by W. G. LEAVITT

(Received 16 December, 1966)

1. The lower radical of a module type. For a ring R with unit, the module type t(R) was defined in [6] as follows: t(0) = 0; t(R) = d if every free R-module has invariant rank; t(R) = (c, k) for integers $c, k \ge 1$ if every free R-module of rank < c has invariant rank, while a free module of rank $h \ge c$ has rank h+nk for any integer $n \ge 0$. The module types form a lattice under the ordering 0 < (c, k) < d and $(c', k') \le (c, k)$ if and only if $c' \le c$ and $k' \mid k$. Two of the basic theorems on types are:

A. [6; Theorem 2, p. 115] If $R \to R'$ is a unit-preserving homomorphism, then $t(R') \leq t(R)$.

B. [6; Theorem 3, p. 116]

$$t\left(\sum_{1}^{n} \oplus R_{i}\right) = \bigcup_{1}^{n} t(R_{i}).$$

We recall that in the definition of the Kurosh lower radical (as modified by Sulinski, Anderson and Divinsky in [10]) for a class \mathcal{M} of rings, the class \mathcal{M}_1 is the homomorphic closure of \mathcal{M} , and for any ordinal $\beta > 1$ the class \mathcal{M}_β consists of rings R such that every nonzero homomorphic image has a non-zero ideal in \mathcal{M}_α for some $\alpha < \beta$. Then the lower radical class defined by \mathcal{M} is $\mathcal{L}(\mathcal{M}) = \bigcup \mathcal{M}_\beta$, taken over all ordinals β . We note that, in fact [10; Theorem 1, p. 420], $\mathcal{L}(\mathcal{M}) = \mathcal{M}_{\omega}$, where ω is the smallest infinite ordinal. If we define $\mathcal{T}_\alpha = \{R \mid t(R) \leq \alpha\}$, then, by Theorem A, $(\mathcal{T}_\alpha)_1 = \mathcal{T}_\alpha$. We further note that $\mathcal{T}_0 = \{0\}$ is already (trivially) a radical class. We shall require the following lemma.

LEMMA 1. If an ideal I of a ring R has a unit, then $R = I \oplus I^*$, where I^* is the annihilator of I in R.

Proof. The Pierce decomposition relative to the unit of I clearly yields $R = I + I^*$, and since I has a unit this sum must be direct.

For use in the following theorem, and at several other points, we record the following:

CONSTRUCTION 1. Let $\{\alpha_i\}_{i \in \mathscr{I}}$ be an arbitrary set of module types. By [1; Theorem 9, p. 130] there exists for each *i* a ring R_i with $t(R_i) = \alpha_i$. Let *R* be the direct sum $\sum_{i \in \mathscr{I}} \bigoplus R_i$. Note that if \mathscr{I} is infinite then *R* does not have module type (since it has no unit), but nevertheless every non-zero image has a non-zero ideal with type. This follows from the fact that if *I* is a proper ideal of *R* then at least one $R_i \notin I$. Thus R/I has a non-zero ideal R + I/I $\cong R_i/R_i \cap I$, and, by Theorem *A*, $t(R_i/R_i \cap I) \leq \alpha_i$.

THEOREM 1.
$$\mathscr{L}(\mathscr{T}_{a}) = (\mathscr{T}_{a})_{2}$$
, and for $\alpha > 0$, $\mathscr{L}(\mathscr{T}_{a}) \neq (\mathscr{T}_{a})_{1}$.

Proof. For the first statement it is sufficient to show that $(\mathcal{T}_{\alpha})_3 = (\mathcal{T}_{\alpha})_2$. Thus suppose there exists $R \in (\mathcal{T}_{\alpha})_3$, $R \notin (\mathcal{T}_{\alpha})_2$. Then, by definition, R has an image \overline{R} with a non-zero ideal $I \in (\mathcal{T}_{\alpha})_2$ but no ideal in $(\mathcal{T}_{\alpha})_1$. Since $I \in (\mathcal{T}_{\alpha})_2$ it has a non-zero ideal $J \in (\mathcal{T}_{\alpha})_1 = \mathcal{T}_{\alpha}$. Thus, by Lemma 1, $I = J \oplus J^*$. Let $x \in J$ and $y \in \overline{R}$; then $xy \in I$ so that $xy = z + z^*$ for some $z \in J$ and $z^* \in J^*$. But if e is the unit of J, this yields $xy = exy = ez = z \in J$. Similarly $yx \in J$, so J is an ideal of \overline{R} , contradicting the condition that \overline{R} should have no ideals from \mathcal{T}_{α} .

