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Fault zones have the potential to act as leakage pathways through low permeability
structural seals in geological reservoirs. Faults may facilitate migration of groundwater
contaminants and stored anthropogenic carbon dioxide (CO2), where the waste fluids
would otherwise remain securely trapped. We present an analytical model that describes
the dynamics of leakage through a fault zone cutting multiple aquifers and seals. Current
analytical models for a buoyant plume in a semi-infinite porous media are combined
with models for a leaking gravity current and a new model motivated by experimental
observation, to account for increased pressure gradients within the fault due to an increase
in Darcy velocity directly above the fault. In contrast to previous analytical fault models,
we verify our results using a series of analogous porous medium tank experiments,
with good matching of observed leakage rates and fluid distribution. We demonstrate
the utility of the model for the assessment of CO2 storage security, by application to a
naturally occurring CO2 reservoir, showing the dependence of the leakage rates and fluid
distribution on the fault/aquifer permeability contrast. The framework developed within
this study can be used for quick assessment of fluid leakage through fault zones, given
a set of input parameters relating to properties of the fault, aquifer and fluids, and can
be incorporated into basin-scale models to improve computational efficiency. The results
show the utility of using analytical methods and reduced-order modelling in complex
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geological systems, as well as the value of laboratory porous medium experiments to verify
results.

Key words: gravity currents, porous media, multiphase flow

1. Introduction

Buoyancy-driven flows in porous media have many important practical applications, linked
to the movement of fluids in the subsurface. Examples include the characterisation of
geothermal systems (Cheng 1979; Mahmoudi, Hooman & Vafai 2019), predicting the
movement of groundwater contaminating non-aqueous phase liquids such as chlorinated
organic solvents (Taylor et al. 2001; Bear & Cheng 2010) and monitoring the motion
and storage security of carbon dioxide (CO2) linked with large-scale carbon capture
and storage projects (Huppert & Neufeld 2014). The latter have recently received much
attention with the growing consensus that large quantities of anthropogenic CO2 emissions
will need to be captured and stored in the subsurface to meet global emissions targets
(IPCC 2018; IEA 2020).

The release of a contaminant or the injection of CO2 results in fluid travelling through
the reservoir as a result of gravitational forces until it reaches a confining layer. In typical
CO2 injection scenarios, the buoyant CO2 rises until it reaches a structural seal, a low
permeability rock layer such as a shale, anhydrite or salt, which prevents the fluid from
migrating beyond the storage reservoir. For geological carbon storage to be successful, it
is vital that the CO2 remains securely trapped in the subsurface over long time scales (Metz
et al. 2005). Defects within the seal may allow stored CO2 to leak into overlying aquifers
and eventually to the surface. Therefore, it is important to understand how these defects
may contribute to the migration of CO2. Likewise, for contaminants in the subsurface the
influence of defects in the reservoir seal may impact the dispersal of the contaminant.

Faults, which are localised zones of brittle deformation, are a common feature in
geological reservoirs, and may act as leakage pathways for trapped fluids. There is a large
body of work on the structure and fluid flow properties of fault zones (Caine, Evans &
Forster 1996; Faulkner et al. 2010; Nicol et al. 2017). A simple model for the structure of a
fault zone is a fault core, generally consisting of very fine grained crushed rock (gouge) and
larger fragments of broken up host rock, surrounded by a heavily fractured damage zone
(Wibberley, Yielding & Toro 2008). The fault core and surrounding damage zone have
very different hydraulic properties. Laboratory measurements on samples of fault core
show that the permeability can be reduced by two to three orders of magnitude compared
with the unfaulted host rock (Zhang & Tullis 1998; Shipton et al. 2002; Shipton, Evans
& Thompson 2005). In contrast, the presence of fracture networks in the fault damage
zone can increase the permeability of the host rock by two to three orders of magnitude
(Simpson, Guéguen & Schneider 2001; Oda, Takemura & Aoki 2002; Mitchell & Faulkner
2008). The resultant model for fluid flow in fault zones is a barrier-conduit system, where
the fault core acts as a barrier to across-fault flow and the fracture damage zone channels
flow parallel to the fault plane (Caine et al. 1996; Balsamo et al. 2010). Studies have
applied this model to explore vertical exchange flows through faults between multiple
aquifers (Woods et al. 2015) and upward migration of CO2 into overlying permeable
formations (Chang, Minkoff & Bryant 2008; Kang et al. 2014).

Faults are relatively small features in basin-scale models, so can be computationally
challenging and expensive to model accurately using standard multi-scale numerical flow
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Leakage dynamics of fault zones

simulations (Class et al. 2009; Nordbotten et al. 2009). One option is to develop analytical
models that describe fault behaviour, which are then integrated into the larger-scale
models (Nordbotten & Celia 2011; Kang et al. 2014). These models are constrained by the
assumptions needed to solve the mathematical system of equations, but solutions can be
obtained in seconds as opposed to hours/days, and developing these models also provides
insight into the dominant physical processes in the system.

A number of studies have focused on analytical solutions for buoyancy-driven flows or
on gravity currents in porous media with leakage from the current. This includes gravity
currents in unconfined porous media leaking steadily through a permeable boundary
(Acton, Huppert & Worster 2001; Pritchard, Woods & Hogg 2001; Pritchard & Hogg
2002), or leaking through discrete fractures, where the leakage flux is driven by the
hydrostatic pressure of the underlying less dense fluid (Pritchard 2007) or with the added
effect of the buoyancy of fluid in the fault (Neufeld, Vella & Huppert 2009). Previous
studies have also considered leakage in confined aquifers (Avci 1994; Nordbotten, Celia
& Bachu 2004, 2005) where leakage is driven by an increased pressure due to injection
or where a background pressure gradient between multiple aquifers contributes to driving
leakage through fractures (Pegler, Huppert & Neufeld 2014b). In all of these studies, the
leakage flux is driven by the Darcy velocity in the leaking boundary or fracture, which
is a product of the mobility of the injected fluid in the layer or fracture and the pressure
gradient across it.

The movement of fluids through porous rocks and small-scale fractures can be modelled
by considering miscible flows in porous media, where the flow is governed by Darcy’s
law. Miscible flows in porous media can be characterised by their Péclet number, Pe =
d0Uτ/Dd, which describes the relative importance of advection to diffusion in fluid
transport. Here, d0 is the mean grain diameter, U is the characteristic velocity of the flow,
τ is the tortuosity of the porous medium and Dd is the molecular diffusion coefficient. A
composite transport coefficient D can model the diffusive and dispersive contributions to
movement of fluid, where

D = d0U
(

1 + 1
Pe

)
(1.1)

(Houseworth 1984; Delgado 2007). In diffusion dominated flows, where Pe � 1, the
transport coefficient D � Dd/τ is constant whereas in advection dominated flows, where
Pe � 1, D � d0U is dependent on the flow speed.

As a buoyant fluid is injected into a reservoir or escapes through a fracture into an
adjacent aquifer, it initially forms a buoyant plume. The behaviour of a buoyant plume
in porous media was first studied by Wooding (1963), who mathematically modelled the
dynamics of a rectilinear plume in porous media for Darcy flow. He derived a similarity
solution that predicts the amount of entrainment from the ambient and therefore describes
the increasing volume flux of the plume with height. Sahu & Flynn (2015) derived a new
similarity solution for Darcy plumes with large Péclet numbers to obtain expressions for
the plume volume flux and mean reduced gravity as functions of vertical distance from the
source.

