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Abstract

A theory is provided for the natural seiching frequencies and radiative decay rates for
a shallow-water basin whose connection to open water is restricted by a submerged
wall or reef. The transition from an essentially-open basin to a closed basin, as the
aperture reduces to zero, is discussed using a matching procedure. Graphs of
frequencies and damping factors as functions of aperture size are obtained for
idealized two-dimensional shelf configurations, involving a constant-depth shallow
basin connected to constant-depth, but not necessarily shallow, open water.

1. Introduction

The natural two-dimensional seiching frequencies a of a closed shallow-water basin
of length L and uniform depth /ix <? L are given by

It u \ = n7t' "=1 .2 ,3 (1.1)

These natural modes possess antinodes of surface elevation or nodes of horizontal
velocity at the two end walls of the basin, and are damped only by friction, here
neglected.

If one end of the basin is open to a much larger body of water, it is possible to
establish a different set of natural modes satisfying

n, n = 0,1,2,3,.... (1.2)

These modes still possess an antinode of surface elevation at the closed end, but now
possess a node at the open end. Such modes can be thought of as analogous to those

104

https://doi.org/10.1017/S0334270000002587 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002587


[2] A submerged barrier in a shallow basin 105

for an open organ pipe in acoustics, and also have zero damping if friction is
neglected.

The problem treated in this paper is that corresponding to a transition between
these two extreme cases, in which the connection between the basin and the open
water is through an underwater opening, controlled by a submerged vertical wall,
leaving a gap of size a between its top edge and the mean free surface. When the wall
breaks the surface (that is, a = 0) the basin is closed and the natural frequencies are
given by (1.1). On the other hand, for any non-zero value of a (especially in the
absence of a wall, a = hx), the open basin frequencies (1.2) are obtained in the formal
limit of extreme shallowness, as /ij/L->0. Our aim is to display the transition
between these extremes, as we reduce the gap size from a = hx (no wall) to a = 0 (no
gap). At the same time, we compute the damping, due to radiation of wave energy to
infinity through the gap : this is zero only at a = 0, for fixed non-zero hJL

The results show as expected that the natural frequencies change continuously
from values close to the open-basin values (1.2) to the'closed-basin values (1.1), the
mode numbers n = 1,2,3,... being fixed during this transition. Thus, in general, for
any fixed mode n, the frequency decreases as the gap size a decreases.

This is also true of the lowest-order open-basin mode n = 0, in spite of the fact that
formally there exists no corresponding closed mode, and the frequency of this mode
tends to zero as a -* 0. The limiting flow inside the basin for this mode corresponds
to a uniform low-frequency rising and falling of the free surface. This is a Helmholtz
resonator [5] in which the basin simply serves as a potential-energy store, inertia for
the oscillations being supplied by the fluid moving through the vanishingly-small
gap.

The rate at which the closed-basin result is approached as a -»0 is extremely
slow : for example, corresponding to the reciprocal of the logarithm of a. Thus, as a
decreases, the natural frequency (and to a lesser extent the damping) remains almost
constant until a/hl takes quite unrealistically small values, of the order of 0.01 or less.
Thus, in practice, one should not expect to observe a continuous transition to the
closed-basin values in any oceanographical or experimental situation. Instead,
neglected phenomena such as non-linearity and surface tension may cause a sudden
jump to a fully closed basin as soon as a/hl reaches a critical low value; above that
value, to all intents and purposes the basin is open.

In fact, the present theoretical investigation was initiated to explain observations
[1] of natural seiching periods of the order of 30 min on the continental shelf off the
coast of Western Australia, at a point where a submerged reef is a prominent feature
at a point approximately 5.5 km off shore. Observational evidence and results of
model experiments are in general agreement with the present theory and will be
reported elsewhere [8].

In the present paper the analysis is developed for free oscillations only, using
linearized water-wave theory. Thus we seek solutions whose time dependence is of
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the form e~iat, where a is a complex number whose real part gives the radian
frequency and whose imaginary part is negative, corresponding to decaying or
damped oscillations. We obtain a non-linear dispersion relation from which we can
determine the spectrum of values of a.

The basin itself is always assumed to be shallow, that is, /i,/L is assumed small.
However, we allow either a shallow or a deep body of open water. That is, ifh2 is the
depth of water beyond the wall, we place no restrictions on the ratio n = h2/hl.

As an intermediate step in the solution of this problem, it is necessary to solve a
local potential-flow problem in the immediate vicinity of the wall, and conformal
mapping methods are used here for this purpose, for a representative idealized wall
geometry. However, in principle such a computation can be performed for any type
of transition, the required output parameter being a single "blockage coefficient" C,
which characterizes the transition as seen in its own far field [7]. Once this quantity
C is known, the actual geometrical details of the wall and transition are of no further
significance for the determination of the complex frequencies a.