To establish the second statement of the theorem, let R be the ring of Construction 1 with \mathscr{I} infinite and all $\alpha_i = \alpha$. Then $R \notin \mathscr{T}_{\alpha}$ but every non-zero image has a non-zero ideal I with $t(I) \leq \alpha$. Thus $R \in (\mathscr{T}_{\alpha})_2$.

2. The lower maxit radicals. In [9] the module type was used to construct for a general ring an invariant (called the "maxit" of the ring) which coincides with the module type for rings with unit. In the present paper we shall sharpen the definition of [9] in the following way: we shall extend the module type lattice to a *lattice of maxits* by permitting c and k in (c, k) to take on values ω and 0 respectively, in addition to all positive integers. The order in this extended lattice (and hence the lattice operations) is defined as for module types, noting that $c \leq \omega$ for all c and $k \mid 0$ for all k. We now define the *maxit* m(R) of a ring R as follows:

(i) Whenever R has module type, m(R) = t(R).

(ii) For all other rings, let \mathscr{W} be the set consisting of all modular ideals of R together with R itself; then $m(R) = \bigcup m(R/I)$.

REMARK 1. From this definition it follows that a ring R is a Brown-McCoy radical ring if and only if m(R) = 0. This is clear since R is a Brown-McCoy radical if and only if it has no modular ideals [8, p. 134]. But then m(R) = m(R/R) = t(0) = 0.

REMARK 2. On the other hand, since in the extended lattice such maxits as (ω, k) are now available, it is clear that m(R) = d if and only if there exists some $I \in \mathcal{W}$ such that t(R/I) = d.

REMARK 3. From the definition of the maxit it is also clear that, if \overline{R} is a homomorphic image of R, then $m(\overline{R}) \leq m(R)$.

REMARK 4. It is easily seen that the method of proof of [9; Theorem 3.2, p. 131] can be applied to yield $m\left(\sum_{i=1}^{n} \bigoplus R_{i}\right) = \bigcup_{i=1}^{n} m(R_{i})$. This result will be extended (see Theorem 2) to infinite direct sums or complete direct sums (to be written $\sum_{i=1}^{n} R_{i}$).

For a given ring R, define

 $G(a) = \{xa - x + ay - y + \sum (x_i a y_i - x_i y_i)\} \text{ for all } x, y, x_i, y_i \in R.$ (1) LEMMA 2. $m(R) = \bigcup_{a \in R} t(R/G(a)).$

Proof. If I is a modular ideal of R, then there exists an identity a of R modulo I. Thus $G(a) \subseteq I$ and from the natural homomorphism $R/G(a) \to R/I$ and Theorem A, $t(R/I) \leq t(R/G(a))$. Thus $m(R) = \bigcup_{I \in \mathscr{W}} t(R/I) \leq \bigcup_{a \in R} t(R/G(a))$.

But also $G(a) \in \mathcal{W}$; so we have the reverse inequality.

Let $\{a_i\}$ (i = 1, 2, ..., n) be a set of members of R, and write

$$b = \sum_{k=1}^{n} (-1)^{k+1} \sum_{i_1 < \dots < i_k} a_{i_1} \dots a_{i_k}.$$
 (2)

Lemma 3. $G(b) \subseteq \bigcap_{1}^{n} G(a_i).$

Proof. For a given *i*, let *f* be any polynomial in $\{a_i\}$ over the integers not containing a_i as a term. It is clear that $f(a_1 \dots a_i \dots a_n) - f(a_1 \dots 1 \dots a_n) \in G(a_i)$, where "1" simply indicates the deletion of any a_i from any term. But it is easy to see from (2) that if 1 is substituted for a_i in $b-a_i$ the result is zero. Hence $b-a_i \in G(a_i)$. Thus *b* is a unit modulo $G(a_i)$ for each *i*, and so is a unit modulo $\bigcap G(a_i)$.

PROPOSITION 1. (a) If m(R) = (c, k) for integers $c, k \ge 1$, then there exists an ideal I of R such that t(R|I) = (c, k).

