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NON COMMUTATIVE Lv SPACES II 

A. KATAVOLOS 

Let M be a w*-algebra (Von Neumann algebra), r asemifinite, faithful, 
normal trace on M. There exists a w*-dense (i.e., dense in the <T(M, M+)-
topology, where M* is the predual of M) *-ideal / of M such that r is a 
linear functional on / , and 

XH-> ||x||p = T(\X\V)1,V 1 ^ p < oo 

(where \x\ = (x*x)1/2) is a norm on J. The completion of / in this norm 
is Lp(M,r) (see [2], [8], [7], and [4]). 

If M is abelian, in which case there exists a measure space (X, /u) such 
that M = Lœ(X, /i), then LP(X, r) is isometric, in a natural way, to 
LP(X, ju). A natural question to ask is whether this situation persists if M 
is non-abelian. In a previous paper [5] it was shown that it is not possible 
to have a linear mapping 

T:Lp(M,r)->Lp(X,vi), P>2 

(where r is a finite trace and (X, /x) a finite measure space) isometric on 
normal elements, unless M is abelian. In this note, this result is extended 
to the general case, thus showing that these non-commutative Lv spaces 
constitute a class of Banach spaces distinct from classical ones. 

THEOREM 1. Let M be a w*-algebra, r a semifinite faithful normal trace 
on M. Let (X, /x) be a measure space, p > 2, and 

T:LP(M,T)->LP(X,H) 

a linear mapping, isometric on normal elements. Then M is w*-isomorphic 
to a w*-sub algebra of Lœ (X, JU) , and hence is abelian. 

For convenience, the proof will be broken in a series of lemmas, yielding 
some results on the way which will be needed later. The basic ideas of 
Lemmas 1 and 2 are contained in [5]. 

LEMMA 1. Let e, f G M be projections such that ef = fe = 0 and r(e), 
r{f) < oo. Let Xe, Xf C X be the supports of T{e), T{f) £ LP(X, /*) 
respectively. Then 

(i) XeC\ Xf = 0 (modulo ix-null sets) 
(ii) If g = e +f,M0 = gMg, aw*-subalgebra of M,then\/ x G Lp{MQ,r), 

supp Tx ÇI Xg (modulo \x-null sets). 
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Proof, (i) 

\\e + / I I / + We - / I I / = r(\e + f\") + r(\e - f\>) 
= r(e + / ) + r(e + / ) = 2r(e) + 2r(f) = 2\\e\\/ + 2 | | / | | / 

since ef = 0. Therefore 

||re + 7711/ + ||r« - r/ | i / = 2||re||/ + 2||r/||/ 

which implies (see e.g. [6]) that (Te)(u) • (Tf)(œ) = 0 for ^-almost all 
w ^ I , i.e., that Xe H Xf = 0, modulo /x-null sets, 

(ii) We have 

(Tg)M = (Te)(u>) + (r/)(«). 
Therefore if (Te)(œ) ^ 0, then (7J)(co) = 0, so that (7g)(«) = (Te) (a) 
9e 0, i.e., a) Ç supp Tg = X^. Therefore if e G M is a projection smaller 
than g, then supp Te Ç X^. But each x G A/̂  may be approximated, in 
the operator norm, by a finite linear combination of such projections (by 
the spectral theorem), that is, by a y £ M0 such that supp Ty C J^. 
Now 

| |7* - ry||p ^ 2||* - y||P = 2\\g(x - y)g\\, S 2\\g\\,*\\x - y|| 

(the first inequality resulting from the fact that T, being isometric on 
normal elements, has norm at most 2) so that Tx cannot be nonzero on 
a set of positive measure disjoint from XQ. Since each x £ LP(M0, r) may 
be approximated, in the || • ||p-norm, by elements of Mg, the lemma 
follows. 

The next corollary will be needed later. 

COROLLARY 1. Let E C M be a maximal family of pairwise orthogonal 
projections such that r(e) < oo for e £ E. Let Xe be as in Lemma 1. Then 

x e LP(M, r) => supp TxQKJ {Xe: e £ E}. 

Proof. By semifiniteness, Yl [e : e £ E\ = 1. Replacing each finite 
subfamily of E by its sum, one may construct a family F C M of projec­
tions of finite trace, increasing to the identity of M. Let x £ LP(M, r) 
and e > 0 be given. Choosey £ / such that \\x — y\\p < e/4. 

