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1. The lower radical of a module type. For a ring R with unit, the module type ¢(R) was
defined in [6] as follows: t(0) =0; #(R) =d if every free R-module has invariant rank;
t(R) = (c, k) for integers ¢,k = 1 if every free R-module of rank < ¢ has invariant rank, while
a free module of rank h = ¢ has rank 42+ nk for any integer n = 0. The module types form a
lattice under the ordering 0 < (c,k) <d and (¢, k") < (c,k) if and only if ¢’ £ ¢ and k'|k.
Two of the basic theorems on types are:

A. [6; Theorem 2, p. 1151 If R—- R’ is a unit-preserving homomorphism, then
t(R") £ HR).

B. [6; Theorem 3, p. 116]
1 1

We recall that in the definition of the Kurosh lower radical (as modified by Sulinski,
Anderson and Divinsky in [10]) for a class .# of rings, the class .#, is the homomorphic
closure of .#, and for any ordinal § > 1 the class ., consists of rings R such that every non-
zero homomorphic image has a non-zero ideal in #, for some o << . Then the lower radical
class defined by  is £(#) = UA,, taken over all ordinals f. We note that, in fact [10;
Theorem 1, p. 420], £(A) = A, where o is the smallest infinite ordinal. If we define
T, ={R]1(R) £ a}, then, by Theorem A, (7,), =7,. We further note that 7, ={0} is
already (trivially) a radical class. We shall require the following lemma.

LemMa 1. If an ideal I of a ring R has a unit, then R = [ @ I*, where I* is the annihilator
ofIin R.

Proof. The Pierce decomposition relative to the unit of I clearly yields R = I+I*, and
since I has a unit this sum must be direct.

For use in the following theorem, and at several other points, we record the following:

ConsTRUCTION 1. Let {a;},., be an arbitrary set of module types. By [1; Theorem 9,

p. 130] there exists for each i a ring R; with #(R;) =«;. Let R be the direct sum ) @ R,.
ies

Note that if # is infinite then R does not have module type (since it has no unit), but neverthe-

less every non-zero image has a non-zero ideal with type. This follows from the fact that if I

is a proper ideal of R then at least one R; & I. Thus R/I has a non-zero ideal R +1I/I

=~ R,/R;,nI, and, by Theorem 4, t(R;/R;n]) £ a;.

THEOREM 1. L(T,) = (T ), and for a > 0, L (T ,) # (T ,);.
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Proof. For the first statement it is sufficient to show that (7 ,); =(J,),. Thus suppose
there exists Re(J )3, R¢(T,),. Then, by definition, R has an image R with a non-zero
ideal 1e(7 ,), but no ideal in (J,),. Since Ie(J,), it has a non-zero ideal Je(T ), = 7.
Thus, by Lemma 1, I = J@J*. Let xeJ and yeR; then xyel so that xy = z+ z* for some
zeJ and z*eJ*. But if e is the unit of J, this yields xy = exy = ez = zeJ. Similarly yxeJ,
so J is an ideal of R, contradicting the condition that R should have no ideals from .

To establish the second statement of the theorem, let R be the ring of Construction 1
with # infinite and all «; = «. Then R¢ 7, but every non-zero image has a non-zero ideal
with #(J) £ a. Thus Re(T ).

2. The lower maxit radicals. In [9] the module type was used to construct for a general
ring an invariant (called the *“ maxit >’ of the ring) which coincides with the module type for
rings with unit. In the present paper we shall sharpen the definition of [9] in the following
way: we shall extend the module type lattice to a lattice of maxits by permitting ¢ and k in
(¢, k) to take on values w and O respectively, in addition to all positive integers. The order
in this extended lattice (and hence the lattice operations) is defined as for module types, noting
that ¢ < w for all ¢ and k|0 for all k. We now define the maxit m(R) of a ring R as follows:

(i) Whenever R has module type, m(R) = t(R).
(i) For all other rings, let %" be the set consisting of all modular ideals of R together
with R itself; then m(R) =Um(R/I).
Iew

ReMARK 1. From this definition it follows that a ring R is a Brown~-McCoy radical ring
if and only if m(R) = 0. This is clear since R is a Brown-McCoy radical if and only if it has
no modular ideals [8, p. 134]. But then m(R) = m(R/R) = t(0) = 0.

REMARK 2. On the other hand, since in the extended lattice such maxits as (w, k) are
now available, it is clear that m(R) = d if and only if there exists some Ie#  such that
t(R/)=d.

