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AXIOMS FOR AN ^-METRIC STRUCTURE 

KERRY E. GRANT 

1. In t roduc t ion . From Euclid to Hilbert, and beyond, the primitive terms 
of geometry have been taken as "point," "line," etc., while "distance" plays a 
secondary role. The reversal of this situation is a modern development. 
Frechet [4], in 1906 first considered the properties of distance which should be 
formalized. The most significant contributions to the geometric properties of 
metric spaces have been by Menger [10] and Blumenthal [2; 3]. 

Menger devoted one section of his article to a logical generalization of metric 
spaces; viz., ^-metric spaces. Just as a metric structure is a set with a function 
defined on pairs of points, an ^-metric structure is a set with a function defined 
on (n + 1)-tuples of points. The generalization has lain dormant until quite 
recently [5; 6; 7; 8; 11], and the generalizations have not always been con
sistent with each other. 

2. T h e prob lem. For reference, let us state: 

Definition 1. A metric structure is a pair, (M,f), where M is a set a n d / a 
function on M X M to the reals (whose image at (p, q) we denote by pq) such 
that for all p,q,r £ M 

(a) pq ^ 0; 
(b) pq = qp\ 
(c) if p = q then pq = 0; 
(d) if p ?£ q then^g ^ 0; 
(e) pq ^ pr + qr-

This is, of course, not the most concise form in which to state the definition, 
but is most serviceable for the problem of generalization. Two closely related 
structures are the pseudo-metric (omitting property (d)) and the semi-metric 
(omitting property (e)). 

In generalizing a metric to an ^-metric structure, one obviously requires a 
set, M, and a function, fn, on Mn+1 to the reals. The difficulty lies in choosing 
restrictions onfn which are sufficient to generate a useful structure, but not so 
stringent as to restrict greatly the class of examples. 

Generalizing (a), non-negativeness, and (b), symmetry, is straightforward 
and intuitively desirable. And, when one contrasts the paucity of results in a 
semi-metric space with the wealth of results in a metric space, the simplex 
inequality, a generalization of (e), the triangle inequality, is most desirable. 
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The generalization of properties (c) and (d) is a more difficult problem. 
Do we, for example, generalize property (c) by saying: "If 2 of the points in an 
(n + l)-tuple are identical, the ^-measure is 0," or by: "If all points are 
identical, the n-measure is 0"? The example of Euclidean geometry suggests 
that we adopt the former. 

Another problem in the process of generalization occurs when we consider 
a space with several ^-metrics, for different values of n. In particular, if a 
2-metric is sought for a space already possessing a metric, one might reasonably 
expect or require a connection between the two. Namely, since colinearity is an 
easily defined metric property, should we not demand that the 2-measure of a 
colinear triple be 0, as it is with the usual 2-measure (area) in E2? 

The answer to this last question must be no, for otherwise we would eliminate 
a class of metric spaces from consideration as 2-metrics, and hold ourselves too 
rigorously to Euclidean properties. For there are many well-known metric 
spaces in which there exist convex tripods, i.e. quadruples with one point 
metrically between each pair of the other three points. The above suggestion 
would thus assign 2-measure 0 to three of the triples in the quadruple, and the 
simplex inequality would require 2-measure 0 of the remaining triple. In the 
metric space derived from a normed lattice, for example, for every non-colinear 
triple there exists a fourth point forming a convex tripod with these three; 
this suggested restriction, then, would require us to assign 2-measure 0 to every 
triple of the space. 

Furthermore, for n ^ 3, n-measure cannot be characterized in terms of the 
(n — 1)-metric in En [2]. Thus an axiomatic restriction of the sort suggested 
would eliminate En as an example of an ^-metric space for n ^ 3. 

3. The answer. The solution comes, formalistically, by separation, first 
generalizing axioms for a pseudo-metric, and then generalizing (Id). For the 
former, we characterize a pseudo-metric in a form which generalizes naturally, 
thanks to a heuristic lead furnished by Birkhoff [1, section 2, p. 466]. One 
easily verifies: 

THEOREM 2. A pseudo-metric structure is a pair, (M,f) where M is a set andf 
a function on M X M to the reals such that for all p, q, r Ç M, 

(a) pq ^ qr + rp; 
(b) if r = p or r = q, then pq = qr + rp. 