The present analysis may easily be extended to forced oscillations, for example,
those produced by allowing given incident wave energy from the open water, or by
inserting a wave maker at the closed end, and so on. In such cases one is interested in
the steady-state sinusoidal response at a frequency aF that is necessarily real. The
response of the basin is then expected to be greatest at frequencies aF close to the
natural frequencies Ma predicted in the present paper, with a resonant amplitude
inversely dependent on the damping Ja.

This type of forced-oscillation problem is analogous to the "harbour resonance"
problem, discussed by many authors. In particular, the "harbour paradox" [3],
which refers to a tendency (at least for the Helmholtz mode n — 0) for the resonant
response to increase as a harbour opening is closed off in the horizontal plane, will
have its counterpart in the present problem with respect to vertical-plane closures.

2. Problem formulation and shallow water approximation

The exact problem of interest is as sketched in Fig. 1. We have to solve Laplace's
equation

<J>xx+%y = Q (2.1)

for the velocity potential <J>(x, y, t) in a region of the (x, y) plane bounded by
impermeable surfaces, a linearized free surface and a boundary at x = + oo. The
impermeable surfaces include the left end

| ^ = 0 onx = - L , -h1<y<0, (2.2)
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y=-h2

the bottoms

Fig. 1. Sketch of flow geometry.

<3O
- 5 - = 0 on y = —hu -L<x<0,
dy

and y = — h2, x > 0,
(2.3)

and the wall and step face

-K- = 0 o n x = 0 ' . , — h1<y<— a,

(2.4)
and x = 0 + , — h2 < y < —a.

Thus h l and h2 are the two water depths of interest, and the wall leaves a gap of size a
beneath the free surface.

The linearized free-surface condition is ([9], page 470)

30) (2.5)

where g is the acceleration of gravity, and applies to flows in which the free-surface
displacement

y = ti(x,t) = --<t>,(x,0,t) (2.6)

is everywhere small compared to all the length scales. The boundary condition at
infinity, x -* + 00, is that any wave present must be outgoing, that is, travelling in the
+ x direction. We postpone an exact statement of this condition.

We seek solutions of the form

, - i f f I
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If a is real, this means that we seek solutions that are sinusoidal with respect to time,
with period 2n/a. However, we shall find that a = ax + io2 is complex, in which case
such a solution either grows (<r2 > 0) or decays {a2 < 0) with time. Equations
(2.1H2-4) still hold with <D replaced by <p, and (2.5) becomes

(t>y-v4>=0, v = a2/g, ony = 0, x>-L. (2.7)

The far-field condition can now be stated explicitly, namely

asx-> + oo. (2.8)
cosh (k2h2)

The expression (2.8) satisfies Laplace's equation, and the bottom condition (2.3), and
satisfies (2.7) if k2 is a solution of the dispersion equation

v = /c2tanh(/c2/i2). (2.9)

The "outgoing" nature of the far-field is guaranteed by the choice eikix rather than
e~ik2X, in combination with the e~iat time dependence. The solution with the
property (2.8) has been normalized to have a prescribed free-surface amplitude
(unity for </> and ia/g for rj) at infinity.

The boundary-value problem so formulated for </> can be expected to possess a
unique solution, and can in principle be solved by numerical means (for example, as
in [2]) for arbitrary values of the length scales hu h2, L, a and v~'. In this paper we
consider only shallow inner basins, with h{ <^ L, and waves which are capable of
resonating in the inner basin if closed, that is, v~1 is comparable to L and therefore
large compared to hv Thus, at least in the inner basin (not too close to the transition
at x = 0), we can make the shallow-water approximation that (j) varies slowly with
respect to y.

For example, upon Taylor expansion about y = 0, we have

4>(x, y) = 4>(x, 0) + y<t>y(x, 0) + ±y2 <Pyy(x, 0) + . . .

= <f>(x,0)+vy<l>(x,0)-$y2<t>xx(x,0)+- ( 1 1 O )

which satisfies the bottom condition (2.3) if

0 (2.11)

with h = hl. More generally, if the bottom is of variable depth h(x),

~(h(x)<l>x) + V(t> = 0. (2.12)

This equation does not hold in the immediate neighbourhood x = O(Jij) of the
depth transition, since there one can expect significant upward velocity components.
However, when x and y are both OfiJ, where v~' > hu it is clear (for example, by
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stretching x and y by the factor l/hy) that the free-surface condition (2.7) simplifies
locally to the impermeable-surface condition

^ = 0 ony = 0, x = O{hl). (2.13)