In this study we develop an analytical model to describe the dynamics of leakage
through a fault zone cutting multiple aquifers and seals, which we test against a new set
of laboratory experiments. To model flow in faults cross-cutting multiple aquifers, we
combine current analytical models for a buoyant plume in a semi-infinite porous medium
(Sahu & Flynn 2015) and a leaking gravity current (Pritchard 2007; Neufeld et al. 2009)
with a new model for fault leakage which accounts for increased pressure gradients within
the fault due to an increase in Darcy velocity directly above the fault. Previous studies
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providing analytical solutions to fault leakage problems have used numerical solvers to
verify their models (Kang et al. 2014). Here, we test the results with a novel set of porous
media tank experiments which show a good fit to the model. The results of the modelling
are illustrated by application to a naturally occurring CO2-charged aquifer system at Green
River, Utah, using an extension of the model to calculate the fluid distribution across
multiple vertically stacked aquifers, cross-cut by a fault.

In § 2 we formulate a theoretical model for the half-space plume in which the plume
volume flux and mean reduced gravity are used as inputs in a model for a leaking gravity
current and where leakage through the fault is driven by the hydrostatic pressure within
the underlying gravity current and the buoyancy of the fluid in the fault. In § 3 we show
numerical results for the gravity current shape and leakage rates. Observations from
experiments show that an increase in Darcy velocity within the secondary plume above
the fault leads to enhanced pressure gradients within the fault. In § 4 an expression for the
pressure above the fault is coupled with the leakage model presented in § 2, resulting in a
new model for leakage through the fault. The model is matched against results from a set of
analogue porous medium tank experiment in § 5, and in § 6 we demonstrate the application
of the model in CO2 storage by applying an extension of the model to predict CO2 leakage
across multiple aquifers. In § 7 we consider the validity of our model and discuss potential
limitations and extensions including the explicit inclusion of multiphase flow relationships
in the plume, gravity current and fault leakage models. Finally, we present the conclusions
from this study in § 8.

2. Theoretical model

In this section, we present a model for calculating the leakage flux from an aquifer
intersected by a fault. To achieve this, we couple a model for a buoyant plume in a
semi-infinite porous medium with a model for a two-dimensional gravity current spreading
under an impermeable base containing a fault of finite gap width and thickness, and known
permeability and porosity.

2.1. Buoyant plume in a semi-infinite porous aquifer
Here, we derive a solution for the steady flow of a two-dimensional buoyant plume in
a semi-infinite porous medium with unit thickness in the third dimension. A constant
input flux q0 of fluid with density ρ0 is injected into a porous medium with permeability
k and porosity φ saturated with a denser ambient fluid of density ρa. Both fluids are
assumed to be miscible, with equal viscosities such that there are no capillary effects
during the flow. The implications of this assumption for application to CO2–water systems
is discussed in § 7. The injected fluid mixes with the ambient fluid and forms a plume
with a volume flux Q(z) and density ρ(x, z) at a given height z (figure 1a). We follow
the analysis of Sahu & Flynn (2015) who considered an unconfined plume in a porous
medium for Darcy flow with Pe � 1, in contrast to Wooding (1963). Our analysis differs
by considering a half-space model, with an impermeable vertical boundary contacting the
injection location. Assuming steady Boussinesq flow (shown in previous studies to be a
useful approximation in CO2–water systems (Soltanian et al. 2016; Amooie, Soltanian
& Moortgat 2018)), the governing equations based on mass continuity, momentum
continuity, solute transport and a linear equation of state are

∂u
∂x

+ ∂w
∂z

= 0, (2.1)
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1
ρa

∂P
∂x

+ ν

k
u = 0, (2.2)

1
ρa

∂P
∂z

+ ν

k
w = −gρ

ρa
, (2.3)

1
φ

(
w
∂C
∂z

+ u
∂C
∂x

)
= ∂

∂x

(
DT
∂C
∂x

)
+ ∂

∂z

(
DL
∂C
∂z

)
, (2.4)

ρ = ρa(1 − βC), (2.5)

where u and w are the fluid velocities in the x and z directions respectively, P is the
fluid pressure, ν is the kinematic viscosity, g is the acceleration due to gravity, C is
the solute concentration, β is the solutal expansion coefficient and DL and DT are the
longitudinal and transverse dispersion coefficients, respectively. Since the plume is long
and thin we may neglect vertical variations in the horizontal velocity (∂w/∂x � ∂u/∂z)
and longitudinal dispersion. Hence, the combined momentum equations and the solute
transport equation become,

ν

k
∂w
∂x

= − g
ρa

∂ρ

∂x
, (2.6)

u
∂C
∂x

+ w
∂C
∂z

= φ
∂

∂x

(
DT
∂C
∂x

)
. (2.7)

We now introduce a streamfunction ψ such that w = ∂ψ/∂x and u = −(∂ψ/∂z). For
Pe � 1, the transverse dispersion coefficient may be approximated as

DT � αw, (2.8)

where α is the transverse dispersivity (Delgado 2007). On using (2.5) and (2.8), (2.6) and
(2.7) become

∂2ψ

∂x2 = gβk
ν

∂C
∂x
, (2.9)

∂ψ

∂x
∂C
∂z

− ∂ψ

∂z
∂C
∂x

= φα

(
∂2ψ

∂x2
∂C
∂x

+ ∂ψ

∂x
∂2C
∂x2

)
. (2.10)

For a steady plume, the buoyancy flux, or equivalently the solute mass flux, remains
constant with height, as the horizontally entraining ambient fluid only increases the
volume of the plume but does not alter the solute mass. The buoyancy flux of the plume
per unit thickness is conserved with height and is

F0 =
∫ ∞

0
wg′ dx, (2.11)

where g′ = g(ρa − ρ)/ρa ≡ gβC is the reduced gravity. A scaling analysis of (2.9), (2.10)
and (2.11) suggests that

ψ

x2 ∼ gβk
ν

C
x
, (2.12a)

ψC
xz

∼ φα
ψC
x3 , (2.12b)

F0 ∼ wg′x ∼ ψgβC. (2.12c)
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Equation (2.12b) motivates us to define a self-similar horizontal length scale of the plume

η = x√
φαz

(z > 0), (2.13)

where we note that z = 0 is the point of injection and therefore entrainment of the ambient
fluid and the corresponding plume equations are applicable only for z > 0. It is also worth
noting that the plume is defined as the region of the flow field where the concentration
C > 0, or equivalently g′ > 0. Now, on considering (2.12a), (2.12c) and (2.13) together,
we can define the streamfunction and concentration of the plume in the forms of similarity
functions F (η) and G (η) as

ψ =
[(

F0k
ν

)2

φαz

]1/4

F (η), (2.14)

and

C = 1
gβ

[(
F0ν

k

)2 1
φαz

]1/4

G (η), (2.15)

respectively. These expressions for ψ and C are related by (2.9) such that F ′(η) = G (η).
Similarly solute concentration, (2.10) implies that

F ′′′F ′ + F ′′F ′′ + 1
4F ′′F + 1

4F ′F ′ = (F ′′F ′)′ + 1
4 (F

′F )′ = 0. (2.16)

We solve (2.16) subject to the conditions that the solute concentration cannot be negative,
and tends to the background concentration in the far field, C(x, z) = 0 and F ′(η) = 0 as
x, η → ∞, whereas inside the plume C(x, z) > 0 and F ′(η) > 0. The transverse velocity
against the fault is zero, such that the value of the streamfunction ψ(0, z) = 0 so F (0) =
0. With these conditions, it can be shown that

F (η) =
{

c sin
η

2
, η < π,

c, η > π,
and G (η) = F ′(η) =

{ c
2

cos
η

2
, η < π,

0, η > π,
(2.17a,b)

where c = √
8/π is a constant of integration which is obtained by applying the solutions

for w (= ∂ψ/∂x) and g′ (= gβC) to (2.11). Therefore, the expression for the volume flux
per unit thickness of the plume is

Q =
∫ ∞

0
w dx =

[(
8F0k
νπ

)2

φαz

]1/4

. (2.18)