(b) If $m(R) = (\omega, k)$, then for some infinite ascending chain of integers $c_1 < c_2 < ...$ there exists a chain $I_1 \supset I_2 \supset ...$ of ideals such that $t(R/I_i) = (c_i, k)$.

(c) Similarly, if m(R) = (c, 0), there is an infinite ascending chain $\{k_i\}$ of proper divisors and $t(R/I_i) = (c, k_i)$.

(d) Similarly, if $m(R) = (\omega, 0)$, there are ascending chains $\{c_i\}$ and $\{k_i\}$ and $t(R/I_i) = (c_i, k_i)$.

Proof. (a) Let m(R) = (c, k) for $c, k \ge 1$. Choose one a_i (if such exists) for which $t(R/G(a_i)) = \alpha_i$ for each $\alpha_i \le (c, k)$. The set $\{a_i\}$ so chosen is finite, say i = 1, ..., n. Define b by (2); then it follows from Lemma 3 and Theorem A that $t(R/G(b)) \ge \bigcup_{i=1}^{n} t(R/G(a_i))$. But, by Lemma 2, the right side of this inequality is m(R), and since by definition $t(R/G(b)) \ge m(R)$, equality follows.

(b) If $m(R) = (\omega, k)$, then we again have only a finite set $k_i | k$ for which a choice a_i exists with $t(R/G(a_i)) = (c_i, k_i)$ for some c_i . Now k is clearly the least common multiple of the $\{k_i\}$. Thus if b_1 is the b defined by (2) for this set of $\{a_i\}$, then, by the same argument as in (a) above, $t(R/G(b_1)) \ge (c, k)$ for some c. But $t(R/G(b_1)) < (\omega, k)$, so we must have $t(R/G(b_1)) = (c_1, k)$ for some c_1 . Since $m(R) = (\omega, k)$, there must, by Lemma 2, exist some b' such that t(R/G(b')) = (c', k') for which $c' > c_1$ (of course with some k' | k). Defining, as in (2), $b_2 = b_1 + b' - b_1 b'$, we have $G(b_2) \subseteq G(b_1) \cap G(b')$ so that $t(R/G(b_2)) \ge (c_1, k) \cup (c', k') = (c', k)$. Thus $t(R/G(b_2)) = (c_2, k)$ for some $c_2 > c_1$. The process clearly continues. It is also clear that similar constructions exist for cases (c) and (d).

Let I be an ideal of R and $a \in I$. Write $G_I(a)$ for the ideal of I defined by (1), restricting x, y, x_i , y_i to be elements of I.

LEMMA 4. $G_I(a) = G(a) \cap I$.

Proof. Clearly $G_I(a) \subseteq G(a) \cap I$; so suppose that $z \in G(a) \cap I$. Then $z - aza = (z - za) + (za - aza) \in G_I(a)$. But from $z \in G(a)$ and $a \in I$ it follows that $aza \in G_I(a)$. Thus $z \in G_I(a)$, and so $G(a) \cap I \subseteq G_I(a)$.

24

Let $\{R_j\}_{j\in J}$ be a set of rings. If either $R = \sum \bigoplus R_j$ or $R = \sum_c \bigoplus R_j$, then from the natural homomorphism $R \to R_i$ it follows, by Remark 3, that $Um(\overline{R_i}) \leq m(R)$. Let $a_i \in R_i$ be the projection of $a \in R$, and write $G_j = G_{R_j}(a_j)$.

THEOREM 2. (a) If $R = \sum \bigoplus R_j$, then $m(R) = \bigcup_{j \in J} m(R_j)$. (b) If $R = \sum_{c} \bigoplus R_j$ and there exists $a \in R$ such that $\bigcup t(R_j/G_j) = (\omega, k)$, (c, 0), or $(\omega, 0)$, then m(R) = d. Otherwise $m(R) = \bigcup m(R_j)$.

Proof. (a) Let $a \in \sum \bigoplus R_j$; then $a = \sum_{i=1}^{n} a_j$. Thus $G(a) = \left(\sum_{i=1}^{n} \bigoplus G_j\right) \oplus \left(\sum_{j>n} \bigoplus R_j\right)$ and it is easily seen that $R/G(a) \cong \sum_{i=1}^{n} \bigoplus R_j/G_j$. From Theorem B, it follows that t(R/G(a)) $=\bigcup_{j\in J}^{n} t(R_j/G_j) \leq \bigcup_{j\in J} m(R_j)$. Since a was arbitrary, by Lemma 2, we have $m(R) \leq \bigcup_{j\in J} m(R_j)$ and hence equality.