That is, sharp depth transitions are not describable by the one-dimensional shallow-
water equation (2.12), but require solution of the full two-dimensional Laplace
equation (2.1), with the simplifying feature that the free surface may be replaced by
an impermeable lid. A more-detailed asymptotic analysis as vhi -• 0 (for example, as
in [5], [7]) indicates that the error in all of these approximations is quadratic in the
ratio of length scales, that is, is a factor 1 +0{vhx)

2.
Equation (2.11) may be solved immediately with h = h^ = constant, giving

</> = /lcos[/c1(x-l-L)] (2.14)

for some constant A to be determined, where

kt = e/jighj. (2.15)

This solution possesses an antinode at the closed end x = — L, so satisfying (2.2). If
a = 0 (that is, the wall completely closes off the basin at x = 0), we must have <t>x = 0
at x = 0, so that s i n ^ L) = 0, that is,

k1L=n,2n,3n,.... (2.16)

This corresponds to occurrence of an antinode at x = 0 as well. On the other hand, if
the flow is such that a node occurs at x = 0 (that is, <j> = 0 at x = 0), we must have
cos(/c1 L) = 0, that is,

/c,L= 2",-2-,-2-,.... (2.17)

This may be described as an "open" basin situation.
In fact, neither of these situations occurs for the geometry of Fig. 1, and hence

neither (2.16) nor (2.17) gives the correct values of kt and hence, by (2.15), of the
frequency a. The true situation with a # 0 is between these extremes, and our aim is
to determine the possible values of kl L, for the actual geometrical situation of Fig. 1.

Note that the limiting values (2.16) and (2.17) of ku and hence of a, are real.
However, in the actual problem we cannot expect this to be true, since the
connection to infinity through the non-zero gap at x = 0 implies a leakage of energy,
and hence a radiation damping. Thus we expect a negative imaginary part o2 to the
quantity a, corresponding to decay of wave amplitude with respect to time.
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3. Shallow-water transitions

We first assume that not only /i, but also h2 is a shallow depth, compared to L and
v"1. Then the shallow-water equation (2.11) also applies with h = hu x > 0. The
appropriate solution in that region is

4> = e*>*, (3.1)

where k2 = o/\J(gh2). This is nothing more than the limit as k2 h2 -»0 of (2.8) and
(2.9), as expected, and represents a pure outgoing wave. The solution (3.1) applies for
x > 0, but only so long as x > O(h2).

When x = O(hx) = O(h2) we must solve a local-flow problem encompassing the
complete depth transition and wall, but with a rigid lid as a free surface. The
boundary conditions at "infinity" for this local-flow problem are obtained by
matching with the behaviour of the shallow-water solutions as x -> 0.

Thus, as x -> 0_, the shelf solution (2.14) reduces to

(p -> [Acos(ki L)] + x [ - / c j A sin(kl L)], (3.2)

which is interpretable as a uniform stream of speed

U1 = -klAsin(k1L), (3.3)

together with an additive constant A cos (k{ L). The condition (3.2) is now used as the
left-hand-infinity condition for the local flow through the gap, that is, as x -»— oo.
Similarly, as x - » 0 + in the outer solution (3.1), we have

, (3.4)

which corresponds to a uniform stream of magnitude

U2 = ik2, (3.5)

and we use (3.4) as the right-hand-infinity condition for the local flow through the

gap-
This completes specification of the local-flow problem in the (x, y) plane for

x, y = O ^ J = O(h2). This problem can be solved easily by conformal mapping, and
the complete solution is provided in Appendix A. It is convenient to normalize in
such a way that the net flux through the gap is of unit value, and the additive
constant is antisymmetric between the two infinities. That is, we write

4>{x, y) = m<t>*{x, y) + \ + \A cos (k, L), (3.6)

where

m^U^hy^V^ (3.7)

is the net volume flux and (j>*(x, y) is a normalized potential satisfying
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X „
T—C as x-» — oo,

•:—\-C as
h2

(3.8)

for some constant C. Then both boundary conditions (3.2) and (3.4) are satisfied
providing

l-Acos(klL) = 2mC. (3.9)

The non-dimensional quantity C = C(h2/hu a/hx) is a unique property of the
geometry of the transition, which can be called the "blockage coefficient". It is
determined in Appendix A and plotted in Fig. 9, and may now be treated as known.
Now the flux conservation law (3.7) implies that

m = — kt hlAsin(kl L) = ik2h2,

that is,

m=ik2h2 (3.10)

and

(h V
A = - i p - cosec(/c,L) (3.11)

are both known, given kx. On substitution into (3.9), we have

(3.12)