REMARK 3. From the definition of the maxit it is also clear that, if R is a homomorphic
image of R, then m(R) < m(R).
REeEMARK 4. It is easily seen that the method of proof of [9; Theorem 3.2, p. 131] can be
applied to yield m <Z @ R,) = U m(R)). This result will be extended (see Theorem 2) to
1 1
infinite direct sums or complete direct sums (to be written Y (@D R)).

For a given ring R, define

G(a) = {xa—x+ay—y+) (xay;—xy)} forall x,y,x;,y€R. M
LeMMA 2. m(R) = U t(R/G(a)).
aeR

Proof. If Iis a modular ideal of R, then there exists an identity @ of R modulo . Thus
G(@ =1 and from the natural homomorphism R/G(a) =+ R/I and Theorem A, #(R/I)

< 1(R/G(a)). Thus m(R) = U «R/I) £ U ((R/G(a)).
IeWw aeR
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But also G(a@)e#"; so we have the reverse inequality.
Let{a}(i=1,2,...,n) be a set of members of R, and write

b=k§:1(--1)"+l Z a;, ... a;,. 2

i1 <..<ig
Lemma 3. G(b) = N G(ay).
1

Proof. For a given i, let f be any polynomial in {a;} over the integers not containing a,
as a term. It is clear that f(a,...q;...a,)—f(a,...1...a,)eG(a;), where “1” simply
indicates the deletion of any aq; from any term. But it is easy to see from (2) that if 1 is sub-
stituted for a; in b—a, the result is zero. Hence b—a;eG(a;). Thus b is a unit modulo G(a;)
for each i, and so is a unit modulo NG(a)).

PropostTiON 1. (@) If m(R) = (¢, k) for integers c,k = 1, then there exists an ideal I of R
such that t(R[I) = (c, k).

) If m(R) = (w,k), then for some infinite ascending chain of integers ¢, < c,< ... there
exists a chain I, o 1, o ... of ideals such that t(R[I}) = (¢;, k).

(¢) Similarly, if m(R) = (c,0), there is an infinite ascending chain {k;} of proper divisors
and t(R/I)) = (¢, k).

(d) Similarly, if m(R) = (w,0), there are ascending chains{c;} and {k;} and t(R/I) = (¢c;, k).

Proof. (@) Let m(R) =(c,k) for ¢,k = 1. Choose one a; (if such exists) for which
t(R/G(a;)) = «, for each a; < (¢, k). The set {a;} so chosen is finite, say i = 1,..., n. Define b

by (2); then it follows from Lemma 3 and Theorem A that #(R/G(b)) = 0 HR|G(a)).
1

But, by Lemma 2, the right side of this inequality is m(R), and since by definition t(R/G(b))
< m(R), equality follows.

(b) If m(R) = (w, k), then we again have only a finite set k;|k for which a choice g,
exists with #(R/G(a))) = (¢;, k;) for some ¢;. Now k is clearly the least common multiple of
the {k;}. Thus if b, is the b defined by (2) for this set of {a;}, then, by the same argument as
in (@) above, t(R/G(b,)) = (c,k) for some c. But t(R/G(b,)) < (w,k), so we must have
t(R|G(by)) = (¢, k) for some ¢, . Since m(R) = (w, k), there must, by Lemma 2, exist some b’
such that ((R/G(b")) = (¢’, k") for which ¢’ > ¢, (of course with some k' | k). Defining, as in (2),
by=b+b'-b b, we have G(b,) c Gb)NG}) so that t(R/G(by)) 2 (c,, k)u(c', k')
= (¢’,k). Thus t(R/G(b,)) = (c,, k) for some ¢, >c¢;. The process clearly continues. It
is also clear that similar constructions exist for cases (c) and (d).

Let I be an ideal of R and ael. Write G/(a) for the ideal of I defined by (1), restricting
X, ¥, X;, y; to be elements of 1.

LemMMa 4. Ga) = Ga)nI.

Proof. Clearly G,(a) € G(a)nI; so suppose that zeG(a)nl. Then z—aza = (z—:za)
+(za—aza)e Gi(a). But from zeG(a) and ael it follows that azaeG,(a). Thus zeG,(a),
and so G(a)n1 < G(a).
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Let {R;};., be a set of rings. If either R =Y @® R; or R =) ®R;, then from the natural
homomorphism R — R; it follows, by Remark 3, that Um(R;) < m(R). Let a;eR; be the
projection of a € R, and write G; = Gg,(a;).

