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1. The lower radical of a module type. For a ring R with unit, the module type t(R) was
defined in [6] as follows: t(0) = 0; t(R) = d if every free i?-module has invariant rank;
t(R) = (c, k) for integers c, k ^ 1 if every free i?-module of rank < c has invariant rank, while
a free module of rank h ^ c has rank h+nk for any integer n ̂  0. The module types form a
lattice under the ordering 0 < (c, k) < d and (c'5 k') ^ (c, &) if and only if c' :g c and fc' | Ar.
Two of the basic theorems on types are:

A. [6; Theorem 2, p. 115] If R-*R' is a unit-preserving homomorphism, then
t(R') g t(R).

B. [6; Theorem 3, p. 116]

We recall that in the definition of the Kurosh lower radical (as modified by Sulinski,
Anderson and Divinsky in [10]) for a class M of rings, the class My is the homomorphic
closure of Jl, and for any ordinal f} > 1 the class J/p consists of rings R such that every non-
zero homomorphic image has a non-zero ideal in J/x for some a < /?. Then the lower radical
class defined by Jl is S£(M) = U^//p, taken over all ordinals /J. We note that, in fact [10;
Theorem 1, p. 420], $£{M) = Jla, where co is the smallest infinite ordinal. If we define
Fa = {R| t(R) <; a}, then, by Theorem A, {3~^v = STai. We further note that ST0 = {0} is
already (trivially) a radical class. We shall require the following lemma.

LEMMA 1. If an ideal I of a ring R has a unit, then R = / © / * , where I* is the annihilator
of I in R.

Proof. The Pierce decomposition relative to the unit of / clearly yields R = /+/*, and
since / has a unit this sum must be direct.

For use in the following theorem, and at several other points, we record the following:

CONSTRUCTION 1. Let {a,}ie^ be an arbitrary set of module types. By [1; Theorem 9,
p. 130] there exists for each / a ring JRf with t(Rt) = af. Let R be the direct sum

Note that if £ is infinite then R does not have module type (since it has no unit), but neverthe-
less every non-zero image has a non-zero ideal with type. This follows from the fact that if /
is a proper ideal of R then at least one i? ($7. Thus R\I has a non-zero ideal R + / / /
S Ri/Rinl, and, by Theorem A, rCR^ni ) ^ a,.

THEOREM 1. JS?(^a) = (^a)2 , and for a > 0,
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Proof. For the first statement it is sufficient to show that {3T^3 = [ST^1. Thus suppose
there exists i?e(^"J3) i?^(^"J2. Then, by definition, R has an image R with a non-zero
ideal 7e(ya)2

 DUt no ideal in (ST^^. Since 7e(^"a)2 it has a non-zero ideal JB{ST^^ = Ta.
Thus, by Lemma 1, / = / © / * . Let xe /and j>e.R; then x j e / so that xy = z+z* for some
zeJ and z*eJ*. But if e is the unit of/, this yields xy = exy = ez = ze/ . Similarly yxeJ,
so / is an ideal of .R, contradicting the condition that R should have no ideals from 9"v

To establish the second statement of the theorem, let R be the ring of Construction 1
with J infinite and all a, = a. Then R$2Ta but every non-zero image has a non-zero ideal /
with /(7)^ a. Thus

2. The lower maxit radicals. In [9] the module type was used to construct for a general
ring an invariant (called the " maxit " of the ring) which coincides with the module type for
rings with unit. In the present paper we shall sharpen the definition of [9] in the following
way: we shall extend the module type lattice to a lattice ofmaxits by permitting c and k in
(c, k) to take on values a> and 0 respectively, in addition to all positive integers. The order
in this extended lattice (and hence the lattice operations) is defined as for module types, noting
that c ^ oo for all c and k 10 for all k. We now define the maxit m(R) of a ring R as follows:

(i) Whenever it has module type, m(R) = t(R).
(ii) For all other rings, let iV be the set consisting of all modular ideals of R together

with i? itself; then m(R) = Um(it/7).
leW

REMARK 1. From this definition it follows that a ring R is a Brown-McCoy radical ring
if and only if m(R) = 0. This is clear since it is a Brown-McCoy radical if and only if it has
no modular ideals [8, p. 134]. But then m(R) = m(R/R) = t(0) = 0.

REMARK 2. On the other hand, since in the extended lattice such maxits as (co,k) are
now available, it is clear that m(R) = d if and only if there exists some I&iV such that
/(it/7) = d.

REMARK 3. From the definition of the maxit it is also clear that, if R is a homomorphic
image of R, then m(R) ^ m(R).