(b) Let $a \in \sum_{c} \oplus R_{j}$; then again it is easy to see that $G(a) = \sum_{c} \oplus G_{j}$ and $R/G(a) \cong \sum_{c} \oplus R_j/G_j$. From the projection $R/G(a) \to R_j/G_j$ we have $t(R_j/G_j) \le t(R/G(a))$. Thus, if $Ut(R_j/G_j)$ is not a module type, then t(R/G(a)) = d and so m(R) = d.

Now if $t(R_i/G_i) = 0$ for all $j \in J$, then all $R_i = G_i$ and so R = G(a). If this is true for all $a \in R$, then, by Lemma 2, $0 = m(R) = \bigcup m(R_i)$.

Thus suppose for a given $a \in R$ we have $\bigcup t(R_j/G_j) = (c, k)$, so that all $t(R_j/G_j) \leq (c, k)$. Then if $G_j \neq R_j$, by the matrix criterion for rings of given module type (see [1] or [6]), there exist c+k by c and c by c+k matrices A_j , B_j with elements in R_j such that

$$A_j B_j - a_j I_{c+k} \equiv 0 \pmod{G_j}$$
 and $B_j A_j - a_j I_c \equiv 0 \pmod{G_j}$,

where we write $a_i I_c$ for the diagonal matrix with a_i on the diagonal (that is, a unit matrix over R_i modulo G_i).

Let $A = \sum_{c} \bigoplus A_{j}$ and $B = \sum_{c} \bigoplus B_{j}$ (note: insert a zero matrix whenever $G_{j} = R_{j}$). Then clearly $AB - aI_{c+k}$ and $BA - aI_c \equiv 0 \pmod{G(a)}$; so, by the matrix criterion for module type, $t(R/G(a)) \leq (c,k)$. Thus $m(R) = \bigcup t(R/G(a)) \leq \bigcup \bigcup t(R_j/G_j)$. By reversing the order of a jeJ

unions in the last expression, this yields $m(R) \leq Um(R_i)$ and hence equality.

We recall that a class of rings is called *hereditary* if it includes all ideals of all of its members.

THEOREM 3. The class $\mathcal{M}_{\alpha} = \{R \mid m(R) \leq \alpha\}$ is a hereditary class.

Proof. Let $R \in \mathcal{M}_{\alpha}$ and $a \in I$, where I is an ideal of R. Since $m(R) \leq \alpha$, it follows that $t(R/G(a)) \leq \alpha$. The Pierce decomposition x = ax - (ax - x) shows that R = I + G(a). Thus $R/G(a) \cong I/I \cap G(a)$ and by Lemma 4 this equals $I/G_I(a)$. From Lemma 2 it follows that $m(I) \leq \alpha$.

COROLLARY 1. If m(R) < d, then, for an ideal I of R, we have the following results.

(a) If I is Noetherian, it is included in the Brown-McCoy radical of R.

(b) If I is commutative, it is included in the Jacobson radical of R.

(c) If I is Artinian, it is included in the nil radical of R.

Proof. Note first that, if I satisfies one of the conditions of (a), (b) or (c), then so does every homomorphic image of I. Now, by Theorem 3, m(I) < d and, if $m(I) \neq 0$, then I has a non-zero homomorphic image \overline{I} with $t(\overline{I}) \leq m(I)$. But by [4; p. 32] if \overline{I} is Noetherian, and hence by [4; Theorem 29, p. 71] if \overline{I} is Artinian, or by [2; p. 563] if \overline{I} is commutative, then $t(\overline{I}) = d$, contradicting $t(\overline{I}) \leq m(I)$. Thus m(I) = 0 and so I is a Brown-McCoy radical ring. Hence if I is commutative it is a Jacobson radical ring, or if it is Artinian it is nil.

THEOREM 4. $\mathscr{L}(\mathscr{M}_a) = (\mathscr{M}_a)_2$ and is a hereditary radical class.