The only problem in generalizing this characterization is notational. Thus, 
we adopt the following notational abbreviations throughout the remainder of 
this paper: x0 or y0 for p\p2 . . . pn+i (the "^-measure" or "pseudo-w-measure" 
of pi, p2, . . . pn+i) ; Xi or yi for p2pz. . . Pn+2', xs for pj+1pj+2. . . pn+2pi • . . Pj-i 
(2 ^ j ^ n + 1) ; and y, for pxp2 . . . pj-ip^i. . . pn+2 (2 S j ^ n + 1). With 
this notation, we facilitate: 

Definition 3. A pseudo-w-metric structure is a pair, (M,fn) where M is a 
set and/ n a function on Mn+1 to the reals such that for all pu p2 . . . pn+2 G M, 
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(a) xo S xi + x2 + . . . + xn+i\ 
(b) if pn+2 = pi or pn+2 = p2 or . . . or pn+2 = pn+i, then x0 = xi + x2 . . . + 

THEOREM 4. Le£ £1, £>2. . . A»+i G Af, a pseudo-n-metric space. If at least m of 
these points are identical (2 :g m S n + 1), /Atfw Xo = 0. 

Proof, (by reverse induction) (a) lî m = n + 1 (all w + 1 points are iden
tical), let pn+2 = pi = . . . = pn+i- Then, x0 = xi = . . . = xn+i, and, by (3b), 
#o = Xi + x2 + . . . + #n+i. Therefore x0 = 0. 

(b) Assuming the theorem true for m = k + 1 (2 ^ k ^ ») , we show it true 
for m = k. Let pi, p2 • • . AH-I be any n + 1 points, at least k of which are 
identical; let the subscripts of these k identical points be ii, i2 . . . H\ let 
pn+2 = pu = . . . = pih. Then, by the inductive hypothesis, Xj = 0 if j 7e n, 
and thus Xo = xu + xi2 + . . . -\- xik and 

Xih = %ih+l ~T • • • ~T~ %ik i ^ 0 "T" • • • " T ^ i ' A - 1 

(1 ^ i ^ i ) . These fe + 1 equations in k + 1 indeterminates clearly have the 
solution Xo = xix = . . . = xik = 0, and this solution is seen to be unique by 
observing that the matrix of coefficients is non-singular. 

This theorem, for m = 2, is the generalization of (lc) consistent with 
Euclidean intuition. We can use this theorem to obtain the generalization 
of ( lb) : 

THEOREM 5. The pseudo-n-measure of n + 1 points is unchanged by any 
permutation of the points. 

Proof. Let pi, p2 . . . pn+i € M; let pn+2 = Pi for some i, 1 S i ^ n + 1. 
Then, by (4), a^ = 0 if j ^ 0 or j j£ i; and thus Xo = xiy by (3b). For i = 1, 
then, £i/>2 • • • Pn+i = p2pz . . . pn+ipi, which implies that the pseudo-w-measure 
is unchanged by cyclic permutation. And, for i = 2, 

Plp2 • • • Pn+l = ^3^4 . . . Pn+lp2pl = ^2^1^3 . . . £n+l» 

thus allowing transposition of the first two points. Obviously every permuta
tion of the n + 1 points is a finite combination of these two. 

As a corollary, we obtain the generalization of (le): 

COROLLARY 6. For all pi, p2 . . . pn+2 £ M, a pseudo-n-metric space, 

yo ^ yn+i + yn+ . . • + yi. 

Proof. By (5), Xj = yj} 0 g j S n + 1. 

The generalization of (la) now follows easily: 

THEOREM 7. 7w a// qi, q2. •. £n+i ê M, a pseudo-n-metric space, qiq2.. . gn+i = 0. 

Proof. Let £i = qly and £^ = <^_i, 2 ^ 7 ^ w + 2. Then, by (4), 3/0 = ^3 = 
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yA = . . . = yn+i = 0; and, by (6), 0 S Ji + y*. Bu t j i = p2pz. . . £ n + 2 = 
gig2 . . . qn+\ = ^1^3 . . . Pn+2 = y2] thus qiq2 . . . qn+i è 0. 

Definition 3, then, gives us all the desired properties of a pseudo-n-metric as 
generalized from Definition 1. There remains, then, the key problem of the 
generalization of ( Id ) . 