REMARK 4. It is easily seen that the method of proof of [9; Theorem 3.2, p. 131] can be

( n \ n

Y © Ri) = U m(Ri). This result will be extended (see Theorem 2) to
i / i

infinite direct sums or complete direct sums (to be written X]c©it().

For a given ring it, define

G(a) = {xa-x + ay-y + '£(xiayi-xiyi)} for all x.y.x.-.^eit. (1)
LEMMA 2. m(R) = U t(R/G(a)).

a&R

Proof. If / is a modular ideal of R, then there exists an identity a of R modulo /. Thus
G(a) £ / and from the natural homomorphism RIG(a) -»• it/7 and Theorem A, t{Rjl)
S t(RIG(a)). Thus m(R) = U /(it/7) ^ U t(R/G(a)).

IeW aeR
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But also G(a)eir; so we have the reverse inequality.
Let{aj}(/ = 1, 2 , . . . , ri) be a set of members of R, and write

b=t(-l)k+1 £ ah...aik. (2)
*=i d<...<i'fc

LEMMA 3. G(b) s f\ G(at).
i

Proo/. For a given i, let/be any polynomial in {a,} over the integers not containing a,
as a term. It is clear that f(a1...ai...an)—f(at... 1 ...an)eG(at), where " l " simply
indicates the deletion of any a, from any term. But it is easy to see from (2) that if 1 is sub-
stituted for Cj in b—at the result is zero. Hence b—a,eG(aj). Thus b is a unit modulo G(af)
for each i, and so is a unit modulo n<j(af).

PROPOSITION 1. (a) Ifm(R) = (c,k)for integers c,k^ 1, f/zen there exists an ideal I of R
such that <(/?//) = (c,k).

(b) If m(R) = (co, k), then for some infinite ascending chain of integers ct < c2 < ... there
exists a chain It => I2 =>... of ideals such that t(RIIi) = (cf, k).

(c) Similarly, if m{R) — (c,0), there is an infinite ascending chain {fcj of proper divisors

(d) Similarly, ifm(R) — (co, 0), there are ascending chains {cf} and{kt} and t(RfI^ = (c,, k,).

Proof, (a) Let m(R) = (c,k) for c,k^ 1. Choose one a, (if such exists) for which
t(RlG(qi)) = otj for each a, ^ (c,k). The set {aj so chosen is finite, say i = 1,.. . , n. Define b

n

by (2); then it follows from Lemma 3 and Theorem A that t(RIG(b))^ U /(/?/G(fl,)).
I

But, by Lemma 2, the right side of this inequality is m(R), and since by definition t(RlG(b) )
^ m(R), equality follows.

(b) If m(R) = (co, k), then we again have only a finite set kt \ k for which a choice at

exists with t(RIG(a,)) = (c(, fc() for some Cj. Now k is clearly the least common multiple of
the {fcj. Thus if 2>t is the ft defined by (2) for this set of {a,}, then, by the same argument as
in (a) above, fCR/G^)) ^ (c,k) for some c. But r(/?/G(6,)) < (co,A:), so we must have
/(.R/G^j)) = (t"!, &) for some Cj. Since wi(/?) = (co, k), there must, by Lemma 2, exist some 6'
such that t(RjG(b')) = (c\ k') for which c' > ct (of course with some k' | k). Defining, as in (2),
b2 = b1+b'-b1b', we have G(b2) s GibJnGib') so that t(RjG{b2)) Z (c1( kMc',k')
= (c',k). Thus t(R/G(b2)) = (c2,k) for some c2 > c^. The process clearly continues. It
is also clear that similar constructions exist for cases (c) and (d).

Let / be an ideal of R and a el. Write G/a) for the ideal of / defined by (1), restricting
*> y> Xi, yt to be elements of /.

LEMMA 4. G^a) = G(a)nl.

Proof. Clearly G,(a) s G(a)nl; so suppose that zeG(a)nI. Then z-aza = (z-za)
+(za—aza)eG,(a). But from zeG(a) and a e / it follows that azaeG,(q). Thus zeG^a),
and so G(d)n/cC,(ii).
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Let {Rj}jeJ be a set of rings. If either R = £ ® Rj or R = £ c ®i?,-, then from the natural
homomorphism R -»/?,• it follows, by Remark 3, that \Jm(Rj) ^ m(/?). Let a,- e Rj be the
projection of a e R, and write Gj = GRj (a,).

THEOREM 2. (a) / / .R = £ © /?;, i/ien m(R) = U

(b) If R= Y,c®R] and there exists aeR such that \Jt(RjlG}) = (co,k), (c,0), or (co,0),
then m(R) = d. Otherwise m(R) = U m{R,).