THEOREM 2. (@) If R =) @ R;, then m(R) = U m(R ).

(®) If R=)_.®R; and there exists ae R such that Ut(R;/G ) = (w,k), (c,0), or (,0),
then m(R) = d. Otherwise m(R) =U m(R)).

jeJ

Proof. (a) Let a€)’ eBR,-; then a = Za,. Thus G(a) =(Z® G,-)GB(Z@R,) and it is
1 Jj>n
easﬂy seen that R/G(a) =~ Z @ R;/G;. From Theorem B, it follows that #(R/G(a))
—Ut(R,/G) < Um(Rj) Smce a was arbitrary, by Lemma 2, we have m(R)< Um(R))
jeJ

and hence equahty

(b) Let ae) . ®R;; then again it is easy to see that G(@) =) .®G; and
R/G(a) =Y, GBR,/G From the projection R/G(a) - R;/G; we have #R;/G;) £ t(R/G(a)).
Thus, if U#(R;/G}) is not a module type, then #(R/G(a)) = d and so m(R) = d.

Now if t(R;/G;) = 0 for all jeJ, then all R; = G; and so R = G(a). If this is true for all
a€R, then, by Lemma 2, 0 = m(R) = Um(R)).

Thus suppose for a given ae R we have U1(R;/G)) = (¢, k), so that all #(R;/G)) < (c, k).
Then if G; # R;, by the matrix criterion for rings of given module type (see [1] or [6]), there
exist c+k by ¢ and ¢ by c+k matrices 4;, B; with elements in R; such that

A;Bj—a;I..,, =0 (modG;) and B;A;—a;1,=0 (modG)),

where we write a; I, for the diagonal matrix with a; on the diagonal (that is, a unit matrix
over R; modulo G)).

Let A=) .®A4; and B=) @ B, (note: insert a zero matrix whenever G; = R;). Then
clearly AB—al,,, and BA—al .= 0(mod G(a)); so, by the matrix criterion for module type,
t(R/G(a)) S (c,k). Thus m(R) =Ut(R/G(@)) £ UU«(R,;/G;). By reversing the order of

a a jeJ

unions in the last expression, this yields m(R) = Um(R;) and hence equality.
We recall that a class of rings is called hereditary if it includes all ideals of all of its
members.

THEOREM 3. The class M, ={R|m(R) < a} is a hereditary class.

Proof. Let Re #, and ae I, where I is an ideal of R. Since m(R) £ a, it follows that
t(R/G(a)) < a. The Pierce decomposition x = ax—(ax—x) shows that R = I+ G(a). Thus
R/G(a) = I/InG(a) and by Lemma 4 this equals 7/G/(a). From Lemma 2 it follows that
m(I) < a.

COROLLARY 1. If m(R) < d, then, for an ideal I of R, we have the following results.
(@) If 1is Noetherian, it is included in the Brown-McCoy radical of R.
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(b) If I is commutative, it is included in the Jacobson radical of R.
(¢) If I is Artinian, it is included in the nil radical of R.

Proof. Note first that, if I satisfies one of the conditions of (a), (b) or (c¢), then so does
every homomorphic image of I. Now, by Theorem 3, m(I) <d and, if m(I) # 0, then I has a
non-zero homomorphic image I with #(I) £ m(I). But by [4; p. 32]ifI is Noetherian, and hence
by [4; Theorem 29, p. 71] if I is Artinian, or by [2; p. 563] if I is commutative, then ¢(I) = d,
contradicting #(I) £ m(I). Thus m(I) =0 and so I is a Brown-McCoy radical ring. Hence if
Iis commutative it is a Jacobson radical ring, or if it is Artinian it is nil.

THEOREM 4. ZL(M ) = (M ,), and is a hereditary radical class.

Proof. By Remark 3, #, = (#,), and, by Theorem 3, it is a hereditary class. Also any
nilpotent ring R is Brown-McCoy radical, so m(R) =0 £ «. Thus it follows from [10;
Theorem 2, p. 420] that £(#,) = (#4,), . Now, by [3; Theorem 1.4, p. 29], the lower radical
of any hereditary class is hereditary, and so £(.#,) is a hereditary class.

Although .#, may not in general be a radical class, the ideals I of R satisfying Ie #, or
R/Ie #, have certain maximal properties. We conclude this section by recording these
properties.