Proof. By Remark 3, $\mathcal{M}_{\alpha} = (\mathcal{M}_{\alpha})_1$ and, by Theorem 3, it is a hereditary class. Also any nilpotent ring R is Brown-McCoy radical, so $m(R) = 0 \leq \alpha$. Thus it follows from [10; Theorem 2, p. 420] that $\mathcal{L}(\mathcal{M}_{\alpha}) = (\mathcal{M}_{\alpha})_2$. Now, by [3; Theorem 1.4, p. 29], the lower radical of any hereditary class is hereditary, and so $\mathcal{L}(\mathcal{M}_{\alpha})$ is a hereditary class.

Although \mathcal{M}_{α} may not in general be a radical class, the ideals I of R satisfying $I \in \mathcal{M}_{\alpha}$ or $R/I \in \mathcal{M}_{\alpha}$ have certain maximal properties. We conclude this section by recording these properties.

PROPOSITION 2. (a) Every ring R has an ideal I maximal relative to $I \in \mathcal{M}_{\alpha}$.

(b) If R has an ideal I with $m(I) = \alpha$, then it has an ideal maximal relative to this property.

Proof. To show that Zorn's Lemma applies, let $\{I_i\}$ be a chain of ideals with $m(I) \leq \alpha$ (or $= \alpha$ in case (b)). Let $I = \bigcup I_i$, so that, by Theorem 3, $m(I) \geq \bigcup m(I_i)$. Suppose $m(I) \leq \alpha$ (or $\neq \alpha$ in case (b)). Then there exists some $a \in I$ such that $t(I/G_I(\alpha)) = \beta \leq \alpha$ (or $> \alpha$ in case (b)). Now $a \in I$ and so $a \in I_i$ for some I_i in the chain. Writing $G_i = G_{I_i}(\alpha)$, we obtain from Lemma 4 $G_i = G_I(\alpha) \cap I_i$, and, as in the proof of Theorem 3, $I/G_I(\alpha) \cong I_i/G_i$. Thus $t(I_i/G_i) = \beta$, violating the definition of I_i . Hence $m(I) \leq \alpha$ (or $= \alpha$ in case (b)) and so Zorn's Lemma applies.

PROPOSITION 3. If R contains an ideal H such that $t(R|H) = \alpha$, then it contains an ideal maximal relative to this property.

Proof. If $\alpha = 0$, then H = R satisfies the proposition. Thus suppose $\alpha > 0$. To show that Zorn's Lemma applies, let $H = \bigcup H_i$ for a chain $\{H_i\}$ for which $t(R/H_i) = \alpha$. By Theorem A, $t(R/H) \leq t(R/H_i) = \alpha$, and suppose $t(R/H) = \beta < \alpha$. Thus $\beta \neq d$ and if $\beta = 0$ then H = R. But for any H_i , if a_i is the identity of R modulo H_i , this means that a_i belongs to some H_j in the chain. Now $a_i \notin H_i$; so $H_j \notin H_i$ and hence $H_i \subseteq H_j$. But this is also impossible, for then $G(a_i) \subseteq H_j$ and thus, since $a_i \in H_j$, $R \subseteq H_j$.

We therefore suppose that $\beta = (c, k)$ and let *a* be an identity of *R* modulo *H*. As was remarked in the proof of Theorem 2, the matrix criterion then requires the existence of c+k by *c* and *c* by c+k matrices *S* and *T* such that

$$U = ST - aI_{c+k} \equiv 0 \pmod{H}$$
 and $V = TS - aI_c \equiv 0 \pmod{H}$.

Now there is only a finite number of elements in the matrices U and V, and since all are

26

contained in H, they must in fact all be contained in some H_i of the chain. If a_i is the identity of R modulo H_i , then $aa_i - a \in H_i$. On the other hand, a is an identity of R modulo H, so that $aa_i - a_i \in H$ and so is in H_j , for some H_j in the chain. One of the two must be larger, say $H_j \supseteq H_i$. Then a is a unit of R modulo H_j , and since $U, V \equiv 0 \pmod{H_j}$, we have $t(R/H_j) \leq \beta$, contradicting the definition of H_j . We conclude that $t(R/H) = \alpha$, and so Zorn's Lemma applies.

COROLLARY 2. For α a module type, if $m(R/H) = \alpha$ for some ideal H of R, then R contains an ideal maximal relative to this property.