Equation (3.12) is the main product of our efforts, namely a dispersion relation
that determines the wave-number /c, and hence the complex frequency a = <J1 + ia2.
In fact, under most circumstances C = 0(1) and, since /cx hx <^ 1, the term 2Ckt hx on
the right can be neglected. Thus, for C = 0(1), we have the set of eigenvalues with
n = 1,2,3,...,

k,L=

where

li = h2/hv (3.14)

The imaginary part of kx is negative, indicating decay due to radiative damping. The
real part gives the natural frequencies, which correspond to closed basins as in (2.16)
if h2 < hx (fi < 1) and open basins as in (2.17) if /i, < h2 (/i > 1). These modes are,
however, strongly damped unless \i is either very small or very large. In particular,

(3.13)
nn — ii\og[ \ ' ^i ), n < 1,
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the cross-over at fi = 1 is through an "infinitely-damped" flow, that is, no flow at all
of the type being considered here exists when there is no depth transition.

From now on we confine attention to the case \i > 1 of a transition to deeper outer
water. In particular, as n -> oo, we recover the open-basin frequencies (2.17), and the
damping vanishes. We now ask what is the effect of the (small?) term 2Ckl /i, in
(3.12), especially when the geometry is such that C takes relatively large values.

In fact, as is shown in Appendix A, C -» + oo as a/hl -> 0. That is, as we increase
the wall height until there is no gap at all, and the inner basin is completely closed off,
we have 2Ck1h1 -> + oo, and hence cot(/cj L)-» + oo, which corresponds to the
closed-basin frequencies (2.16). Thus (3.12) provides for/* > 1 (especially for large n),
a natural interpolation between the open and closed basins, as the wall height is
increased.

However, C -> oo rather slowly (logarithmically) as a/h^ ->• 0, as is seen from Fig. 9
and equation (A 16). Hence the basin remains effectively open irrespective of the
height of the wall, until the gap has almost been reduced to zero, when it converts
rapidly into a closed basin.

4. Non-shallow outer depth

For any fixed but small value oihx/L, the results of Section 3 necessarily become
suspect as \i -* oo, since in that limit the outer water can no longer be assumed to be
shallow. If we are interested in large values of//, that is, h2 > hu we must relax the
assumption that shallow-water theory can be used for x > 0.

At the same time, however, there is a new simplification to the geometry of the
transition region as n -* oo, since the local transition must now be considered to take
place between a finite depth hl for x < 0 and an apparently-infinite depth for x > 0,
as sketched in Fig. 10. The flow emerging from the gap now appears to an observer in
x = O(h2) > hy like that due to an isolated source.

Thus, although the shallow-water outer solution (3.1) is no longer available to us,
we can still write down a suitable approximate solution in x > 0, in the form of a
source located at the origin in water of finite depth h2. The following is a suitable
potential for our purpose; it is constructed by modifying well-known results, for
example, those given by Wehausen and Laitone ([9], page 483) and Macaskill [2].
We write

where

m = JL[v + fe2(fci-v2)], (4.2)
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and

I(x, y) = dk ̂ —r— \ - 2 + cos kx cosh k(y + h2)

\ (v + /c) cosh kh2 ~||
I k sinh kh2-v cosh khjy y 'h2

The potential (/>(x,y) of (4.1) satisfies Laplace's equation, has vanishing vertical
velocity on y = -h2, satisfies the free surface condition (2.7) if (2.9) holds, and
satisfies (2.8) as x -> + oo. Note that a Cauchy principal value interpretation is to be
given to the integral in (4.3) and that, since m is pure imaginary, only the first term in
(4.1) is real, if a happens to be real.

In order to match with the flow emerging from the gap where r = Oih^ <€ h2, we
let x, >>-•() in (4.1) and find

(4.4)

where

I(v/i2).= 7(0,0)

f00^ _ u f . . . . (v + ̂ )cosh 2 ^/ i 2 { . . „
= -7-e fc"2<-2+cosh/cli2-, . . , , i r r r - r - (4-5)

Jo k I k sinh kh2 — v cosh kh2 J
Setting 77 = v/i2, we have

f= Jo
. , (// + t )cosht I . . „

- 2 + cosht V-r— -̂77 r->, (4.6)
tsinht-T/coshtJ' v ;

a function that may be computed easily. Figure 2 shows a plot of 1(7/), evaluated
directly from (4.6) using the trapezoidal rule, combined with Monacella's [4]
method of ignoring the singularity, and assuming for the present that H is real.

The above results all simplify considerably if the outer depth h2 is actually infinite,
or if H = vh2 is large, in which case

l(H)^\og(H/2) + y, (4.7)

where y = 0.5772... is Euler's constant, and

</>->l+^(logvr + }>), (4.8)

which is independent of h2 as required. Figure 2 shows the infinte-depth asymptote
(4.7) dashed. At the other extreme, in the shallow-water limit as 77 ->0, we have
1(0) = log(7t/2) = 0.4516....
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0.2 o 5 i

Exact

Deep water limit -

i /h2

1 2

6 7
-I H

k2h2

Fig. 2. Function l(H) for finite outer depths. Deep-water approximation dashed.