As background to this final problem, we observe: 

T H E O R E M 8. For all pi, p2. . . pn+2 £ M, a pseudo-n-metric space, if y2 = y% = 
. . . = yn+i = 0, then y0 = yi. 

Proof. By (6), y0 ^ yn+i + yn + • • • + J2 + y\ = 0 + . . . + 0 + yi = yx. 
Similarly, by (5) and (6), y± ^ yo, and therefore yo = yi. 

W e may paraphrase this theorem by saying t h a t if n of the n + 2 (n + 1)-
tuples of an (n + 2)-tuple have pseudo-^-measure 0, then the remaining two 
have equal pseudo-w-measure. As an obvious corollary, we have 

COROLLARY 9. For all pi, p2. . . pn+2 Ç M, a pseudo-n-metric space, if n + 1 
of then + 2 (n + 1)-tuples have pseudo-n-measure 0, then the (n + 2)nd also has 
pseudo-n-measure 0. 

We now give 

Definition 10. A trivial w-metric space, M, is one in which the pseudo-w-
measure of every (n + 1)-tuple is 0. 

Then from (4) follows 

T H E O R E M 11. If M is a non-trivial pseudo-n metric, \M\ ^ n + 1. 

W e also obtain 

T H E O R E M 12. For all o\ £ M, a non-trivial pseudo-n-metric space, there exist 
q2, qz . . . qn+1 Ç M such that qxq2 . . . qn+1 ^ 0. 

Proof. M non-trivial implies there ex i s t a i , p2 . . . pn+i 6 itf such t h a t y0 ^ 0. 
Then , lett ing pn+2 = qlt by (6) and (7), 0 < yQ S yn+i + yn + • • • + yi, 
which implies a t least one of yi, y2 . . . yn+i is non-zero; e.g., 

yt = Plp2 • • • pi-lpi+l . • . pn+2 9^ 0. 

Then , let t ing qt = pj-x (j = 2, 3 . . . i) and q, = p$ (j = i + 1, . . . n + 1), 
the theorem follows from (5). 

Finally, we are ready to complete the generalization by s tat ing: 

Definition 13. A pseudo-w-metric space, M, is an ^-metr ic space if and only if: 
if \M\ ^ n + 1 and if pi, p2 are distinct elements of M, then there exists a set 
of n — 1 points, {pz, pA. . . pn+i} C if , such t h a t £ i£ 2 . . . pn+i ^ 0. 

T h e conditional requirement on cardinali ty allows one to consider trivial 
examples of ^-metr ic spaces. T h e other condition excludes the trivial as an 
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example of w-metric space with cardinality greater than n. It follows from (12) 
that the ''almost trivial" is also excluded. 

4. Other answers and their interrelations. The fact that the condition 
of the above definition is a valid generalization of (Id) is obvious. Also obvious 
is the fact that this is not the most immediate generalization which comes to 
mind or has been used. Rather, the following two definitions suggest them
selves, the first on logical grounds, the second on Euclidean grounds. 

Definition 14. A pseudo-w-metric space, M, is an L-n-metric space if and 
only if: for all pip2 . . . pn+i € M, if x0 = 0, then there exist i,jy (1 g i < j g 
n + 1) such that pt = pj. 

Definition 15. A pseudo-^-metric space, M, is an E-n-metric space if and 
only if: for all plf p2. . . pn+2 € M, if pi 9e p2 and if y0 = yn+1 = yn . . . = yz = 0, 
then y2 = yi = 0. 

We can simplify the problem of comparing the three conditions by observing: 

THEOREM 16. Every L-n-metric space is an E-n-metric space. 

Proof. Let plt p2 . . . pn+2 G M such that pi ^ p2 and y0 = yn+i = yn • • • = 
3>3 = 0. y0 = 0 => there exist i,j (l^i<j^n+l) such that pt = pj. 

(a) i = 1: Pi ?± p2 =» j ^ 3 =» 3;2 = 0 by (4), => y i = 0 by (9). 
(b) i = 2: =^ yi = 0 by (4), => ^2 = 0 by (9). 
(c) i ^ 3: =>yi = 3/2 = Oby (4). 

And the relationship between (13) and (14) is obvious from the definitions; 
viz., 

THEOREM 17. Every L-n-metric space is an n-metric space. 

That the converses of these two theorems are false is easily seen in the 
example of E2 with the usual 2-metric (area of a triangle), which is a 2-metric 
and an E-2-metric, but not an L-2-metric. 