This result is a factor of
√

2 smaller than the volume flux of the unconfined plume given
by Sahu & Flynn (2015). Using (2.18), the average reduced gravity across the plume can
be calculated as a function of height,

ḡ′ = F0

Q
=
[(

πF0ν

8k

)2 1
φαz

]1/4

. (2.19)

The equations here are for an ideal plume formed purely by a buoyancy flux, where the
volume flux Q → 0 as z → 0. For a non-ideal plume with a finite volume flux these
assumptions do not hold. We can correct for this by extrapolating the flow to negative
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Figure 1. (a) Fluid with density ρ0 is injected with a constant input flux q0 into a porous medium with
permeability k and porosity φ, saturated with an ambient fluid of density ρa. The fluid forms a plume with
a volume flux Q(z) and density ρ(x, z) at a given height z. (b) After the buoyant plume reaches the top of the
aquifer, it provides a constant input flux q of fluid with density ρ1 into a gravity current which spreads into a
porous medium of permeability k and porosity φ saturated with an ambient fluid of density ρa. The thickness
of the current is given by h(x, t). The current spreads under an impermeable baffle containing a fault of gap
width df , thickness hf , permeability kf and porosity φf between x = 0 and x = df . Injected fluid leaks through
the fault with flux qF .

values of z and defining a point z = −z0 where the plume flux Q(−z0) = 0. The virtual
source location z0 is given by

z0 = 1
φα

(
πν

8F0k

)2

q4
0, (2.20)

where q0 is the volume flux into the system, and the buoyancy flux F0 = q0g′
0 where g′

0
is the reduced gravity of the injected fluid. Given these corrections for source conditions,
expressions for the plume volume flux per unit thickness and mean reduced gravity are

Q =
[(

8q0g′
0k

νπ

)2

φα(z + z0)

]1/4

, (2.21)

and

ḡ′ =
[(

πq0g′
0ν

8k

)2 1
φα(z + z0)

]1/4

. (2.22)

2.2. Gravity current with leaking fault at the origin
Here, we consider the behaviour of a two-dimensional density-driven flow of a fluid in a
porous medium of permeability k and porosity φ saturated with an ambient fluid of higher
density ρa and bounded on one side by an impermeable vertical boundary (figure 1b). The
injected fluid spreads below an impermeable horizontal baffle containing a fault of gap
width df , thickness hf , permeability kf and porosity φf which abuts the boundary. At the
horizontal baffle, a gravity current forms due to fluid input from a rising plume. The fluid
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density ρ1 and input rate q into the gravity current are calculated using the expressions
for the plume volume flux and mean reduced gravity derived in (2.21) and (2.22). The
values of q and ḡ′ are evaluated at a vertical distance H from the initial injection point,
which corresponds with the level of the base of the impermeable baffle. We assume that
the depth of the ambient fluid is large compared with the thickness of the current (H � h).
This means we can neglect the effects of flow in the ambient and assume the values of q
and ḡ′ remain constant with time.

Using (2.21) and (2.22), we obtain expressions for the input flux into the current and
reduced gravity of the current,

q =
[(

8q0g′
0k

νπ

)2

φαH(1 + θ)

]1/4

and g′ =
[(

πq0g′
0ν

8k

)2 1
φαH(1 + θ)

]1/4

,

(2.23a,b)
where the dimensionless parameter

θ = z0

H
= 1
φαH

(
πνq0

8g′
0k

)2

. (2.24)

At the impermeable baffle, the injected fluid forms a gravity current, with some fluid
leaking through the fault. We assume that the current is long and thin, and the velocity is
predominantly parallel to the baffle so that the pressure in the current is hydrostatic. The
fault is modelled using the barrier-conduit system described in § 1, with the fault damage
zone within the baffle modelled using an average permeability kf and width df . Neufeld
et al. (2009) formulated a model for drainage through a fissure of given permeability and
width, which incorporates both flow driven by hydrostatic pressure as well as the buoyancy
of the fluid in the fault itself,

wf (t) = kf

μ

Δρg(h0(t)+ hf )

hf
= kf g′h0(t)

νhf

[
1 + hf

h0(t)

]
. (2.25)

Here, kf is the permeability of the fault, hf is the length of the fault, μ is the dynamic
viscosity and ν is the kinematic viscosity of the leaking fluid, h0 is the thickness of the
current at x = 0 (h0 = h(0, t)) and g′ is the reduced gravity of the current. Note that,
despite the width of the fault, df > 0, we assume that its effect on the gravity current is
localised to the point x = 0, and the leakage is driven by the thickness there. A sharp
interface between the injected and ambient fluids is described by a thickness h(x, t) below
the baffle at z = H. Dispersion will occur predominantly at the edges of the gravity current
as it propagates into the reservoir and is expected to alter the shape of the current, the
implications of which are discussed during comparison with the experimental results in
§ 5.3. However, where the plume feeds the current directly below the fault, dispersion will
be less pronounced. Hence, we neglect dispersion in the gravity current as it does not
significantly affect leakage through the fault. The flow in the gravity current is driven by
gradients in the hydrostatic pressure, and the evolution of the height is determined by the
divergence of the fluid flux,

φ
∂h
∂t

= kg′

ν

∂

∂x

(
h
∂h
∂x

)
. (2.26)

The current forms when the plume impacts the impermeable baffle, and has initial
condition

h(x, 0) = 0. (2.27)
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Subsequently the gravity current is fed by the plume and has boundary conditions,[
kg′

ν
h
∂h
∂x

]
x=0

= −(q − qF),

[
kg′

ν
h
∂h
∂x

]
x=xN

= 0, h(xN, t) = 0, (2.28a–c)

which describe the input flux at the origin (equal to the plume input flux q, minus the fault
leakage flux qF), a no flux condition through the nose of the current and zero thickness at
the nose of the current. The current satisfies global conservation of mass given by,

φ

∫ xN

0
h dx = qt − dfφf kf g′

νhf

∫ t

0
h0

(
1 + hf

h0

)
dt, (2.29)

where the final term comes from (2.25) and is equal to the total volume of fluid that has
leaked through the fault. Note that time t = 0 in (2.29) is the instance the plume first
reaches the impermeable baffle at z = H.

2.2.1. Non-dimensionalisation
Based on (2.23a,b), (2.26) and (2.29) we define the following dimensionless variables,

x̃ =
g′k2

f d2
f φ

2
f

kqνh2
f

x =
πk2

f d2
f φ

2
f

8k2h2
f φ

1/2α1/2H1/2(1 + θ)1/2
x, (2.30a)

h̃ = g′kf dfφf

qνhf
h = πkf dfφf

8khfφ1/2α1/2H1/2(1 + θ)1/2
h, (2.30b)

t̃ =
g′2k3

f d3
f φ

3
f

kφqν2h3
f

t =
π3/2k3

f d3
f φ

3
f q1/2

0 g′1/2
0

83/2k5/2h3
f ν

1/2φ7/4α3/4H3/4(1 + θ)3/4
t. (2.30c)

By substituting (2.30a–c), (2.26)–(2.29) become,

∂ h̃
∂ t̃

= ∂

∂ x̃

(
h̃
∂ h̃
∂ x̃

)
, (2.31)

h̃(x̃, 0) = 0 and h̃(x̃N, t̃) = 0, (2.32a,b)∫ x̃N

0
h̃ dx̃ = t̃ −

∫ t̃

0
h̃0

(
1 + hf

h̃0

kf dfφf g′

qνhf

)
dt̃. (2.33)

We introduce the dimensionless parameter

λ = g′kf dfφf

qν
= πkf dfφf

8kφ1/2α1/2H1/2(1 + θ)1/2
, (2.34)

that characterises the strength of leakage through the fault due to the buoyancy of fluid in
the fault so that (2.33) now has the form,∫ x̃N

0
h̃ dx̃ = (1 − λ)t̃ −

∫ t̃

0
h̃0 dt̃. (2.35)

Here, λ = 0 describes the case where the leakage through the fault is only driven by the
hydrostatic pressure within the underlying gravity current, and not by the buoyancy of fluid
in the fault.
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Figure 2. (a) Thickness profiles of the gravity current from t̃ = 5 to t̃ = 50 at intervals of 5 for the λ = 0 case.
(b) Normalised thickness profiles for λ = 0 showing the change in shape of the current over time and deviation
away from the self-similar zero leakage solution.