We are now in a position to match with the local flow through the gap using (4.4)
as the boundary condition as x -> + oo for such a flow. Thus we write as the gap-
region flow (compare with (3.6))

<j>(x, y) = m4>**(x, y) + A cos k, L, (4.9)

where <j>** is a canonical potential for a transition as in Fig. 10 from depth hl to
infinte depth, satisfying

h. (4.10)
as x -> + oo,

where Cm = C^a/hJ is a known constant, given by (A24). Then the boundary
condition (3.2) is satisfied if, as in Section 3,

m = —kt /i, Asin(kl L)

and the new boundary condition (4.4) is satisfied if

^4cos(fc, L) = 1 l

(4.11)

(4.12)

Upon the elimination of A between (4.11) and (4.12), and use of (4.2) for m, we have
the dispersion relation
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, L) = \k, /ll^og^--I(v/,2) + C>//i1)J + ̂ | ^ ^ . (4.13)

Equation (4.13) has a similar structure to that of (3.12). The cotangent of fc, L is
again given by a real quantity plus a positive imaginary quantity, and again we can
expect damped solutions, with k{ < 0. Again, because kxhx <̂  1, the real part is
normally small, but now under such circumstances that so is the imaginary part.
Thus, except where the appropriate coefficients take large values, the cotangent is
small and the open-basin natural frequencies (2.17) are good approximations. This
simply reflects the fact that in the absence of special blocking features, a transition
from shallow to deep water appears on the shallow side as that for an open basin.

The special case of an infinitely-deep outer basin, or one in which vh2 > 1, is of
interest, and then, using (4.7), equation (4.13) reduces to

«*(*, L) = ^kt h^Cn-logvht-y + inl (4.14)

In the opposite limit of a shallow outer basin, equations (4.13) and (3.12) give
identical results. That is, the common limit of (3.12) as n -* oo, and (4.13) as vh2 -> 0,
is

hh^ A . (4.15)

5. Computed results

Our task is to solve the dispersion relation (3.12) or (4.13) for the complex quantity

s — ki L= S! +is2. (5.1)

Both equations are parameterized by n = h2/hu a/hi and

e = hJL. (5.2)

Thus (3.12) can be written as

0 =/ ( s ) = cot s-2seCU, JM-i /*"*, (5-3)

and (4.13) as

0 =/(s) = |

2iseK (5 4)
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where K = k2h2 = K(s) is determined from (2.9), that is,

tf = vh2 =s2e2ti = K tank K.

The infinite-outer-depth limit (4.14) can be written

0 =/(s) = cot s se[Cx - log(s2 e2 / / ) - y + in~].

(5.5)

(5.6)

We use Newton's method to solve these equations for s. That is, given a starting
guess s = s0, we improve it by repeated use of

S~S° /'(so)'
(5.7)

where the function/(s) and its derivative/'(s) are obtained from (5.3), (5.4) or (5.6).
There are infinitely many solutions s, and the Newton iteration will converge (if at
all) to a mode determined by the initial starting point. It is found that starting with
the real open-basin values (2.17) enables convergence in most cases, although for
some higher modes a more-accurate initial choice needs to be found by trial and
error.

FREQUENCY , h,/L=0.1

Deep outer water
Shallow outer water

M = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 8 0.9 1.0

a/h,

Fig. 3. Real part of frequency at £ = h JL= 0.1, plotted against a//i, for^ = 2and> = oo. For the second
mode at /i = 2, the dashed curve assumes shallow water in the open water and the solid curve finite depth.

These curves are indistinguishable for the first mode.
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i i 1 r
DAMPING , h.
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/Mode
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11 = 0.1
— 1 —

Deep outer water
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. •
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 9 1.0
Q / h ,

Fig. 4. Negative of imaginary part of frequency (that is, damping factor) at £ = 0.1, for the first and second
modes of motion, as in Fig. 3.

The function/(s) is reasonably simple in both equations (5.3) and (5.6), that is, for
shallow or infinite outer depths, and in both of these cases there is no difficulty in
evaluating both/(s) and/'(s) exactly for arbitrary complex s = st+ is2. The Newton
iteration converges rapidly to results shown in Figs. 3-6 and discussed below.

