16A08, 16A46, 18E40

BULL. AUSTRAL. MATH. SOC. VOL. 11 (1974), 425-428.

A characterization of left semiartinian rings

Jonathan S. Golan

In defining the torsion-theoretic Krull dimension of an associative ring R we make use of a function δ from the complete lattice of all subsets of the torsion-theoretic spectrum of R to the complete lattice of all hereditary torsion theories on R-mod. In this note we give necessary and sufficient conditions for δ to be injective, surjective, and bijective. In particular, δ is bijective if and only if R is a left semiartinian ring.

Throughout the following R will always designate an associative (but not necessarily commutative) ring with unit element and R-tors will denote the complete lattice of all hereditary torsion theories on the category R-mod of unitary left R-modules. If $\tau \in R$ -tors, we denote by T_{τ} the class of all τ -torsion left R-modules, by F_{τ} the class of all τ -torsionfree left R-modules, and by $T_{\tau}(-)$ the τ -torsion radical. The smallest element ξ of R-tors is characterized by $T_{\xi} = \{0\}$; the largest element χ of R-tors is characterized by $F_{\chi} = \{0\}$. If M is a left R-module, we denote by $\chi(M)$ the largest element of R-tors relative to which M is torsionfree.

If $\tau \in R$ -tors, a nonzero left R-module M is said to be τ -cocritical if and only if M is τ -torsionfree while M/N is τ -torsion for every nonzero submodule N of M. A nonzero left R-module M is said to be cocritical if and only if it is $\chi(M)$ -cocritical. The elements

Received 23 August 1974.

425

of *R*-tors of the form $\pi = \chi(M)$ for *M* a cocritical left *R*-module are called *prime* torsion theories [2]. The set of all prime elements of *R*-tors is called the *left spectrum* of *R* and is denoted by *R*-sp. If *M* is a left *R*-module, we define the *assassin* of *M* by

ass $(M) = \{\pi \in R \text{-sp} \mid M \text{ has a } \pi \text{-cocritical submodule}\}$.

A ring R is said to be *left semiartinian* if and only if every nonzero left R-module has a simple submodule.

In [1] we defined the function

 δ : subsets of *R*-sp \rightarrow *R*-tors

as follows: if $U \subseteq R$ -sp then

 $\mathcal{T}_{\delta(U)} = \{ M \mid \emptyset \neq \operatorname{ass}(M/N) \subseteq U \text{ for every proper submodule } N \text{ of } M \} .$

This function is used in defining a dimension for rings analogous to the classical Krull dimension for commutative rings. In this note we wish to point out some properties of the function δ itself. It is easy and straightforward to check that δ is a morphism of complete lattices and that $\delta(\emptyset) = \xi$.

PROPOSITION 1. The following conditions are equivalent:

- (1) δ is injective;
- (2) if $\pi \in R$ -sp then there exists a π -cocritical simple left *R*-module.

Proof. (1) \Rightarrow (2). If $\pi \in R$ -sp then $\delta({\pi}) \neq \delta(\emptyset) = \xi$ by the injectiveness of δ and so there exists a nonzero left *R*-module *M* which is $\delta({\pi})$ -torsion. In particular *M* has a π -cocritical submodule *M'*. If $0 \neq N$ is a proper submodule of *M'* then $\operatorname{ass}(M'/N) = {\pi}$ and so M'/N has a π -cocritical submodule. But M'/N is π -torsion and so we have a contradiction. Thus *M'* can have no proper submodules other than 0 and so *M'* is simple.

(2) \Rightarrow (1). Assume that $\delta(U) = \delta(U')$ for $U \neq U' \subseteq R$ -sp. Without loss of generality we can assume that there exists a $\pi \in U \setminus U'$. If *M* is a simple π -cocritical left *R*-module then $M \in T_{\delta(U)} = T_{\delta(U')}$ and so $\pi \in U'$ - a contradiction. Thus δ is injective. \Box

PROPOSITION 2. The following conditions are equivalent:

(1) δ is surjective;

(2) $\emptyset \neq ass(M)$ for every nonzero left R-module M.