3. Numerical solutions

We solve for the full time-dependent behaviour of the gravity current numerically using a
finite difference scheme. The thickness profile of the current is initially h̃(x̃, 0) = 0, and
the subsequent evolution is described by (2.31)–(2.35). The thickness at x̃ = 0 is obtained
by solving (2.35) at each time step, using the thickness profile obtained from solving (2.31)
and calculating the new leaked volume of fluid using h̃0 from the previous time step.
Results obtained are shown in figures 2–4.

Figure 2(a) illustrates the solution for the gravity current shape as a function of time.
The thickness profiles of the current are plotted from t̃ = 0 to t̃ = 50 at intervals of 5
with λ = 0, which describes the case where leakage through the fault is only driven by
the hydrostatic pressure within the current below the fault. Figure 2(b) shows three height
profiles at t̃ = 0.5, t̃ = 5 and t̃ = 50 (solid lines), where the extent and height of the profiles
have been normalised by the maximum extent x̃N and the thickness of the current at x̃ = 0,
h̃0. The self-similar solution for the propagation of a gravity current through a porous
medium with a constant input flux and with zero leakage (Huppert & Woods 1995) is also
plotted (dashed line). The solutions for the leaking gravity current deviate from the zero
leakage case over time, demonstrating a non-self-similar behaviour of the leaking current.

In figure 3(a), the evolution of the horizontal and vertical extent of the leaking gravity
current is plotted for λ = 0 (solid lines). At early times, the horizontal extent evolves
following a t̃2/3 power law relationship and the vertical extent of the current evolves
following a t̃1/3 power law relationship which agrees with the solutions for a gravity
current with no leakage (Huppert & Woods 1995). At late times, the horizontal and vertical
extent evolution deviate from these power law relationships. The vertical extent of the
current tends to a constant value, resulting in a constant rate of leakage from the current.
Late time asymptotic behaviour of (2.28) and (2.29) indicates that the thickness at the
origin h0 asymptotes to a constant as the gravity current nose tends towards infinity. It is
possible to show (by considering a small perturbation to this equilibrium point) that the
nose position approaches infinity like xN ∼ (qt)1/2 in this late time regime (see Appendix
A). This late time behaviour can be seen if the gradients of the log–log graph for the
vertical and horizontal extent of the current are plotted as a function of time (figure 3b).
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Figure 3. (a) Leaking gravity current horizontal extent and vertical extent at x̃ = 0 plotted as a function of
t̃ for the λ = 0 case (solid lines). Dashed lines show the power law behaviour of a gravity current with no
leakage. (b) Gradient of the logarithmic horizontal and vertical extent evolution plotted as a function of time
(solid lines). The horizontal and vertical extent deviate away from the 2/3 and 1/3 power law relationships of a
gravity current with no leakage (dashed lines).
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Figure 4. (a) Total injection volume, gravity current volume and total leaked volume plotted as a function of
time for λ = 0, 0.1, 0.2 and 0.3. (b) Injection rate, rate of fluid input into the gravity current and the rate of
leakage through the fault as a function of time.

The total injected volume of fluid into the system increases linearly with time and
partitions between the gravity current and any leaked volume through the fault. A
quantitative understanding of this partitioning is a key metric for the storage security of
injected fluids in the subsurface. The total injection volume, gravity current volume and
total leaked volume, represented by the terms t̃,

∫ x̃N
0 h̃ dx̃ and

∫ t̃
0(h̃0 + λ) dt̃ in (2.35), are

calculated as a function of time and plotted in figure 4(a) for different values of λ.
Initially, the volume of fluid going into the gravity current is greater than the volume

of the fluid leaking through the fault. However, as the height of the current below the
fault increases, a larger hydrostatic pressure drives more fluid through the fault and the
volume of fluid leaking becomes larger than the volume of fluid going into the gravity
current. This transition can be seen when the fluxes of fluid going into the gravity current

931 A31-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.970


K.A. Gilmore and others

z

p

p(z)

p
a  _ ρ

a gz

(a) (b)

(c)

Gravity current

Se
co

nd
ar

y 
pl

um
e

Fa
ul

t
Pr

im
ar

y 
pl

um
e

db

wb

d(z)

xz = 0, p = pap = p– wf

df

kf , φf 

k, φ

hf Baffle

z

p = p+

h0

Fa
ul

t
Pr

im
ar

y
pl

um
e

Se
co

nd
ar

y
pl

um
e

Gravity current

Baffle3 cm

ρ = ρ1 ρ = ρa > ρ1

Figure 5. (a) Schematic diagram illustrating the different parameters of the problem. The secondary plume
z ≥ 0 is fed by a pressure-driven flow wf through the fault, but must accelerate to match the natural buoyancy
velocity wb downstream. Hence, the plume width d(z) thins out from initial width df to ultimate width db,
resulting in a differential negative pressure p− near its source. Note the redefined position of z = 0. (b)
Figurative plot of the vertical pressure profile above the fault. (c) Close up of a laboratory experiment showing
thinning of the secondary plume above the baffle (note orientation of experimental image has been rotated by
180◦, see § 5).

and leaking through the fault are plotted as a function of time (figure 4b). The value of
λ signifies the buoyancy of fluid in the fault. As λ increases, the buoyancy flux through
the fault increases, and so the leakage flux is a larger proportion of the total flux into the
system.

4. A simple model for the pressure above the baffle

The theoretical model described in § 2 accounts for leakage due to the hydrostatic pressure
in the underlying gravity current and the buoyancy of the fluid in the fault. In several of our
laboratory experiments (presented in § 5), we observe a thinning of the secondary plume
that forms above the baffle close to the fault (figure 5c). The thinning may be caused by
an acceleration of the secondary plume, leading to differential negative pressures near the
fault which increase the total pressure gradient across the fault. Transport of concentration
in the secondary plume is similar to that described in § 2.1, but the length scale over which
this dispersion plays an important role is much larger than the length scale for the thinning
of the plume (figure 11b), hence we do not include these effects. In this section we create
a model for the pressure above the baffle by considering an asymptotic expansion in terms
of a small deviation to the plume inlet velocity.
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Leakage dynamics of fault zones

4.1. Thinning plume model
The scenario we consider is illustrated in figure 5(a). Note the redefined position of z = 0.
The secondary plume z ≥ 0 is fed by a vertical inlet velocity wf which is slightly smaller
than the buoyancy velocity wb = kΔρg/μ, such that wf = wb(1 − ε) for some small
parameter ε � 1. As a result, the width of the plume, which we denote d(z), must reduce
from an initial value df to a far-field value db = wf df /wb. Note that it is possible for ε to
be negative, in which case the width of the secondary plume would increase. We model
the flow into the secondary plume using Darcy’s law and mass conservation,

u = − k
μ

∇ (p + ρ1gz) , ∇ · u = 0, (4.1a,b)

along with boundary conditions corresponding to constant inflow across the fault,
impermeability at the vertical left-hand wall and far-field velocity conditions

w = wb(1 − ε), at z = 0, (4.2)

u = 0, at x = 0, (4.3)

w → wb, at z → ∞, (4.4)

respectively, where u and w are the fluid velocities in the x and z directions. At the edge
of the steady plume, we impose a kinematic boundary condition and we enforce that the
pressure equals the ambient hydrostatic

u = w
dd
dz
, and p = pa − ρagz, at x = d(z). (4.5a,b)