In order to compare (13) and (15), we must also consider cardinality and 
triviality. From definitions (10) and (15), we have: 

THEOREM 18. Every trivial pseudo-n-metric space is an E-n-metric space. 
(We should perhaps note that the analogous theorem for L-^-metric holds 
if and only if \M\ ^ n.) 

If we then consider any set M such that \M\ ^ n + 1 and assign the trivial 
pseudo-^-metric, we observe, by (13) and (18), 

COROLLARY 19. An E-n-metric space is not necessarily an n-metric space. 

A partial answer to the question of relationship is given in 

THEOREM 20. / / M is an n-metric space such that \M\ ^ n + 2, then M is an 
E-n-metric space. 
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Proof, (a) \M\ ^ n: the result is immediate from (11) and (18). 
(b) \M\ = n + 1: the (unique) (n + l)-tuple of n + 1 distinct points has 

non-zero ^-measure, and every other (n + 1)-tuple has w-measure zero. M is 
therefore an L-w-metric space and, by (16), an E-n-metric space. 

(c) \M\ = n + 2: if we suppose M is not an E-n-metric space, then there 
exist pi} p2 . . . pn+2 £ M such that pi 5̂  p2 and j 0 = yn+i = 3V = • • • = yz = 
0, but by (8) and (15), yi = ;y2 5̂  0. From (4), then, pi, pi . • . £n+2 are pairwise 
distinct, and must be the # + 2 points of M. But, then there does not exist 
a set \qz, q±. . . gw+i} C M such that £i£2#3 . . . qn+i ^ 0; i.e., M is not an 
w-metric space. 

(From the first two parts of the proof, we see that the analogous theorem for 
L-w-metric holds for \M\ S n + 1. A counterexample for \M\ ^ n + 2 is 
easily constructed with 4 points for n = 2.) The failure of Theorem 20 for 
|ikf| = n + 3 is given in the proof of the following, simpler relationship: 

THEOREM 21. An n-metric space is either an E-n-metric space or non-trivial, 
but not necessarily both. 

Proof. If \M\ S n + 2, then M is an £-rc-metric, by (20). If \M\ ^ n + 1, 
then M is non-trivial, by (13). To show that both are not necessarily true, we 
need merely choose M such that \M\ ^ n. We can also exemplify a non-trivial 
n-metric space which is not an E-n-metric; viz., M = {pi, p2 . . . pn+z], 3>o = 
yn+i = yn = . . . = yz = 0, and the ^-measure of every other (n + 1)-tuple is 
either 1 or 0, as the points are pairwise distinct or not, respectively. 

The counterexamples of (19) and (21) show that there is no necessary 
logical connection between an E-n-metric space and an n-metric space. It may 
be argued that the counterexample of (19) is trivial (in the technical and 
non-technical sense). This is so, and necessarily, as the two structures are 
logically related if we require the pseudo-n-metric structure to be non-trivial. 

THEOREM 22. Every non-trivial E-n-metric space is an n-metric space. 

Proof. Since M is non-trivial, \M\ ^ n + 1, by (11). Let pi, p2 be distinct 
elements of M. By (12), there exist p$, p±. . . pn+i such that yi 7^ 0. Then 
since M is an E-n-metric, one of y^, yn+u yn • • • yz is non-zero, and thus M is an 
n-metric space. 

5. Conclusion. As a final theorem, we formalize the following, obvious 
from the definitions alluded to: 

THEOREM 23. A set M is a metric space (I) if and only if M is a 1-metric space 
(13) if and only if M is an L-1-metric space (14) if and only if M is an E-l-
metric space (15). 

In other words, each of (13), (14), or (15) may validly be termed a general
ization of a metric structure. Why, then, do we choose one rather than another? 
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The answer is in Theorems (16), (17) and (22) which show that for all exam
ples, the L-n-metric is a special case of both the ^-metric and the E-n-metric 
and for non-trivial examples, our usual interest, the E-n-metric is a special 
case of the ^-metric. It seems reasonable, then, to choose definition (13), the 
"most general" generalization. 

This does not preclude the option of studying properties of E-n-metric and 
L-w-metric spaces. But it seems unreasonable to restrict oneself to one of these, 
thus eliminating consideration of the more general, yet accurate, generalization 
of a metric structure. 
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