PrOPOSITION 2. (a) Every ring R has an ideal I maximal relative to Ie #,.
(b) If R has an ideal I with m(I) = a, then it has an ideal maximal relative to this property.

Proof. To show that Zorn’s Lemma applies, let {I;} be a chain of ideals with m(I) < «
(or =« in case (b)). Let I=UJ,, so that, by Theorem 3, m(I) ZUm(I)). Suppose m() & a
(or # o in case (b)). Then there exists some ael such that 1(//Ga)) =p £« (or > o in
case (b)). Now ael and so ael, for some I; in the chain. Writing G, = G,,(a), we obtain
from Lemma 4 G;= G(a)nI;, and, as in the proof of Theorem 3, I|G\(a) = I,/G;. Thus
1(I1;/G;) = B, violating the definition of 7;. Hence m(I) £ o (or = « in case (b)) and so Zorn’s
Lemma applies.

PROPOSITION 3. If R contains an ideal H such that t(R/H) = «, then it contains an ideal
maximal relative to this property.

Proof. If o =0, then H = R satisfies the proposition. Thus suppose o > 0. To show
that Zorn’s Lemma applies, let H=UH; for a chain {H,} for which #(R/H)=a. By
Theorem A, t(R/H) < (R/H;) = a, and suppose #(R/H) =f <a. Thus f#d and if § =0
then H = R. But for any H;, if a; is the identity of R modulo H,, this means that a; belongs
to some H; in the chain. Now a;¢ H;; so H; ¢ H; and hence H;< H;. But this is also
impossible, for then G(a;) = H; and thus, since a,€ H;, R S H;.

We therefore suppose that f = (c, k) and let ¢ be an identity of R modulo H. As was
remarked in the proof of Theorem 2, the matrix criterion then requires the existence of c+k
by ¢ and ¢ by ¢+k matrices S and T such that

U=8ST-al .,=0(mod H) and V=TS—al .=0(modH).

Now there is only a finite number of elements in the matrices U and ¥, and since all are
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contained in H, they must in fact all be contained in some H; of the chain. If g, is the identity
of R modulo H;, then aq;—ae H;. On the other hand, a is an identity of R modulo H, so
that aa;—a;e H and so is in H;, for some H; in the chain. One of the two must be larger,
say H;=2 H,;. Then a is a unit of R modulo H;, and since U, V=0 (mod H,), we have
t(R[H;) £ B, contradicting the definition of H;. We conclude that #(R/H)=a, and so
Zorn’s Lemma applies.

COROLLARY 2. For o a module type, if m(R/H) = a for some ideal H of R, then R contains
an ideal maximal relative to this property.

Proof. If « =0, let H=UH, for a chain of ideals with m(R/H)) =0. By Remark 3,
m(R/HY S m(R/H})=0. Thus m(R/H) =0, and so Zorn’s Lemma applies. Thus suppose
that m(R/H) = a > 0. By Proposition 1 (or Remark 2 if a = d), there exists an ideal /=2 H
such that #(R/I) =a. By Proposition 3, we may assume that I is maximal relative to this
property. Suppose there could exist H; o I such that m(R/H,) = «. By the same argument,
there would then exist I, 2 H, such that #(R/I,) = a, violating the maximality of I

3. Simple type radicals. Let %" be the set consisting of all maximal modular ideals of R,
together with R itself. Define m(R)=U m(R/I), and write ., ={R|m(R) < a}. Then, by
IeW

definition, #, < /.
LemMma 5. m(R/I) < m(R) for all ideals I of R.

Proof. If H|I is maximal in R/J, then H is maximal in R. Since (R/D){(H/I) = R[H, it
follows that m(R/I) = Ut(R/H), the union being taken over all H= I; hence result.

LeMMA 6. If I is an ideal of R, then m(I) < m(R).

Proof. If I has no maximal modular ideals, then #(I) =0 and the Lemma is satisfied
trivially. Now it is well-known that H, is a maximal modular ideal of Zif and only if H, = InH
for some maximal modular ideal H of R. Thus I& H, so that R=I+H, and hence
I/H, = R/H. It follows that m(I) = Um(I|H,) < im(R).