Proof. If $\alpha = 0$, let $H = \bigcup H_i$ for a chain of ideals with $m(R/H_i) = 0$. By Remark 3, $m(R/H) \leq m(R/H_i) = 0$. Thus m(R/H) = 0, and so Zorn's Lemma applies. Thus suppose that $m(R/H) = \alpha > 0$. By Proposition 1 (or Remark 2 if $\alpha = d$), there exists an ideal $I \supseteq H$ such that $t(R/I) = \alpha$. By Proposition 3, we may assume that I is maximal relative to this property. Suppose there could exist $H_1 \supset I$ such that $m(R/H_1) = \alpha$. By the same argument, there would then exist $I_1 \supseteq H_1$ such that $t(R/I_1) = \alpha$, violating the maximality of I.

3. Simple type radicals. Let \mathscr{W} be the set consisting of all maximal modular ideals of R, together with R itself. Define $\overline{m}(R) = \bigcup_{I \in \mathscr{W}} m(R/I)$, and write $\overline{\mathscr{M}}_x = \{R \mid \overline{m}(R) \leq \alpha\}$. Then, by

definition, $\mathcal{M}_{\alpha} \subseteq \overline{\mathcal{M}}_{\alpha}$.

LEMMA 5. $\overline{m}(R/I) \leq \overline{m}(R)$ for all ideals I of R.

Proof. If H/I is maximal in R/I, then H is maximal in R. Since $(R/I)/(H/I) \cong R/H$, it follows that $\overline{m}(R/I) = \bigcup t(R/H)$, the union being taken over all $H \supseteq I$; hence result.

LEMMA 6. If I is an ideal of R, then $\overline{m}(I) \leq \overline{m}(R)$.

Proof. If I has no maximal modular ideals, then $\overline{m}(I) = 0$ and the Lemma is satisfied trivially. Now it is well-known that H_1 is a maximal modular ideal of I if and only if $H_1 = I \cap H$ for some maximal modular ideal H of R. Thus $I \notin H$, so that R = I + H, and hence $I/H_1 \cong R/H$. It follows that $\overline{m}(I) = \bigcup m(I/H_1) \le \overline{m}(R)$.

Let \mathscr{G} be the class of all simple rings, partitioned into $\mathscr{G}_{\alpha} = \{R \in \mathscr{G} \mid m(R) = \overline{m}(R) \leq \alpha\}$ and $\mathscr{G}'_{\alpha} = \mathscr{G} - \mathscr{G}_{\alpha}$. One way to use this partitioning would be to consider $\mathscr{L}(\mathscr{G}_{\alpha})$. Since $\mathscr{G}_{\alpha} \subseteq \mathscr{M}_{\alpha}$ we have $\mathscr{L}(\mathscr{G}_{\alpha}) \subseteq \mathscr{L}(\mathscr{M}_{\alpha})$. However, let \mathscr{N} be the class of all zero rings (rings with trivial multiplication: xy = 0 for all x, y in the ring) without minimal ideals. Note that \mathscr{N} is non-empty since we can impose a trivial multiplication on any additive abelian group without minimal subgroups (such as the additive group of the integers). Now it is known [3; Theorem 1.15, p. 39] that, if a class \mathscr{U} is homomorphically closed and the class \mathscr{V} is hereditary, then $\mathscr{U} \cap \mathscr{V} = 0$ implies that $\mathscr{L}(\mathscr{U}) \cap \mathscr{V} = 0$. Clearly the class \mathscr{N} is hereditary and $(\mathscr{G}_{\alpha})_1 \cap \mathscr{N}$ = 0, so that $\mathscr{L}(\mathscr{G}_{\alpha}) \cap \mathscr{N} = 0$. On the other hand the zero rings are Brown-McCoy radical; so $\mathscr{N} \subseteq \mathscr{M}_{\alpha}$. Thus $\mathscr{L}(\mathscr{G}_{\alpha})$ is properly contained in $\mathscr{L}(\mathscr{M}_{\alpha})$. We might ask the relation of $\mathscr{L}(\mathscr{T}_{\alpha})$ to $\mathscr{L}(\mathscr{G}_{\alpha})$. However, these classes are not comparable: if R is a simple radical ring, then $R \in \mathscr{G}_{\alpha}$ but $R \notin \mathscr{L}(\mathscr{T}_{\alpha})$; on the other hand, the ring of integers $Z \in \mathscr{T}_{d}$ but has no minimal ideals and so is not in $\mathscr{L}(\mathscr{G}_{d})$.