Proof, (a) Let ae£©.R,; thena = £ > ; . Thus G(a) = (f, ® Gj)0 (^ © Rj) and it is
n 1 \ 1 / \j>n I

easily seen that RIG(a)^Y,®RjlGj- F r o m Theorem B, it follows that t{RjG{a))
n 1

= U t(RjlGj) g U m(Rj). Since a was arbitrary, by Lemma 2, we have m(R) g U m(/?y)
1 jeJ JeJ

and hence equality.
(b) Let aG^c©jRj-; then again it is easy to see that G(a) = £e©(7y and

RIG(a) s £ c e RjIGj. From the projection RIG(a) -*• RJ/GJ we have t(RjlGj) g t(RjG(a)).
Thus, if \Jt(RjlGj) is not a module type, then t(RIG(a)) = d and so m(fl) = d.

Now if t(RjlGj) = 0 for all ; e / , then all Rj = G; and so R = G(a). If this is true for all
aeR, then, by Lemma 2, 0 = m(R) = Um(i?,).

Thus suppose for a given aeR we have Ut(RjlGj) = (c,k), so that all t{R}IG}) g (c,fc).
Then if Gj T4 i?;, by the matrix criterion for rings of given module type (see [1] or [6]), there
exist c+k by c and c by c+fc matrices Aj, Bj with elements in Rj such that

AjBJ-aJIc+k = 0 (modG,-) and BjAj-ajIc = 0 (modG,),

where we write ay/c for the diagonal matrix with a} on the diagonal (that is, a unit matrix
over Rj modulo Gj).

Let A = Y* © dj and 5 = £ e © 5; (note: insert a zero matrix whenever Gj = /?y). Then
clearly AB—aIc+k and BA—aIc= 0(modG(a)); so, by the matrix criterion for module type,
t(RIG(a))£(c,k). Thus m(R) =\Jt(RIG(a)) ^ \J I) t(RjlGj). By reversing the order of

a a JeJ

unions in the last expression, this yields m(R) g Um(Rj) and hence equality.
We recall that a class of rings is called hereditary if it includes all ideals of all of its

members.

THEOREM 3. The class Jtm = {R \ m(R) ^ a} is a hereditary class.

Proof. Let ReJ(a and ae I, where / is an ideal of R. Since m(R) ^ a, it follows that
t(RjG(a)) ^ a. The Pierce decomposition x = ax—(ax—x) shows that R = I+G(a). Thus
RIG(a) s 7//nG(o) and by Lemma 4 this equals 7/G7(a). From Lemma 2 it follows that
m(I) ^ a.

COROLLARY 1. If m(R) < d, then, for an ideal I of R, we have the following results,

(a) If I is Noetherian, it is included in the Brown-McCoy radical of R.
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(b) If I is commutative, it is included in the Jacobson radical of R.
(c) If I is Artinian, it is included in the nil radical of R.

Proof. Note first that, if / satisfies one of the conditions of (a), (b) or (c), then so does
every homomorphic image of /. Now, by Theorem 3, m(/) < d and, if m(I) ^ 0, then / has a
non-zero homomorphic image / with t(I) ^ m(/). But by [4; p. 32] if/ is Noetherian, and hence
by [4; Theorem 29, p. 71] if/ is Artinian, or by [2; p. 563] if/ is commutative, then t(I) = d,
contradicting t(I) ^ m{I). Thus m{I) = 0 and so / is a Brown-McCoy radical ring. Hence if
/ is commutative it is a Jacobson radical ring, or if it is Artinian it is nil.

THEOREM 4. 5£{Jl^) = {Jt^2 °nd is a hereditary radical class.

Proof. By Remark 3, J(x = (Jfa)i and, by Theorem 3, it is a hereditary class. Also any
nilpotent ring R is Brown-McCoy radical, so m(R) = 0 ?§ a. Thus it follows from [10;
Theorem 2, p. 420] that &(JQ = (JQ2. Now, by [3; Theorem 1.4, p. 29], the lower radical
of any hereditary class is hereditary, and so &{Jt^ is a hereditary class.

Although Jia may not in general be a radical class, the ideals / of R satisfying Ie Ma or
RIIeJ/a have certain maximal properties. We conclude this section by recording these
properties.

PROPOSITION 2. (a) Every ring R has an ideal I maximal relative to Ie Ma.

(b) IfR has an ideal I with m(J) = a, then it has an ideal maximal relative to this property.