However, for "finite" outer depths, the function/(s) in (5.4) is quite complicated,
and for the present purpose an approximate procedure was used. In particular, we
avoid the necessity of computing the function l(H) from the integral (4.6) for complex
H by writing

(5.8)

where the real function I( j //1) is as in Fig. 2. This is a somewhat ad hoc
approximation, which is accurate in both limits | H | -> 0, oo, and may be expected to
model at least the real part of I reasonably well for intermediate | H \. It should also
be noted that we expect the damping to be small, which means that s, K and H are all
"nearly" real, a limit in which again (5.8) is accurate.

We also have some difficulty in estimating the derivative dl/dH for use in/'(s), and
hence abandon the exact Newton procedure (5.7) when using (5.4) for/(s), instead
estimating/'(s) from differences of/for successive iterates. At the same time, in view
of (5.5), it is more convenient to choose K rather than s as the independent variable.
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5%(k,L)

FREQUENCY , h , / L = 0 . 0 1

10 10"

Fig. 5. Real part of frequency for the extremely shallow basin with E = 0.01. Dashed curve is for n = 2,
solid curve for fi = oo. Three modes are shown; n = 2, oo are indistinguishable for mode 1. Note

logarithmic scale for the relative gap size a/hi.

With these modifications, the iteration procedure converges adequately, though less
rapidly than for (5.3) or (5.6), and gives results in agreement with the exact theories
where overlap is expected.

The ranges of validity of the various formulae may be estimated as follows. All
results can only be accurate so long as the inner depth is shallow, that is, using as a
rough criterion that the wavelength exceed 10 times the depth, and ignoring
damping, when

es, < 0.6. (5.9)

For example, if e = 0.1, only the first two modes can be described by the present
theory, the third mode with s, « 5n/2 being too high a frequency, such that finite-
depth effects must be felt on the shelf. On the other hand, the much shallower shelf
e = 0.01 allows about 20 shallow-water modes on the shelf.

When (5.9) is satisfied, we still must choose between (5.3) and (5.4). The outer depth
is shallow if K < 0.6, that is, H < 0.3, or

es2 < 0.6/z" (5.10)
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F13. 6. Damping results corresponding to the frequencies in Fig. 5.

This is only a slight extra imposition if n is not large; for example, at E = 0.1 the first
mode is shallow up to n = 16, but the second mode only up to about /1 = 1.8. When
e = 0.01, these figures are of course multiplied by 100, so that there is then virtually
no practical limitation on the validity of (5.3).

The range of validity of the finite-outer-depth theory (5.4) is somewhat harder to
establish. This theory certainly assumes that n is large, and therefore one might
expect poor accuracy for \i < 10, say. However, Fig. 11 suggests it retains accuracy
for smaller values of n, especially as a/h1 -> 0. An indication of this is that in this
small-gap limit, the equation (A24) connecting C and Cro is obeyed exactly by the
limiting expressions (A16) and (A25), irrespective of the value of fi. At the other
extreme, when fj. is large, for example, fi> (esl)~

1,the infinite-depth theory (5.6) may
be used.

Figures 3 and 4 give computed plots against al/h of the real and imaginary parts of
s, respectively, for e = 0.1. Only \i = 2 and n = 00 are shown, and only the first two
modes, as anticipated above. The infinite depth results agree to plotting accuracy
with computations for \i > 100. For values of \i % 10, the first-mode frequencies lie
between those for fi = 2 and 00, and results computed by (5.3) and (5.4) are in close
agreement.

The case \i = 2 is used because it lies near the borderline of validity of both
theories, especially for the second mode. The discrepancy between the dashed and
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solid curves is a measure of the accuracy of the method as a whole for such
borderline cases and it is not easy to specify which is the more accurate estimate,
especially since (5.4) is not at present being solved without approximation.
Fortunately, the general conclusion is that the natural frequencies depend only
weakly on \i. Although the damping results vary more with \i than do the
frequencies, so long as a/hl < 0.5 there is still better than 10% agreement between
the two second-mode damping estimates at e = O.i, fi = 2.

The frequency results confirm the qualitative predictions of Section 2. Thus each
curve interpolates between the closed-basin frequencies (2.16) at a/h{ = 0 and values
at a/hx = 1 which are close to the open-basin frequencies (2.17). For the lowest
mode, however, we must include zero as a "closed" basin frequency. This
corresponds to a Helmholtz or pumping mode (as in [3]), in which the water on the
shelf is spatially uniform in height, and acts as an energy storage. The limiting
frequency is then determined by the relative inertia of the water moving through the
small gap, and vanishes as the gap size goes to zero. As the gap increases in size, this
Helmholtz mode transforms itself eventually into the lowest (quarter-wave) open-
basin mode, of frequency /c, LK n/2. Similarly, each closed-basin natural mode
deforms continuously as a/h^ increases into the next higher open-basin mode. The
dependence of frequency on gap size is continuous but rapid near ajhx, as
anticipated, and only for very small gaps indeed is the basin effectively closed.