The pressure at the edge of the plume is hydrostatic (4.5), since it must match with the
pressure in the adjacent static ambient fluid. We therefore consider an asymptotic solution
of the form

u = εû(x, z)+ · · · , (4.6)

w = wb + εŵ(x, z)+ · · · , (4.7)

p = pa − ρagz + εp̂(x, z)+ · · · , (4.8)

d = df + εd̂(z)+ · · · , (4.9)

for ε � 1. Clearly in the limit ε → 0 the leading-order terms in (4.6)–(4.9) satisfy
(4.1)–(4.5), as expected. At first order in ε, the pressure must satisfy the linear system

∇2p̂ = 0, (4.10)

∂ p̂
∂z

= Δρg, at z = 0, (4.11)

∂ p̂
∂x

= 0, at x = 0, (4.12)

∂ p̂
∂z

→ 0, at z → ∞, (4.13)

p̂ = 0, at x = df , (4.14)

∂ p̂
∂x

= −Δρg
dd̂
dz
, at x = df . (4.15)
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Conservation of mass dictates that the pressure must satisfy Laplace’s equation, which
since it is linear results in (4.10). Likewise, the boundary conditions (4.2)–(4.4) and
the hydrostatic condition in (4.5b) are all linear equations. Hence, they must apply to
leading- and first-order pressure terms alike. The leading-order pressure solution (first
part of (4.8)) satisfies all of these trivially. The only nonlinear equation is (4.5a), also
known as the kinematic condition. In this case, one must expand out the variables,
keeping only first-order terms, which gives (4.15). Conveniently, (4.10)–(4.14) can be
solved independently of (4.15), indicating that the plume shape and the pressure are
decoupled. The pressure solution is calculated by separation of variables, giving

p̂ = −8Δρgdf

π2

∞∑
n=0

(−1)n

(2n + 1)2
cos

[
(2n + 1)

πx
2df

]
exp(− (2n + 1)πz/2df ). (4.16)

Hence, the pressure (including both leading- and first-order terms) at x = z = 0, which we
denote p−, is given by

p− = pa − Δρgdf

[
8G
π2

(
1 − wf

wb

)]
, (4.17)

where G = ∑∞
n=0(−1)n/(2n + 1)2 ≈ 0.9160 is Catalan’s constant. The plume shape is

calculated by evaluating (4.15) and (4.16), which converges to the differential equation

dd̂
dz

= − 4
π

tanh−1 [exp(−πz/2df )
]
. (4.18)

We solve (4.18) with boundary condition d̂(0) = 0 and plot the solution in figure 6(a).
Clearly, d̂ → −df as z → ∞, such that the the total plume shape df + εd̂ asymptotes to
the far-field plume width db = df wf /wb, as required.

We note that both the pressure p− and the inlet velocity wf are unknown in (4.17).
Hence, to close the system we require a second equation relating these two quantities. This
is given by considering the flow through the fault −hf < z ≤ 0. In particular, as illustrated
in figure 5, the flow through the fault is driven by a difference in pressure p+ − p−, where
p+ is set by the thickness of the gravity current

p+ = pa + Δρgh0 + ρaghf . (4.19)

Hence, by approximating Darcy’s law across the fault we arrive at a second relationship,

wf = −kf

μ

[
p− − p+

hf
− ρ1g

]
. (4.20)

Rearranging (4.17) and (4.20), we arrive at dimensionless equations for wf /wb and p−,

wf

wb
= 1 + (h̃f + h̃0)π

2/8G

1 + k̃h̃f π2/8G
, (4.21)

p− = pa − Δρgdf

[
h̃f (k̃ − 1)− h̃0

1 + k̃h̃f π2/8G

]
, (4.22)

where h̃0 = h0/df , h̃f = hf /df and k̃ = k/kf are known parameters. From (4.21) and (4.22)
it is clear that negative values of p− − pa correspond to wf /wb < 1, and positive values of
p− − pa correspond to wf /wb > 1.
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Figure 6. (a) Perturbation of the width of the secondary plume (4.18). (b,c) Contour plots of the pressure above
the baffle p− (4.17), normalised to give a dimensionless value ( p− − pa)/Δρgdf , for the different parameters
of the problem h̃0 = h0/df , h̃f = hf /df and k̃ = k/kf . Regions of the contour plots resulting in a widening
plume wf /wb > 1 and positive values of p− are omitted.

The pressure p− (written in dimensionless form ( p− − pa)/Δρgdf ) is illustrated in
figures 6(b) and 6(c) using contour plots. Largest negative pressures are observed for small
values of the gravity current thickness h̃0, or large values of h̃f and k̃ (corresponding to
small velocity ratios wf /wb). We note, however, that we do not expect our asymptotic
solution to be valid for wf /wb � 1. In such situations a full numerical simulation is
required to determine p−. Nevertheless, for the parameter range of the current study
(wf /wb ∈ [0.5, 1.2]) we expect (4.22) to remain a good approximation.

5. Laboratory study

We conducted a series of laboratory experiments to test two aspects of our theoretical
predictions. First, the spatial distribution of the gravity current was measured as a function
of time. Second, the partitioning of fluxes between the gravity current and the fault was
measured by calibrating the image intensity and dye concentration. As it was easier to
model experimentally, we considered a system in which the injected fluid is more dense
with respect to the ambient. Given the Boussinesq approximation, this system behaves in a
symmetrical manner to a less dense fluid rising in an aquifer saturated with a denser fluid.
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Exp. Symbol df (cm) hf (cm) H (cm) q0 (cm3 s−1) ρ0 (g cm−3) λ

A1 1.2 1.0 30.0 0.240 1.030 0.12
A2 1.2 1.0 30.0 0.129 1.030 0.16
A3 1.2 1.0 30.0 0.040 1.070 0.19
B1 1.9 1.5 40.0 0.239 1.030 0.18
B2 1.9 1.5 40.0 0.139 1.030 0.23
B3 1.9 1.5 40.0 0.115 1.070 0.26
B4 1.9 1.5 40.0 0.039 1.070 0.27
C1 2.5 2.0 40.0 0.245 1.030 0.24
C2 2.5 2.0 40.0 0.141 1.030 0.30
C3 2.5 2.0 40.0 0.112 1.070 0.34
C4 2.5 2.0 40.0 0.040 1.070 0.35
D1 3.0 3.0 29.9 0.242 1.030 0.31
D2 3.0 3.0 29.9 0.182 1.030 0.36
D3 3.0 3.0 29.9 0.102 1.030 0.43
D4 3.0 3.0 29.9 0.041 1.070 0.49

Table 1. Parameter values used in our experiments with associated value of λ from (2.34). Typical
uncertainties in these measurements are df ± 0.05, hf ± 0.05, H ± 0.1 cm, q0 ± 0.001 cm3 s−1 and ρ0 ±
0.005 g cm−3.

The experimental images presented are rotated by 180◦ for ready comparison between the
analytical and experimental results.