Proof. (1) \Rightarrow (2). If δ is surjective then there exists a $U \subseteq R$ -sp for which $\delta(U) = \chi$. Therefore $\mathcal{T}_{\delta(U)} = R$ -mod which implies (2).

(2) \Rightarrow (1). Let $\tau \in R$ -tors and let $U = \bigcup \{ \operatorname{ass}(M) \mid 0 \neq M \in T_{\tau} \}$. Then $\emptyset \neq \operatorname{ass}(M/N) \subseteq U$ for every proper submodule N of $M \in T_{\tau}$ and so $\tau \leq \delta(U)$. Assume that $\tau \neq \delta(U)$ and let $0 \neq M \in T_{\delta(U)} \setminus T_{\tau}$. Then we have $0 \neq \overline{M} = M/T_{\tau}(M) \in T_{\delta(U)} \cap F_{\tau}$. Let $\pi \in \operatorname{ass}(\overline{M})$ and let N be a π -cocritical submodule of \overline{M} . Then $\pi = \chi(N) \geq \tau$. But $\overline{M} \in T_{\delta(U)}$ and so $\pi \in U$. Therefore there exists a π -cocritical left R-module $N' \in T_{\tau} \subseteq T_{\pi}$, a contradiction. Therefore we must have $\tau = \delta(U)$.

PROPOSITION 3. The following conditions are equivalent:

- (1) δ is bijective;
- (2) R is a left semiartinian ring.

Proof. (1) \Rightarrow (2). Let M be a nonzero left R-module. By Proposition 2, $\oint \neq \operatorname{ass}(M)$. If $\pi \in \operatorname{ass}(M)$ then by Proposition 1 there exists a simple left R-module N' which is π -cocritical. Moreover, Mhas a π -cocritical submodule N. Since N' is π -torsionfree, hom_R $(N', E(N)) \neq 0$. Since N' is π -cocritical and E(N) is π -torsionfree, any nonzero homomorphism $\alpha : N' \neq E(N)$ is a monomorphism. Since N' is simple, $N'\alpha \subseteq N$. Therefore M has a simple submodule. This proves that R is left semiartinian.

 $(2) \Rightarrow (1)$. If *M* is a nonzero left *R*-module then by (2), *M* has a simple submodule. Since all simple left *R*-modules are cocritical, this implies that $ass(M) \neq \emptyset$. If $\pi \in R$ -sp and *N* is a π -cocritical left *R*-module then *N* has a simple submodule *N'* which is also π -cocritical and so $\pi = \chi(N')$. By Propositions 1 and 2, δ is then bijective.

PROPOSITION 4. If R is a left semiartinian ring then δ^{-1} is defined by $\delta^{-1} : \tau \mapsto \{\chi(M) \mid M \text{ is simple and } \tau\text{-torsion}\}$. Proof. Let $\tau \in R\text{-tors and let}$ $U = \{\chi(M) \mid M \text{ is simple and } \tau \text{-torsion}\}$.

If *M* is a τ -torsion left *R*-module then so is *M/N* for every proper submodule *N* of *M*. If $\pi \in \operatorname{ass}(M/N)$ then there exists a π -cocritical submodule *M'/N* of *M/N*. Since *R* is left semiartinian, *M'/N* in turn has a simple submodule *M''/N* which is also τ -torsion and τ -cocritical. Then $\pi = \chi(M''/N) \in U$. Hence $T_{\tau} \subseteq T_{\delta(U)}$.

Conversely assume that M is a left R-module which is not τ -torsion. Then $0 \neq \overline{M} = M/T_{\tau}(M)$ and so \overline{M} has a simple submodule N'which is τ -torsionfree. This implies that $\chi(N') \in \operatorname{ass}(\overline{M}) \setminus \mathcal{U}$ and so $M \notin T_{\delta(U)}$.

References

- [1] Jonathan S. Golan, "A Krull-like dimension for noncommutative rings", Israel J. Math. (to appear).
- [2] Oscar Goldman, "Rings and modules of quotients", J. Algebra 13 (1969), 10-47.

Department of Mathematics, University of Haifa, Mt Carmel, Haifa, Israel.