This is shown even more dramatically by Figs 5 and 6 for the much shallower
basin with e = 0.01. In this case we have chosen a logarithmic scale for a/hl since, on
a linear scale, the "action" takes place too close to a/ht = 0 to be plotted. Three
modes are shown, with \i = 2 and \i = oo, there being now no doubt about the
accuracy of the respective determining equations (5.3) and (5.6).

The results in Figs 4 and 6 for the imaginary part of s, that is, for the damping,
exhibit a much greater variation with ajhv than do the frequency results. Obviously
the damping always tends to zero as a/h t -* 0, and it also does so ultimately like the
inverse logarithm of a/hu but the real reduction in damping from the open-basin
value is significant even at moderate values of a/hv

The open-basin value given by (3.13) is 0.891 at fi = 2, and this value is closely
approximated by all three modes at a/hx = 1, for the shallow basin £ = 0.01 of Fig. 6,
if not quite so closely at e = 0.1 in Fig. 4. Note that the open-basin value (3.13) is
identical for all modes, a result confirmed by Fig. 6 at a/ht = 1.

As a/hi decreases from unity, the damping curves become quite different for
different modes. In this respect there is an interesting difference between the shallow-
water and deep-water results. When the outer depth is large, the shorter waves
radiate energy to infinity more easily and hence are the more strongly damped. Thus
the lowest-order mode must predominate. Conversely, when the water is shallow, it
appears that the shorter waves are less damped than the longer waves, and therefore
one should expect higher modes to predominate. This tendency is greatest for the
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lowest mode as a/ht ->0, indicating that the Helmholtz mode is relatively strongly
damped in that limit.

Although the results shown in Figs 3-6 indicate a transition from closed to nearly-
open basins as a/h^ increases from zero, it should be noted that a truly open basin is
never achievable by variation of a//j,. Thus, although the frequencies are closer to
the values (2.17) at a = hl than for any other value of a, the basin without a wall is
still not quite fully open.

This observation is even more important for the damping, which would be zero
for a fully-open basin, but is never zero at any fixed a > 0. Indeed, generally the
damping as measured by —^m(k1 L) appears to take its maximum value when the
wall is absent. The general order of magnitude of the damping is given by (3.13) if/i is
finite, irrespective of e, but tends to zero as e -* 0 for infinte fi. Note, for example, the
dramatic decrease in the damping at fi = oo from Fig. 4 to Fig. 6. Thus the only limit
in which the true open-basin results are attained is that for infinite outer depth, as the
shallowness of the inner basin tends to zero.

All computations in this paper were performed on a TRS-80 micro-computer.
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Appendix A: Blockage coefficient of a depth change with a wall

Consider the conformal mapping illustrated in Fig. 7 from the z-plane to the t-
plane, where

The left- and right-side depths are ht and h2, respectively, and y. = Ji2/V
 T n e

parameter fi controls the wall height, and we require

(A2)
/ / - I

We shall find that, as fi I 1, the wall closes off the gap entirely whereas, as
P T |(// + l)/(/x-l)|, the wall disappears. The logarithm function is defined by its
principal branch such that, for t = 111e''arg(", logt = log]t| + iarg(t), with
— n < arg(f) < n.

The validity of this mapping may be checked as follows. Along FG we have t real
and t > 1. Then, clearly, the logarithm is real and we have
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B A '

D

I
'A

iGA BC D

Fig. 7. Sketch of conformal mapping of transition region in the complex z-plane between depth hi and
depth h2 onto the exterior of the unit semicircle in the complex t-plane.

and y = —h2. (A3)

We require that x increase monotonically from zero at F to infinity at G, which is
true so long as ft satisfies the inequality (A2).

On DEF, the unit semi-circle t = e'e, 0 ^ 9 ^ n, we have

- l7 i ,

that is,

where

x = 0 and y = h, Y(6),

9, ., . 2

(A4)

(A5)
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The points F and D correspond to 8 = 0, n, respectively, while the point E at the top
of the wall corresponds to the maximum of Y(9), that is, to 0 = 9m where Y'(6m) = 0,
satisfying

cosBm = ->-

Thus the gap size is given by

(A6)

(A7)

On the segment CD, — ft < t < - 1 , we have as required that y = — hi and x < 0 if
(A2) holds, and similarly on AB, t < — ft, we have y = 0 and x ranges from — oo at
t = — /? to +oo at t = — oo. This completes verification of boundary mappings, and
spot checks of interior points confirm the validity of the complete conformal map.