Now, since p > 2, for each / £ F 

h -fyf\\S = r{\y-fyf\") ^ \\\y - /y/Mlrfly - Ml2) 
^ (2IMI)"-2 • lb -/y/1122 û (2|ly|))p-2(||y - y/||, + \\yf - fyfhY 

^ (2| |y| |)M(| |y-y/| | ,+ ||y-/y||,|Lf||)* 
and 

\\y-yf\U2 = T((y*-fy*)(y-yf)) 

= r(y*y - y*yf - fy*y + fy*yf) 
= r(y*y - y*yf) = r{y*y - fy*yf) 
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since 

r(fy*y) = r(f2y*y) = r(Jy*yf) 

by centrality, and similarly 

b -fyh2 = r(y*y - y*fy) = r(yy* - yy*f) = r(yy* - fyy*f). 

Since F is an increasing family, 

sup {fy*yf : f £ F] = y*y and 

sup {fyy*f :f e F} = yy*. 

Hence by normality of r 

sup {r(Jy*yf) :f£F}= r(y*y) 

and 

sup {r(fyy*f) : / Ç F} = r{yy*). 

Therefore one can choose / £ F so that 

lb - fyfh < */4. 
Then 

\\Tx - T(fyf)\\p £ 2\\x-fyf\\p £ 2\\x - y\\v + *\\y - fyf\\P < e. 

Now fyf 6 Mf Q Lp(Mf1 r) , hence T(fyf) is supported in Xf by Lemma 1. 
Thus 

supp T(fyf) Q\J{Xe:e£E\ 

and hence also 

supp I x Ç U {Xe : e £ E} 

LEMMA 2. Le/ e £ M be such that r{e) < oo. 7"Aew /Aere &m/s a ^*-
continuous isometric *-homomorphism 

Te: Me-+Lœ(Xe,n) Ç L œ ( I , / i ) 

defined by 

Teipo) = | ( ^ Me). 

In particular, Me is abelian. 

Proof. Consider the measure \ie denned on /i-measurable subsets A of 
Xhy 

M.W) = r(e)-1J |(rc)(co)|'dM(«). 
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IIP 

V 
IIP ~" I I l * v l I \P ' 

\xe is supported in X e, and equivalent to the restriction of /x to Xe (since 
\(Te)(a>)\p > 0 ju-almost everywhere on Xe) so that Lœ(Xe, ne) = 
Lœ(Xe, JU), a ?£>*-subalgebra of Lœ(X, /x). Moreover, \xe is a probability 
measure, since 

Mc(Xe) = T{e)-i\\Te\\/ = T{e)-i\\e\\/ = 1. 

Also scale the trace on Me by defining a new trace / by 

t(x) = r(e)-lT(x), x G Me 

so that t(e) = 1. 
Clearly Lp(Mej /), the completion of Me in the norm ||| • \\\p defined by 

IIWII/ = W) = IMlA(e)-1, 
coincides as a topological vector space with Lp(Me, r) , and hence is a 
closed subspace of LP(M, r ) . 

For x G Afg, Tx/Te is a well-defined /x-measurable function supported 
in Xe, by Lemma 1, and hence /Xe-measurable. If x G Me is normal, 

This shows that the mapping x »—> Tx/Te extends to a linear mapping 

7\ : Lp(Me, t) —* Lp(Xe, ne) 

which is isometric on normal elements, and such that Te(e) = 1 (= the 
characteristic function of Xe). By Theorem 3 of [5], the restriction Te of 
Te to Me is a ^-continuous isometric *-isomorphism of Me onto its range, 
a w*-subalgebra of Lœ(Xe, ne) = Lœ(Xe, /*), and hence of Lœ(X, /*). In 
particular, Me must be abelian. 

COROLLARY 2. M is abelian. 

Proof. As in the proof of Corollary 1, consider a family F Q M oî 
projections of finite trace increasing to the identity of M. Then for each 
x G M, the net {fxf : / G M] tends, in the w*-topology, to x. Since 
multiplication is jointly w*-continuous on norm-bounded subsets of M, 
we have, for x, y £ M, 

xy = w* — h m (fxf'fyf) = w* — lim (fyf-fxf) = yx 

because /x/, / y / £ M/, an abelian algebra by Lemma 2. 

LEMMA 3. Let E Ç M be as in Corollary 1. 7^£?z //ze mapping 

*>-* 22 \Te{xe) : e £ E\ 

https://doi.org/10.4153/CJM-1982-083-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-083-8


1212 A. KATAVOLOS 

is an isometric w*-isomorphism of M onto its range, a w*-subalgebra of 
Z „ ( X , M ) . 

