortex legs may precipitate a more active inner–outer (or viscous–inviscid)
interaction within the boundary layer. Due to more inflectional boundary layer profiles,
a more violent downward sweep behaviour occurs initially for an APG case, indicating
a stronger transverse shear layer developing in front of a warped vortex head. Once a
Λ-vortex appears in the APG boundary layer, it is stretched and moves rapidly upward at
a steeper inclined angle. It is hypothesized that the amplification and lift-up of a 3-D wave
causes the development of high-shear layers at the edge of the WWF, which further evolve
into Λ-vortices. These 3-D waves, are hypothesized to have their origin in the near-wall
flow, creating an interfacial shear layer with the higher-speed outer fluid, similar to SCS
(Lee & Wu 2008; Lee & Jiang 2019; Jiang et al. 2020a).

For bypass transition, the development of a turbulent spot is calculated on a flat plate at
Ma 3 using DNS. Timeline visualization is applied to show both the linear and nonlinear
development of wave packets. Within the nonlinear region, both Λ-vortices and LSS are
observed. The breakdown from a wave packet to a turbulent spot is hypothesized to be the
result of the growth of a Λ-vortex due to interaction between the Λ-vortex and the oblique
waves. The LSS near the wall consist of 3-D waves, which are similar to a solition-like
coherent structure. The near-wall 3-D wave structure is observed to be the initiator of
vortical structures by bypass transition, and plays an important role in the breakdown of
wave packets into a turbulent spot.

The 3-D evaluation of the timelines synthesized from a Tomo-PIV data set demonstrates
that near-wall fluid moves upward in the centre of an LSS, flanked by the downward
movement of outer region fluid at the sides of the streak. The LSS in a turbulent boundary
layer appear markedly similar to the results of the transition studies, especially the bypass
transition. The present results suggest that an LSS in a turbulent boundary layer may be
the result of the development of 3-D wave behaviour. The streamwise vortices observed
in our studies are hypothesized to be the result of the amplification and breakdown of
the 3-D wave behaviour of the LSS. The similarity of the structures and development
in the present transitional and turbulent boundary layer studies supports the concept that
the amplification of 3-D waves, developing into vortical flow structures, is a promising
scenario for the origin of turbulence production.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1023.
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Appendix A. Governing equations of DNS

∂

∂t
U + ∂

∂x
f1 + ∂

∂y
f2 + ∂

∂z
f3 = ∂

∂x
V1 + ∂

∂y
V2 + ∂

∂z
V3. (A1)

U = [ρ, ρu, ρv, ρw, E]T . (A2)

f1 =
[
ρu, ρu2 + p, ρuv, ρuw, u(E + p)

]T
. (A3)

f2 =
[
ρv, ρvu, ρv2 + p, ρvw, v(E + p)

]T
. (A4)

f3 =
[
ρw, ρwu, ρwv, ρw2 + p, w(E + p)

]T
. (A5)

V1 =
[

0, σ11, σ21, σ31, uσ11 + vσ21 + wσ31 + k
∂T
∂x

]T

. (A6)

V2 =
[

0, σ12, σ22, σ32, uσ12 + vσ22 + wσ32 + k
∂T
∂y

]T

. (A7)

V3 =
[

0, σ13, σ23, σ33, uσ13 + vσ23 + wσ33 + k
∂T
∂z

]T

. (A8)

p = 1
γ Ma2 ρT, E = ρ(CVT + V 2/2), k = Cpμ

Pr
. (A9a–c)

Cp = γ CV , CV = 1
γ (γ − 1)Ma2 . (A10a,b)

σ11 = 2μ
∂u
∂x

− 2
3
μdiv(V ), σ22 = 2μ

∂v

∂y
− 2

3
μdiv(V ). (A11a,b)

σ33 = 2μ
∂w
∂z

− 2
3
μdiv(V ), σ12 = σ21 = μ

{
∂u
∂y

+ ∂v

∂x

}
. (A12a,b)

σ13 = σ21 = μ

{
∂u
∂z

+ ∂w
∂x

}
, σ23 = σ32 = μ

{
∂v

∂z
+ ∂w

∂y

}
. (A13a,b)
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