5.1. Experimental set-up
The experiments were performed within a Perspex cell of length 40 cm, height 70 cm and
internal thickness 1 cm (figure 7). The cell was filled with glass ballotini which formed a
porous layer. The glass ballotini filling the majority of the cell had diameter b0 = 3.1 ±
0.2 mm except for the region adjacent to a central plastic spacer that lies across the cell
where the ballotini diameter bf = 1.0 ± 0.1 mm. The porosity of 3 mm glass ballotini in a
cell of width 1 cm was measured by Sahu & Neufeld (2020) and found to be φ = 0.41 ±
0.01, which is slightly higher than the value of φ = 0.37 for randomly close-packed beads
as the width of the cell is comparable to the bead size. The permeability of the larger
porous medium filling the majority of the cell was estimated using the Kozeny–Carman
relation

k = b2
0

180
φ3

(1 − φ)2
≈ 1.06 ± 0.15 × 10−8 m2. (5.1)

The Kozeny–Carman relationship breaks down when applied to a small volume of beads,
hence the permeability of the region with smaller ballotini was treated as an unknown
parameter and fitted for (see § 5.3). The entire cell submerged in a large water tank with
dimensions 90 cm × 80 cm × 80 cm filled with fresh water of density ρa = 0.998 g cm−3.
The cell was closed on three sides, with one side open but lined with a permeable mesh
so that this unconfined side created a hydrostatic pressure boundary condition at the
right-hand side of the cell. A total of 15 experiments were conducted, using four different
fault geometries (A–D), as summarised in table 1.

During the experimental run, a peristaltic pump was used to inject aqueous solutions
of sodium chloride (brine) dyed with red food colouring into the cell at a constant rate
q0 which ranged from 0.039–0.245 cm3 s−1, and was calculated by measuring the mass
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Figure 7. Schematic of the experimental set-up.

of the brine container over the course of the experiment. The injected brine solutions had
an initial dye concentration of c0 = 3.00 ± 0.05 g l−1 and an initial density ρ0 = 1.030
or 1.070 g cm−3, assuming a water temperature of 20 ◦C (Green & Southard 2019). The
kinematic viscosity of the water was 0.01 cm2 s−1 and the transverse dispersivity of
the glass ballotini was assumed to be α = 0.005 cm (Delgado 2007). The experimental
parameters were selected so experiments spanned a range of λ values. We used a Nikon
D5000 DSLR camera with a resolution of 4288 × 2848 pixels to capture images over the
course of the experiment with a time gap which ranged from 4 to 10 s. The cell was backlit
using a LED light panel with a Perspex diffuser to ensure uniform illumination.

5.2. Post-processing scheme
A set of photographs for experiment B2 is shown in figure 8, rotated by 180◦ for ready
comparison between the analytical and experimental results. The theoretical predictions
for the position of the gravity current interface h(x, t) in the bottom portion of the cell is
plotted for the thinning plume model, along with the interface for the zero leakage model
(Huppert & Woods 1995). The time t = 0 is defined as the point where the plume first
makes contact with the bottom of the central spacer. The horizontal extent of the gravity
current was measured as a function of time by picking the furthest front of the current
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Figure 8. Images showing the evolution of experiment B2. The theoretical predictions for the position of the
interface h(x, t) are shown for the thinning plume model presented in § 4 and the zero leakage model (Huppert
& Woods 1995). Images are rotated 180◦ to allow comparison with theoretical results (see § 5).

above a threshold value. The error range of the measurements was set by calculating the
extent for a range of threshold values. The results were verified by manually checking
the front location from photographs and showed excellent agreement. The height of the
current was more difficult to interpret due to dispersion from the plume making the top of
the current uncertain.

To measure the flux of fluid leaking through the fault, the concentration of the injected
fluid throughout the cell must be determined, and so a series of calibration experiments
were performed to determine the functional relationship between the image intensity and
dye concentration. In each calibration experiment, the cell was uniformly saturated with
a red dye solution with concentration Cd. The light intensity for the calibration image
was calculated by subtracting the light intensity from a reference image containing no
dye. A total of 20 different concentrations between 0 and 3.00 ± 0.05 g l−1 were used to
construct calibration curves for the green and blue colour channels (figure 9). The dye
calibration is more sensitive to different colour channels at different dye concentrations,
so a hybrid calibration curve was used which weighted contributions from the green
and blue curves. The full function form of the hybrid calibration curve is given in
Appendix B.

The mass of dye across the cell is calculated by summing the average concentration
within 0.5 cm × 0.5 cm sized bins, with the leaked mass equal to the total mass below
the top of the baffle. The total error in measurement is the sum of two errors. First, the
leaked dye mass shows a linear behaviour at late times. A root-mean-square deviation from
a regression line was calculated, with the deviations likely caused by small variations
in light intensity between each photo, for example due to trapped air bubbles. Second,
the total measured mass of dye across the cell was compared with the known input
dye mass for each experiment. The measured mass increases linearly as a function
of time but the post-processing recovers 83 %–97 % of the input dye mass across
experiments. The partial measurement of the input dye is likely due to sensitivity of
the calibration curve to smaller concentrations. For each experiment, the measured dye
mass is scaled to the known input dye mass and the difference is defined as the error in
measurement.
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Figure 9. Calibration curves of image intensity against dye concentration for the green and blue colour
channels (black dashed lines). Also plotted is the effective concentration where both calibration curves have
equal weighting (grey solid line) and the 99 % intervals above and below which the green and blue curves
dominate the effective concentration (grey dashed lines). See Appendix B for functional forms of the curves.

5.3. Experimental results and comparison with theory
Figure 10(a) shows the total leaked dye mass (black circles) and leakage flux (pink circles)
as a function of time for experiment A3. The leaked flux is calculated by taking the gradient
of a quadratic polynomial fitted over a seven element moving window. The errors bars
represent a 95 % confidence interval for the regression coefficients.

The experimental results are compared with theoretical results from three different
models presented in §§ 2 and 4. The first model only considers the contribution from the
hydrostatic pressure within the underlying current (λ = 0). The second model considers
contributions from the underlying current and the buoyancy of fluid in the fault (λ /= 0),
and the third model includes both of these effects but also considers the contribution of
flow-enhancing pressure deviations directly above the fault (thinning plume model). There
is very little difference between the solutions for the second and third models, suggesting
that the effects of pressure deviations above the baffle due to thinning of the secondary
plume are minimal. This agrees with experimental observations (figure 10b), which show
that the width of the secondary plume is the same as the width of the fault (db/df ≈ 1).

Due to the difficulty in estimating the fault permeability kf , this was calculated by
minimising the misfit between the experimental data and the thinning plume model
using a least-squares regression for one of the experiments. Experiment A3 (figure 10)
was selected to fit the fault permeability due to the agreement between the thinning
plume model and the λ /= 0 model. A value of kf = k0/3.9 ≈ 2.7 ± 0.3 × 10−9 m2 was
obtained and this value was used to calculate the theoretical results across the other
experiments. It is possible that there is some variation in the fault permeability across
different experiments, but this should be small as the faults are a similar size and were all
packed using the same method. The sensitivity of the thinning plume model to changes in
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Figure 10. (a) Total leaked dye mass (green circles) and leakage flux (pink circles) plotted as a function of time
for experiment A3 along with results for three leakage models (green and pink lines). Grey dashed lines display
thinning plume model solutions for an uncertainty range for input kf ± 20 %. (b) Picture of the experiment at
time t = 700 s with width of fault df and width of secondary plume db indicated.
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time for experiment D4 along with results for three leakage models (green and pink lines). (b) Picture of the
experiment at time t = 660 s with width of fault df and width of secondary plume db indicated.

fault permeability is shown by the grey dashed lines in figure 10(a), in which the model
solutions are displayed for kf ± 20 %.

Figure 11(a) shows the total leaked dye mass (black circles) and leakage flux (pink
circles) as a function of time for experiment D4, along with theoretical results for
the three models. There is a clear difference between the model which allows for a
thinning plume above the baffle and the model only considering contributions from the
underlying current and buoyancy in the fault, suggesting that acceleration and thinning
of the secondary plume is leading to enhanced pressure gradients within the fault.
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Figure 12. Total leaked volume through the fault plotted as a function of time for the experimental set-ups
(a–d), with symbols listed in table 1. Theoretical predictions of the leakage volume for each experiment
calculated from the thinning plume model plotted as dashed lines.

Experimental observations are in agreement (figure 11b), where significant thinning of
the secondary plume can be seen above the fault (db/df < 1).