Proof. By semifiniteness, ^ e = 1. Therefore x = J^ xe (the sum con­
verging in the w*-topology). But G Me, since M is abelian. 
It is clear that 

\\x\\ = sup {\\xe\\ : e £ E\. 

For each e Ç E, we have a ^-continuous isometric *-homomorphism 

Te: M e - > L œ ( X , M ) 

and Te{Me) Ç Lœ(Xe, /z) (Lemma 2). Further, if e, f £ E, e 9* / , then 
Z 6 H X , = 0 (Lemma 1) and hence 

Z\(M,) n r,(M,) = o. 
Since, V # 6 M, 

US r e ( ^ ) | | œ = sup 11^ (^ )1^ = sup \\xe\\ = ||*|| 

the mapping 5 in the statement of the lemma is well-defined, *-linear, 
isometric, and multiplicative, since, for x, y £ M, 

S(x)S(y) = £ \Te(xe) : * £ £ } . £ {T,(yf) : / G E\ 

= Z{Te(xe)'Te(ye) : e£ E] 

(for Te{xe) • Tf(yf) = 0 almost everywhere if e ^ / ) 

= E {Te(xye) : e £ E} = S(xy). 

Finally, 5(M) = £ © l^(Af e ) : e £ £} is a w*-subalgebra of Lœ(X, M), 
being the direct sum of the ^*-subalgebras Te(Me). It thus follows auto­
matically that 5* is a ^-isomorphism of M onto S(M) ([3], 1.4, Corollary 
1 of Theorem 2). 

This concludes the proof of Theorem 1. The last restriction to be 
removed is the requirement that p be greater than 2. If p = 2, LP(M, r) 
is a Hilbert space, and one can go no further, unless something further 
is known about the isometry T, such as positivity preservation [1] (which, 
of course, holds for a *-homomorphism such as S). For 1 ^ p < 2, 
duality may be used: 

THEOREM 2. Let M be a w*-algebra, r a faithful normal semifinite trace 
on M, (X, /x) a measure space. For 1 ^ p ^ 00 , p ^ 2, let 

T:LP(M,T)->LP(X,H) 

be an onto linear isometry. Then M is w*-isomorphic to Lœ(X, /x) and hence 
is abelian. 
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Proof, (i) Suppose 1 ^ p < 2. It is well known [2] that the dual of 
LP(M, T) is Lg(M, T) where 1/g + l /> = 1, so that q > 2. (Here Lœ(M, r) 
= M.) The dual map 

r * :£ , , (* , M ) - * L , ( M , T ) 

defined by 

r{(T*x)y) = j *(«) • (2»(«)<fo(«), 

(x 6 Lq(X, IJL), y £ LP(M, r)) is an onto isometry, and therefore so is its 
inverse 

( r * ) " ' : Z , , ( M , r ) - » £,,(*, M) ff>2. 

Thus the problem is reduced to the case p > 2. 
(ii) We use the same notation as in Theorem 1. By Corollary 1, 

supp TxQU {Xe: e £ E}\/ x £ LP(M, r) . 

Therefore, since T is onto, we must have W {X e : e Ç £} = X, and the 
union is disjoint, by Lemma 1. Moreover, supp Tx Ç X e if and only if 
x 6 LP(Me, T). For, if supp Tx C Xe, then writing 

r* = E { W ) : / É £} 

one concludes that T(xf) = 0 if / 9e e, since supp T(xf) C X 7 and 
J\T, P\ J f i = 0 by Lemma 1. Thus xf = 0 if / 9e e, and hence x = xe £ 
Lp(Me, T). The converse is Lemma 1. Therefore 7\ restricted to Lp(Mej r) 
is an isometry onto Lp(Xe, /x). Hence it induces an onto isometry 

f e : L p ( M „ 0 - > M ^ , M * ) 

(see the proof of Lemma 2). Both Te and its inverse, when restricted to 
Me and Lœ(Xe, ne) respectively, preserve the operator (supremum) norm 
([5], Theorem 3), and since these restrictions are inverses of each other, 
it follows that Me and Lœ(Xe, /xg) are isomorphic. 

In view of Lemma 3, the proof is complete if one observes that M is 
the direct sum of {Me : e £ E), and Lœ(Xt M) = Lœ(VJ Xe, tx) is the 
direct sum of {Lœ(Xe, /*) : e £ E\ where each Lœ(Xe, /x) = Lœ(Xej ne) 
since \xe and tx are equivalent on Xe. 
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