Proof. To show that Zorn's Lemma applies, let {/,} be a chain of ideals with «(/) ^ a
(or = a in case (b)). Let / = U/;, so that, by Theorem 3, m(I) ^U/w(/(). Suppose m{I)% a
(or 56 a in case (b)). Then there exists some as I such that t(IIGj(a)) = /? $ a (or > a in
case (b)). Now ael and so asl{ for some /, in the chain. Writing Gt = G^ia), we obtain
from Lemma 4 Gt = Gj(a)n/,-, and, as in the proof of Theorem 3, //G/(a) = /;/Gj. Thus
t(IJGi) = /?, violating the definition of /,. Hence m(I) ^ a (or = a in case (b)) and so Zorn's
Lemma applies.

PROPOSITION 3. If R contains an ideal H such that t(R/H) = a, then it contains an ideal
maximal relative to this property.

Proof. If a = 0, then H = R satisfies the proposition. Thus suppose a > 0. To show
that Zorn's Lemma applies, let /T = U//; for a chain {H,} for which t(RIH,) = u. By
Theorem A, t(RjH) g t{RjH^ = a, and suppose t(R/H) = 0 < a. Thus p^ d and if /? = 0
then H = R. But for any H,, if a, is the identity of R modulo Ht, this means that a, belongs
to some Hj in the chain. Now a,tHj-, so Hj $ H, and hence # f £ Hj. But this is also
impossible, for then G{a^) £ H} and thus, since a^Hj, R^Hj.

We therefore suppose that /? = (c, k) and let a be an identity of R modulo H. As was
remarked in the proof of Theorem 2, the matrix criterion then requires the existence of c+k
by c and c by c+k matrices S and T such that

U=ST-aIc+k=0 (mod H) and V=TS-aIc = 0 (mod//).

Now there is only a finite number of elements in the matrices U and V, and since all are
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contained in H, they must in fact all be contained in some Ht of the chain. If at is the identity
of R modulo Hj, then aa(—aeH,. On the other hand, a is an identity of R modulo H, so
that aat—ateH and so is in HJt for some Hj in the chain. One of the two must be larger,
say T//2 H,. Then a is a unit of R modulo Hs, and since U,V=0 (mod Hj), we have
t{RjHj) g p, contradicting the definition of Hi. We conclude that t{RjH) = a, and so
Zorn's Lemma applies.

COROLLARY 2. For a a module type, ifm(R/H) = a. for some ideal H of R, then R contains
an ideal maximal relative to this property.

Proof. If a = 0, let H = i)Ht for a chain of ideals with m{RIH^ = 0. By Remark 3,
m(R/H) g m(R/Hi) = 0. Thus m(R/H) = 0, and so Zorn's Lemma applies. Thus suppose
that m(R/H) = a > 0. By Proposition 1 (or Remark 2 if a = d), there exists an ideal / 2 H
such that <(/?//) = a. By Proposition 3, we may assume that / is maximal relative to this
property. Suppose there could exist H^ => / such that m^R/H^ = a. By the same argument,
there would then exist ly 2 Hx such that tiRfl^ = a, violating the maximality of /.

3. Simple type radicals. Let iV be the set consisting of all maximal modular ideals of R,
together with R itself. Define m(R)=\}m{R\T), and write Jtx = {R|m(R) ^ a}. Then, by

_ lew
definition, J(a s M,,,.

LEMMA 5. W\(R\r) S m{R)for all ideals I of R.

Proof. If H\I is maximal in Rjl, then H is maximal in R. Since (J?//)/(/f//) s RjH, it
follows that m{Rj[) = \Jt{RjH), the union being taken over all Hs I; hence result.

LEMMA 6. If I is an ideal of R, then m(I) ^ m(R).

Proof. If / has no maximal modular ideals, then m(/) = 0 and the Lemma is satisfied
trivially. Now it is well-known that / / t is a maximal modular ideal of/if and only if Ht = Ir\H
for some maximal modular ideal H of R. Thus / $ H, so that R = I+H, and hence
//7/i S i?///. It follows that m(7) = \Jm{IjHx) g w(i?).