We are particularly concerned with the properties of this mapping as t -> — /?, BC,
and 111 -> oo, AG. Thus, as t-* — fi,

• i "Mi

z-+—in, H—Llog

that is,

ftp- 1

x 1
Yi~n g

" 1
+-log(t

r - i

(A8)

Similarly, as 11 \ -» oo,

that is,

J! . t"

(A9)

We now wish to solve the canonical flow problem of Fig. 8 in which a uniform
stream with unit total flux approaches from the left and emerges on the right as a
corresponding unit-flux stream. Thus the velocity potential is required to satisfy

T C, x

f+c,

• - o o ,

• + 00.

(A 10)

The constant C in (A 10) is the blockage coefficient of the depth transition, which we
aim to determine.

Now the corresponding flow in the f-plane must be that for a source at (-/?,0)
outside the unit circle, and we can write down the complete potential/ = (f> + ii// for
that flow by Milne-Thomson's circle theorem. Hence
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//////////////////////////////////////

[21]

Fig. 8. Sample of streamlines through the transition region from depth /i, to depth h2.

n ~" ' ' n

for some constant K, which can be taken as real. Now, as t -* — fi, we have

(All)

or, using (A8),

where

C = - (A12)

Similarly, as 111 -» oo,

where

(A13)

Upon elimination of K between equations (A 12) and (A 13) we have as our formula
for the blockage coefficient

2nC (A14)

In the absence of the wall, that is, when 0 = \{n+l)/(ji-l)\, this agrees with the
result of Tuck [7], namely
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2nC = l)log
H-\

- 2 log

We are particularly interested in the small-gap limit P i 1, in which case

27rC--21og2(/?-l). (A15)

This can be expressed in terms of the actual gap size by noting from (A6) that, as

and hence, from (A5) and (A7),

Thus, as a/hy ->0,

(A16)

a result that can also be obtained by matching (see Tuck [6]). Figure 9 shows a plot
of C against a/hy for various values of n, the exact result 4) being the solid curve
and the small-gap asymptote the dashed curve.

We are also interested in the limit as n -* oo, that is, as the right-hand depth h2

becomes large. The inequality (A2) then demands that /? < l+(2/^)-> 1. It is
convenient to set

0.1 0.2 0.3 OX 0 5 0.6 0.7 0.8 0.9 1.0

Fig. 9. Blockage coefficient C as a function ola/ht for various values of n. Dashed curves are small-gap
approximations.
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j? = l + - s i n 2 a

and hold a fixed as \i -> oo. Then we find from (A6) that 6m

hence from (A7) and (A5) that

j — = 2a + sin 2a,

[23]

(A17)

•n—(l//i)sin2a and

(A18)

so that the gap size a increases monotonically from 0 to Ji, as a goes from 0 to n/2.
On the other hand, the actual blockage coefficient C becomes infinite on the limit

as \i -+ oo and /?->!, with

27tC->-21og2(/?-l)+AiGJ-l). (A19)

In fact, in this limit the blockage coefficient C defined as in Fig. 8 is of less interest
than a coefficient CK defined by Fig. 10 which measures the finite potential jump
between the uniform stream at x = — oo and the source-like flow into the quarter-
plane at x = + oo. Although we can determine Cm by an entirely separate conformal
mapping, matching procedures enable a limiting relationship to be established
between Cm and C as follows.

Fig. 10. Sample streamlines through the transition region from depth /i, to infinite depth.

Thus, as a/h2 -* 0, the flow in x > 0 tends to that induced by a source of strength;

at the origin, in a channel of depth h2, having the complex potential

(A20)

In the limit as x/h2 -»oo, we have

h2
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so that we must add the constant C to the complete potential defined in Fig. 8; hence

we now have

r - as x -* — oo.

Now for r = | z | < /i2 in (A20) we have

where

2 . nr , »_
—logr—I-2C
7T r?2

(A21)

(A22)

(A23)

sin2 a — log — sin2 a, (A24)

i 1 1 r

Exact ( A 24)

. — >j.= 2 in (A23)

• Small gap ( A25)

0 0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
a/h,

Fig. 11. Coefficient Cm for flow of Fig. 10 as a function of a/h,. The exact result is the solid curve and the
small-gap approximation is the dashed curve. The chain-dotted curve is the value estimated from the

finite-depth coefficient C as in Fig. 9, using ft = 2.
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which is a finite quantity, depending on the depth ratio a/hl through the parametric
equation (A18). Figure 11 shows Cx as a function of a/ht, together with (dashed) its
small-gap limit as a -• 0, that is,

C . - l o g ^ as£->0, (A25)

and (chain dotted) the result of setting \i = 2 in (A23), using the exact result (A14) for
CaiH = 2. The closeness of the last result to the exact Cx indicates that the infinite-/x
limit is still very accurate down to \i values as low as 2.
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