W. G. LEAVITT

The upper radical defined by this partition [5; p. 22] can, however, be used to characterize $\overline{\mathcal{M}}_{\alpha}$. Write $\mathcal{U}(\mathscr{G}'_{\alpha})$ for the upper radical class defined by \mathscr{G}'_{α} . (Recall [5; p. 17] that $\mathcal{U}(\mathscr{G}'_{\alpha}) = \{R \mid \text{every non-zero homomorphic image } R/I\notin \mathscr{G}'_{\alpha}\}$.)

THEOREM 5. $\overline{\mathcal{M}}_{a} = \mathcal{U}(\mathcal{G}'_{a})$ and is thus a hereditary radical class.

Proof. Let $R \in \overline{\mathcal{M}}_{\alpha}$, so that $\overline{m}(R) = \beta \leq \alpha$. Then, by definition, for any simple image R/H we have $m(R/H) \leq \beta$, and so R has no images in \mathscr{G}'_{α} . Thus $\overline{\mathcal{M}}_{\alpha} \subseteq \mathscr{U}(\mathscr{G}'_{\alpha})$. On the other hand, if $R \in \mathscr{U}(\mathscr{G}'_{\alpha})$ but $R \notin \overline{\mathcal{M}}_{\alpha}$, then we would have $\overline{m}(R) = \beta \leq \alpha$. There would then exist some maximal modular H such that $\overline{m}(R/H) = t(R/H) \leq \alpha$. Thus $R/H \in \mathscr{G}'_{\alpha}$, contradicting the definition of $\mathscr{U}(\mathscr{G}'_{\alpha})$. Hence $\overline{\mathcal{M}}_{\alpha} = \mathscr{U}(\mathscr{G}'_{\alpha})$ and so is a radical class, and by Lemma 6 it is hereditary.

We remark that, since $\mathcal{T}_{\alpha} \subseteq \mathcal{M}_{\alpha} \subseteq \overline{\mathcal{M}}_{\alpha}$ for all module types α , it follows that $\mathcal{L}(\mathcal{T}_{\alpha}) \subseteq \mathcal{L}(\mathcal{M}_{\alpha}) \subseteq \overline{\mathcal{M}}_{\alpha}$. The first inequality is always proper since every \mathcal{M}_{α} contains all Brown-McCoy radical rings. However, it is an open question whether or not $\overline{\mathcal{M}}_{\alpha}$ differs from $\mathcal{L}(\mathcal{M}_{\alpha})$ (or even from \mathcal{M}_{α}). Of course, trivially, $\mathcal{M}_{\alpha} = \mathcal{L}(\mathcal{M}_{\alpha}) = \overline{\mathcal{M}}_{\alpha}$ since \mathcal{M}_{α} is the class of all rings.

We may also ask whether or not these radical classes differ for different α . There are a number of open questions in this regard, but we may state the following:

1. If α is a module type, then $\mathscr{L}(\mathscr{T}_{\alpha})$ is non-zero, and if $\alpha \neq \beta$, then $\mathscr{L}(\mathscr{T}_{\alpha}) \neq \mathscr{L}(\mathscr{T}_{\beta})$.

Proof. We may assume that $\alpha \leq \beta$. If $\alpha = d$, then $\beta \neq d$ and any field is in $\mathscr{L}(\mathscr{T}_d)$ but not in $\mathscr{L}(\mathscr{T}_\beta)$. If $\alpha = (c, k)$, use the ring $V = V_{c,c+k}$ [1; Section 5, p. 221] (see also [6; Footnote 6, p. 130]) universal for rings of type α ; then $V \in \mathscr{T}_\alpha$. Suppose that $V \in \mathscr{L}(\mathscr{T}_\beta)$; then, by Theorem 1, there exists a non-zero ideal I of V such that $t(I) \leq \beta$. But, aside from its unit, V has no elements which are even local identities. Thus V itself is the only ideal of V which has type, and $t(V) \leq \beta$.

2. Since \mathcal{M}_0 is the class of all Brown-McCoy radical rings, $\mathcal{L}(\mathcal{M}_0) = \mathcal{M}_0$. Then, since \mathcal{M}_β , for any $\beta \neq 0$, contains rings with unit, $\mathcal{L}(\mathcal{M}_0) \neq \mathcal{L}(\mathcal{M}_\beta), \beta \neq 0$.