Note that the model considering buoyancy in the fault assumes that the fault is initially
full of the injected fluid. Furthermore, the thinning plume model assumes that a secondary
plume has reached a quasi-steady state profile above the fault. In reality, at early times the
fault remains filled with the ambient fluid so the only driving force is the hydrostatic
pressure in the underlying current. To account for this, a breakthrough time is introduced,
defined as the time it takes for the injected fluid to fill the fault and breakthrough
into the upper reservoir, which is obtained from experimental observations. Prior to the
breakthrough time, all three models only consider the contribution from the underlying
current. After the breakthrough time, the other driving forces are taken into account.
Further details on how the breakthrough time is calculated and the sensitivity of the
model to the breakthrough time is given in the supplementary material available at https://
doi.org/10.1017/jfm.2021.970. This modification to the theory results in a discontinuous
leakage flux profile (pink dashes, figures 10(a), 11(a)), where the leakage flux increases
rapidly at the breakthrough time. These predictions broadly agree with the behaviour seen
in the experimental data, where initial leakage rates are slow as the fault fills with the
injected fluid before increasing rapidly to a higher and constant rate. The thinning plume
model shows good agreement with the experimental data in both total leaked dye mass
and leakage flux.

Figure 12 shows the total leaked dye mass as a function of time across all experiments,
with symbols listed in table 1. The solutions for the thinning plume model are plotted for
each experiment and show good agreement across all experimental set-ups (a–d).
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Figure 13. Evolution of horizontal extent of the gravity current xN plotted for the experimental set-ups (a–d),
with symbols listed in table 1. Theoretical predictions for the extent growth plotted as black dashed lines.

The horizontal extent of the underlying gravity current along with solutions from the
thinning plume model is plotted in figure 13 for experimental set-ups A–D. In general the
theoretical model shows good agreement with the experimental data, although it tends to
overpredict the horizontal extent of the current. A possible explanation is that the gravity
current entrains ambient fluid as it moves into the reservoir which is not captured in the
model. This decreases the reduced gravity of the current, and hence reduces the distance
it travels. This effect would also cause the thickness of the current to increase, and this
can be seen in figure 8, where the experimental current has a greater thickness than the
thinning plume model predicts, but appears more dispersed towards its outer edge.

6. Application to a CO2 storage reservoir

In reservoirs with multiple faulted aquifers and seals, a fraction of the injected fluid will
flow into the aquifers at each level and a diminishing amount will continue to leak through
the fault. When applied to geological CO2 sequestration, this has important implications
for providing an initial estimate of the security of a potential field-scale storage site,
especially where numerical reservoir simulations are unable to include the details of faults.
The critical properties of the faults such as their damage zone widths and permeabilities
may be estimated from scaling relationships, analogue surface outcrops or drill cores if
available.

To address the case of a fault cutting through multiple layers, we now extend the model
developed in §§ 2 and 4 and briefly discuss the results. Three aquifers and seals are stacked
vertically with a fault cutting through the layers (figure 14a). The same physical parameters
are used for each layer, and are modelled on a natural CO2-charged aquifer at Green River,
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Figure 14. (a) Schematic showing injection of CO2 into a system with multiple stacked aquifers and seals with
a fault cutting through the layers. (b) The total CO2 mass in each layer as well as the total leaked CO2 (leakage
from layer 3) plotted as a function of time for three different values of the fault permeability. The breakthrough
time into each layer is marked with a grey vertical line.

Utah, where CO2 has been escaping along fault zones for several hundred thousand years
(Bickle & Kampman 2013). The aquifer properties used in the model are thickness H =
122 m, permeability k = 1.4 × 10−15 m2 and porosity φ = 0.15. The seals have thickness
hf = 50 m and are cut by a fault of width df = 9 m (measured from drill core) with porosity
φf = 0.07 (Kampman et al. 2014). The system is initially saturated with water of density
ρa = 1000 kg m−3. Less dense CO2 is injected at a constant rate of 0.1 Mt yr−1 at the
bottom of layer 1, and assumed to have constant density ρ = 790 kg m−3 and dynamic
viscosity μ = 6.9 × 10−5 Pa s, calculated at typical storage reservoir conditions of 15 MPa
and 40 ◦C (Dubacq, Bickle & Evans 2013). The mass flux of injected CO2 is converted
into a two-dimensional input flux assuming an along-fault system length of 1 km. These
parameters give an initial value of λ = 0.26.

The total CO2 mass in each layer as well as the total leaked CO2 (defined as the
leakage from layer 3) is plotted as a function of time for three different values of the
fault permeability (figure 14b). When the fault permeability is comparable to or less than
the reservoir permeability, the majority of the CO2 remains trapped within layer 1 after a
1000 year time scale. However, when the fault permeability is larger than the reservoir
permeability, a significant fraction of the injected CO2 leaks all the way through the
system. For example, in the two cases where kf /k = 5 and kf /k = 10, layers 2 and 3 do
not accumulate significant amounts of CO2. However, even with kf /k = 10 % ∼ 55 % of
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the CO2 remains trapped after 1000 years. Note that this is the simple case where all layers
have equal permeabilities. In a more realistic system where the permeability varies across
layers, it is likely that larger accumulations of CO2 would be seen in more permeable
aquifers, regardless of their position. This system represents the worst case scenario for
CO2 storage as trapping mechanisms such as capillary trapping and dissolution trapping
are neglected. In reality, as the CO2 rises and spreads out into different aquifers these other
mechanisms would contribute towards long-term storage of the CO2.

7. Discussion

We have presented a new analytical model that describes the dynamics of leakage through
a fault zone given properties relating to fault, aquifer and fluids. This new model has been
tested against results from analogue porous medium tank experiments, from which we
obtain good fits with the experimental data. This model has then been applied to predict
the CO2 distribution and leakage rates from a naturally occurring CO2 reservoir. We find
that when the permeability of the fault is comparable to the reservoir, the majority (>96 %)
of the CO2 remains trapped after 1000 years. However, it is important to highlight the
limitations of the current model and discuss to what extent it can be applied directly in its
present form, and in which ways it might be fruitfully enhanced as part of a future study.

The gravity current model uses a sharp-interface approximation (Huppert & Woods
1995; Hesse et al. 2007), originally developed for miscible flows in porous media. This
is valid for settings such as saline intrusions, but extra multiphase effects need to be
considered when applied to immiscible settings such as CO2–water systems (Golding
et al. 2011). When CO2 is injected into water-saturated reservoirs, capillary forces play
a key role in determining the saturation distribution and flow properties through the
relative permeability and capillary pressure relationships (Nordbotten & Celia 2011).
When the fault and reservoir have relatively uniform permeability, we expect the behaviour
of the system to scale in a similar manner to the miscible case, with the effective
permeability instead replaced by the product of intrinsic and relative permeability.
However, geologically heterogeneous reservoirs may have significant gradients in capillary
pressure, which tend to rearrange the CO2 saturation into high permeability regions,
thereby accelerating plume migration (Jackson et al. 2018; Benham, Bickle & Neufeld
2021). An extension of the present model to fault zones with significant capillary
heterogeneity therefore remains an outstanding and important question in predicting the
flux through such systems.

Another potential refinement to the model is that the fault zone will have a capillary
entry pressure that needs to be overcome before leakage can occur and so the underlying
current may have to build up to a large thickness before breakthrough can occur. It is
also possible that the CO2 will be constrained to more localised flow paths with lower
entry pressures which, depending on the entry pressure and permeability of the fault and
intervening reservoirs, may affect the vertical migration of CO2. These may be simply
accommodated by the addition of a critical height the gravity current must overcome to
achieve breakthrough in the fault (Woods & Farcas 2009; Sayag & Neufeld 2016).