Let & be the class of all simple rings, partitioned into &, ={Re¥ |m(R) = Fi(R) £ «}
and &, =% —%,. One way to use this partitioning would be to consider #(&%,). Since
&, S M, we have X(¥) < L(MA,). However, let A be the class of all zero rings (rings
with trivial multiplication: xy = 0 for all x, y in the ring) without minimal ideals. Note that
A" is non-empty since we can impose a trivial multiplication on any additive abelian group
without minimal subgroups (such as the additive group of the integers). Now it is known [3;
Theorem 1.15, p. 39] that, if a class % is homomorphically closed and the class ¥” is hereditary,
then %Ny = 0 implies that L(%)n¥" = 0. Clearly the class 4" is hereditary and (¥ ),n A"
=0, so that £(¥,)nA =0. On the other hand the zero rings are Brown-McCoy radical;
so & & M,. Thus L(&,) is properly contained in £(#,). We might ask the relation of
L(T ) to L(&,). However, these classes are not comparable: if R is a simple radical ring,
then Re ¥, but R¢ £(T,); on the other hand, the ring of integers Z e 7, but has no minimal
ideals and so is not in Z(%,).
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The upper radical defined by this partition [S; p. 22] can, however, be used to charac-
terize ,. Write %(%.) for the upper radical class defined by &.. (Recall [5; p. 17] that
U(¥,) = {R|every non-zero homomorphic image R/I¢.%.}.)

THEOREM 5. M, = U(¥.) and is thus a hereditary radical class.

Proof. Let Red,, so that m(R) = f < a. Then, by definition, for any simple image
R/H we have m(R/H) £ B, and so R has no images in &. Thus .#, € %(%.). On the other
hand, if Re%(¥.) but R¢ .4, then we would have m(R) = B £ «. There would then exist
some maximal modular H such that m(R/H) = t(R/H) £ «. Thus R/He%,, contradicting
the definition of #(%.). Hence ., = %(¥.) and so is a radical class, and by Lemma 6 it is
hereditary.

We remark that, since 7, S 4, < .4, for all module types «, it follows that £(7",)
c #(M,) S #,. The first inequality is always proper since every .#, contains all Brown—
McCoy radical rings. However, it is an open question whether or not .#, differs from £(.4,)
(or even from .#,). Of course, trivially, #, = L(M,) = 4, since M is the class of all rings.

We may also ask whether or not these radical classes differ for different «. There are a
number of open questions in this regard, but we may state the following:

1. If « is a module type, then £L(7,) is non-zero, and if o # B, then L(T ) # L(T p).

Proof. We may assume that a £ f. If « = d, then f # d and any field is in £(Z7,) but
notin £(J ). If & = (c,k), use the ring ¥V =V .., [1; Section §, p. 221] (see also [6; Foot-
note 6, p. 130]) universal for rings of type «; then V'eZJ,. Suppose that Ve £(7,); then,
by Theorem 1, there exists a non-zero ideal I of ¥ such that t(I) £ . But, aside from its unit,
V has no elements which are even local identities. Thus V itself is the only ideal of ¥ which has
type, and (V) £ B.

2. Since A, is the class of all Brown-McCoy radical rings, £(#,) = .#,. Then,
since ., for any B # 0, contains rings with unit, L(#,) # L(H,), p # 0.

On the other hand, £(#;) for f # d contains no fields, and, since A, = L(HA,) is the
class of all rings, £(#,) # L(M,), B # d.

3. For given o # B, if M, # .IZﬁ , then L (M,) # L(M).

Proof. We can assume that .4, ¢ ./?,,. Thus there must exist some R with #(R) £ a
and m(R)£ B. It follows that R has a simple image R with #(R) < « and #(R) £ f. Hence
Re #,, and, since it is simple, R¢ L(4 ).

4. When o =(c,k) and B = (¢, k"), with k # k' (integers 20) and c, ¢’ arbitrary (integers

2 1, or one or both equal to ©), then M, # ./_/,, and so L(M,) # L(M,).

Proof. We may assume that k Yk’ (so k' #0). If k0, there exists a simple ring R
[7; Theorem 2, p. 307] such that #(R) = (1,k) S «, £ f. Thus Re#,, ¢ M#,. If k=0,

we may use Construction 1 with R =) @ R;, where the R; are simple with #(R)) = (L,i).
p— l -
Then #(R) = (1,0) and so again Red,, ¢./4,.
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S. The only remaining case is a = (c, k), f = (¢, k), with ¢ # ¢, say ¢’ <c. It is clear
that if a simple ring exists for which #(R) = (¢, 1), then an argument similar to those of the
preceding paragraph would show that .#, # .#,. However, the existence of such rings fE)r

¢ > 11is an open question. A further question, in this case, is the following: even if /#, = .#,,
does it follow that L(A,) = L(AM;)?
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