Let S/1 be the class of all simple rings, partitioned into 9'a = \Re9'\ m(R) = m(R) ̂  a}
and S/"a=Sf-£fa. One way to use this partitioning would be to consider ^(S^x). Since
ya £ J(a we have ^Sf(^a) £ Z£(Jt^. However, let Jf be the class of all zero rings (rings
with trivial multiplication: xy = 0 for all x, y in the ring) without minimal ideals. Note that
JV is non-empty since we can impose a trivial multiplication on any additive abelian group
without minimal subgroups (such as the additive group of the integers). Now it is known [3;
Theorem 1.15, p. 39] that, if a class °U is homomorphically closed and the class 'V is hereditary,
then "UnrT = 0 implies that i f ( ^ ) n ^ = 0. Clearly the class Jf is hereditary and {Sf^c\Jf
= 0, so that yHSP^rsJf = 0. On the other hand the zero rings are Brown-McCoy radical;
so Jf £ Jl^. Thus •27(5"a) is properly contained in if (.//a). We might ask the relation of
JS?(yj to ^ ( ^ a ) . However, these classes are not comparable: if R is a simple radical ring,
then ReSfa but R^SC(^~a); on the other hand, the ring of integers Ze^~d but has no minimal
ideals and so is not in
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The upper radical defined by this partition [5; p. 22] can, however, be used to charac-
terize Ma. Write <%{&"£ for the upper radical class defined by Sf"a. (Recall [5; p. 17] that

= {R | every non-zero homomorphic image

THEOREM 5. Jta = %{&"a) and is thus a hereditary radical class.

Proof. Let R eJ(a, so that m(R) = P ̂  a. Then, by definition, for any simple image
R/H we have m{RjH) s 0, and so R has no images in £/"a. Thus Ma £ ^l{9"^. On the other
hand, if Re<%(#"x) but R$J£X, then we would have m(R) = /?$ a. There would then exist
some maximal modular H such that m(RIH) = t(RIH)£ <x. Thus RjHeS^"a, contradicting
the definition of ^(5^). Hence Jl^, = ̂ {S/"^ and so is a radical class, and by Lemma 6 it is
hereditary.

We remark that, since ya £ Jta £ •/?„ for all module types a, it follows that %(2T^
c JS?(.y/J c J£a. The first inequality is always proper since every Ma contains all Brown-
McCoy radical rings. However, it is an open question whether or not Ma differs from &{M^
(or even from Ji^). Of course, trivially, Jid = ££(JtJ) = Md since J£d is the class of all rings.

We may also ask whether or not these radical classes differ for different a. There are a
number of open questions in this regard, but we may state the following:

1. If a. is a module type, then &(9~^ is non-zero, and ifct.±$, then &{2T^ ^SC(^fi).

Proof. We may assume that a $ /?. If a = d, then /? ̂  d and any field is in ^£{3~t) but
not in JSf(^). If a = (c,k), use the ring V= VCtC+k [1; Section 5, p. 221] (see also [6; Foot-
note 6, p. 130]) universal for rings of type a; then VeTa. Suppose that Ve&(3~p); then,
by Theorem 1, there exists a non-zero ideal / of V such that t(I) ^ p. But, aside from its unit,
Khas no elements which are even local identities. Thus V itself is the only ideal of V which has
type, and t(V)£p.

2. Since MQ is the class of all Brown-McCoy radical rings, Sf(Jt0) = J(o. Then,
since Mf, for any /? ̂  0, contains rings with unit, SC(J^Q) ^ <£{Jl£), /? # 0.

On the other hand, SC(Jffi) for /? ̂  d contains no fields, and, since J(d = £f(J?d) is the
class of all rings, <£(Jtd) ± Se(J(e), p±d.

3. For given a*0, iflta ¥= Mf, then if (M^) # Se(J(^.

Proof. We can assume that Mt $ Jfp. Thus there must exist some R with in(R) ̂  a
and m(R)$ ft. It follows that R has a simple image R with t(R) ^ a and t(R) ̂  /?. Hence
ReJfa, and, since it is simple, R$S£(M£).

4. When a = (c, A:) anJ j8 «= (c', &')> w//A k^k' {integers ̂ 0) O/K/ C, C' arbitrary {integers
^ 1, or one or both equal to to), then Jla # J{$ and so

Proof. We may assume that kjfk' (so A:' 5̂  0). If k •£ 0, there exists a simple ring R
[7; Theorem 2, p. 307] such that t{R) = (l,k) ^ a , $ 0. Thus Re^x, $jlf. If A: = 0,

CO

we may use Construction 1 with R = £ © i ? i ( where the J?( are simple with /(/?,) = (1,/).
_ 1 _

Then m{R) = (1,0) and so again ReJ?a,
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5. The only remaining case is a = (c, k), ft = (c', k), with c # c', say c' < c. It is clear
that if a simple ring exists for which t(R) — (c, 1), then an argument similar to those of the
preceding paragraph would show that J{a # J(s. However, the existence of such rings for
c> 1 is an open question. A further question, in this case, is the following: even if J/a = Jt9,
does it follow that
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