The present gravity current model also assumes that the aquifer is unconfined (h � H).
This means that there is negligible flow of the ambient fluid and so fluid propagation
is independent of the viscosity ratio between the fluids (Huppert & Woods 1995;
Vella & Huppert 2006). Pegler, Huppert & Neufeld (2014a) showed that background
pressure-driven flow due to confinement starts to play a role when ratio of the current
depth and aquifer depth (h/H) is comparable to the viscosity ratio of the injected and
ambient fluid. In the case of CO2 and water, the viscosity ratio μCO2/μw � 0.1, hence the
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assumption that the size of the reservoir is much larger than the thickness of the current
is valid for currents up to ∼10 % of the height of the aquifer, as is the case at many CO2
storage sites. As the experiments performed in this study were between fluids of near equal
viscosity, the thickness of the currents across all experiments are well within the limit
for the unconfined approximation. For cases in which hCO2 � 0.1H, Pegler et al. (2014b)
found that confinement causes greater leakage at earlier times due to the introduction of
background pressure, but at later times, as the CO2 fills the entire depth of the aquifer,
the maximum hydrostatic head below the fracture is limited and hence the leakage rate is
also limited. Incorporating the effects of confinement on the gravity current therefore also
presents an additional extension of the present work.

There are other important fluid dynamical processes which stabilise the storage of CO2,
including for example the dissolution of CO2 into the brine. Dissolution depends on the
relative flows of CO2 and brine over the small (e.g. centimetre) length scales related to
CO2 diffusion, presenting significant modelling challenges. However, the mixing of CO2
and brine within the rising plumes and fault zone is likely to enhance dissolution of the
CO2 (cf. Kampman et al. 2014).

Constraining the hydraulic properties of fault zones in the field remains a much studied
area with many different factors affecting the flow of fluids, such as the host rock
composition (Wibberley & Shimamoto 2003), fracture density (Mitchell & Faulkner 2012)
and fracture connectivity (Sævik & Nixon 2017) and their contributions to the overall
permeability. The model presented in this study constrains the sensitivity of CO2 leakage
rates to bulk fault properties such as permeability, width and thickness. By observing the
resultant plume behaviour around complex fault zones, this simplified model could be
used to provide an estimate of these bulk properties. When applied in a suitable geological
context, the model presented here can be used to characterise the flow dynamics of fault
zones.

8. Summary and conclusions

We have presented an analytical model that describes the dynamics of leakage through
a fault zone, motivated by the potential risk to storage security of anthropogenic CO2.
It comprises a two-dimensional gravity current in a porous medium, fed by a buoyant
plume and spreading under a horizontal impermeable baffle. The medium is bounded by
an impermeable vertical boundary and the horizontal baffle contains a fault through which
the current is leaking. This system constitutes a reduced-order model of a faulted caprock,
whereby an impermeable fault core is surrounded by a high permeability fracture zone
(Wibberley et al. 2008) through which leakage occurs.

In the experiments, we observed thinning of the secondary plume above the fault due to
an increase in Darcy velocity, leading to increased pressure gradients across the fault. A
new model for leakage through the fault was derived, factoring in this effect. In contrast
to previous analytical fault models which use numerical solvers to verify their models
(Kang et al. 2014), we matched results using a series of analogous porous medium tank
experiments, which supported the dependence of the fault width, fault height, input flux
and input density on leakage rates as derived by the model. Crucially, this study showed
how these parameters control the ratio of fluid flux into the aquifer compared with fluid
leaking through the fault, which is significant for storage efficiency.

We demonstrated the utility of the model for assessment of storage security of
anthropogenic CO2 by application to a naturally occurring CO2-charged aquifer at Green
River, Utah, using an extension of the model to calculate the fluid distribution and leakage
rates across multiple vertically stacked aquifers, cross-cut by a fault. This showed the
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dependence of leakage rates on the fault/aquifer permeability contrast, with significant
leakage occurring when the fault permeability is larger than the reservoir permeability. A
detailed discussion of the limitations of the model in application to CO2–water systems
was provided in § 7.

It is important to note that while other trapping mechanisms such as dissolution trapping,
residual trapping and mineral trapping are important in CO2 storage, they occur on longer
time scales and so structural trapping remains the principal mechanism for storage of CO2.
Understanding to what extent faults within caprocks can act as potential leakage pathways
is crucial for ensuring safe storage of CO2.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.970.
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Appendix A. Late time behaviour of current horizontal extent

Assuming that changes to the shape of the current are small at late times, the time
derivative of (2.29) is

φκ
d
dt

[h0xN] ≈ q − qF, (A1)

where κ represents the dimensionless volume of the current (e.g. κ = 1/2 in the case of a
triangle) and the leakage flux

qF = ζq
hf
(h0 + hf ), (A2)

with ζ = dfφf kf g′/νq. From (2.28a), we obtain the relationship

−kg′

ν
h0
∂h
∂x

∣∣∣∣
x=0

= q − qF. (A3)

At late times, we can approximate

∂h
∂x

∣∣∣∣
x=0

≈ − h0

xN
. (A4)

At the equilibrium point where qF → q, the thickness of the current at x = 0

h0 → hf

(
1
ζ

− 1
)

= h0∞, (A5)
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which is obtained from (A2). We consider the current thickness at x = 0,

h0 = h0∞ − δ(t), (A6)

where δ(t) � h0∞ is a small perturbation. On equating (A1) and (A3) and applying the
relationships (A4) and (A6),

φκ
d
dt

[(h0∞ − δ(t))xN] ≈ kg′

νxN
(h0∞ − δ(t))2. (A7)

By considering the leading-order terms, we find that

xN ≈
(

kg′h0∞
φκν

t
)1/2

, (A8)

which indicates that the current extent follows a t1/2 power law relationship at late times.

Appendix B. Functional form of calibration curve

A series of calibration experiments were performed to determine the functional
relationship between the image intensity and dye concentration. In each calibration
experiment, the cell was uniformly saturated with a red dye solution with concentration
Cd. A total of 20 different concentrations between 0 and 3.00 ± 0.05 g l−1 were used
to construct the calibration curve. The light intensity for each dye concentration was
calculated by subtracting the average green or blue colour channel across the image from
the average green or blue channel across a reference image where Cd = 0 g l−1. The
green and blue channel produce unique calibration curves (figure 9) which are sensitive to
changes in image intensity at different concentrations.

The functional forms of the calibration curves for the green and blue channels are

CG = aI4
G + bI3

G + cI2
G + dIG, (B1)

and

CB =
{

aIB, I ≤ 106,
(b + cIB)

−1/d, I > 106,
(B2)

where IG and IB are differences in the green or blue image intensity between the reference
and calibration images and a, b, c and d are fitting coefficients.

The calibration curve for the blue channel is sensitive to small changes in dye
concentration for concentrations up to ∼0.9 g l−1, but insensitive at higher concentrations
due to image saturation. In comparison, the green channel is less sensitive at low
concentrations but has greater sensitivity at dye concentrations above 0.9 g l−1. The best
calibration results are obtained when using a weighted average of the two curves to convert
image intensity to dye concentration. The effective concentration is determined by the
function

Ceff = CB +
(

CG − CB

2

)[
1 + tanh

(
Cavg − τ

δ

)]
, (B3)

where CB and CG are the concentrations calculated from the blue and green calibration
curves, Cavg = (CB + CG)/2, τ is the concentration at which Ceff is a result of equal
contributions from CB and CG (grey solid line, figure 9) and δ sets the width of the
region both curves contribute significantly towards Ceff (grey dashed lines, figure 9).
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The calibration curves in figure 9 were calculated using an average light intensity across
the full calibration images. Calibration curves were plotted for subregions of the cell to
check for the potential effect of small variations in light intensity. However, it was found
that effects of spatial variation were minimal.
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