On the other hand, $\mathscr{L}(\mathscr{M}_{\beta})$ for $\beta \neq d$ contains no fields, and, since $\mathscr{M}_{d} = \mathscr{L}(\mathscr{M}_{d})$ is the class of all rings, $\mathscr{L}(\mathscr{M}_{d}) \neq \mathscr{L}(\mathscr{M}_{\beta}), \beta \neq d$.

3. For given $\alpha \neq \beta$, if $\overline{\mathcal{M}}_{\alpha} \neq \overline{\mathcal{M}}_{\beta}$, then $\mathcal{L}(\mathcal{M}_{\alpha}) \neq \mathcal{L}(\mathcal{M}_{\beta})$.

Proof. We can assume that $\overline{\mathcal{M}}_{\alpha} \notin \overline{\mathcal{M}}_{\beta}$. Thus there must exist some R with $\overline{m}(R) \leq \alpha$ and $\overline{m}(R) \leq \beta$. It follows that R has a simple image \overline{R} with $t(\overline{R}) \leq \alpha$ and $t(\overline{R}) \leq \beta$. Hence $\overline{R} \in \mathcal{M}_{\alpha}$, and, since it is simple, $\overline{R} \notin \mathcal{L}(\mathcal{M}_{\beta})$.

4. When $\alpha = (c, k)$ and $\beta = (c', k')$, with $k \neq k'$ (integers ≥ 0) and c, c' arbitrary (integers ≥ 1 , or one or both equal to ω), then $\overline{\mathcal{M}}_{\alpha} \neq \overline{\mathcal{M}}_{\beta}$ and so $\mathcal{L}(\mathcal{M}_{\alpha}) \neq \mathcal{L}(\mathcal{M}_{\beta})$.

Proof. We may assume that $k \not\downarrow k'$ (so $k' \neq 0$). If $k \neq 0$, there exists a simple ring R [7; Theorem 2, p. 307] such that $t(R) = (1, k) \leq \alpha$, $\leq \beta$. Thus $R \in \overline{\mathcal{M}}_{\alpha}$, $\notin \overline{\mathcal{M}}_{\beta}$. If k = 0, we may use Construction 1 with $R = \sum_{i=1}^{\infty} \bigoplus R_i$, where the R_i are simple with $t(R_i) = (1, i)$. Then $\overline{m}(R) = (1, 0)$ and so again $R \in \overline{\mathcal{M}}_{\alpha}^{-1}, \notin \overline{\mathcal{M}}_{\beta}$.

5. The only remaining case is $\alpha = (c, k)$, $\beta = (c', k)$, with $c \neq c'$, say c' < c. It is clear that if a simple ring exists for which t(R) = (c, 1), then an argument similar to those of the preceding paragraph would show that $\overline{\mathcal{M}}_{\alpha} \neq \overline{\mathcal{M}}_{\beta}$. However, the existence of such rings for c > 1 is an open question. A further question, in this case, is the following: even if $\overline{\mathcal{M}}_{\alpha} = \overline{\mathcal{M}}_{\beta}$, does it follow that $\mathcal{L}(\mathcal{M}_{\alpha}) = \mathcal{L}(\mathcal{M}_{\beta})$?

REFERENCES

1. P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215-228.

2. J. Dieudonné, Sur le nombre de dimensions d'un module, C. R. Acad. Sci. Paris 215 (1942), 563-565.

3. A. E. Hoffman, *The constructions of the general theory of radicals*, Thesis, University of Nebraska (1966).

4. N. Jacobson, *The theory of rings*, Amer. Math. Soc. Mathematical Surveys, No. 2 (Providence, R.I., 1943).

5. A. G. Kurosh, Radicals in rings and algebras, Mat. Sb. N.S. 33 (1953), 13-26.

6. W. G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 103 (1962), 113-130.

7. W. G. Leavitt, The module type of homomorphic images, Duke Math. J. 32 (1965), 305-312.

8. N. H. McCoy, *Theory of rings* (New York, 1964).

9. R. E. Peinado and W. G. Leavitt, The maxit and minit of a ring, *Proc. Glasgow Math. Assoc.* 7 (1966), 128–135.

10. A. Sulinski, R. Anderson, and N. Divinsky, Lower radical properties for associative and alternative rings, J. London Math. Soc. 41 (1966), 417–424.

UNIVERSITY OF NEBRASKA