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Summary

Understanding and estimating the structure and parameters associated with the genetic architecture

of quantitative traits is a major research focus in quantitative genetics. With the availability of a

well-saturated genetic map of molecular markers, it is possible to identify a major part of the

structure of the genetic architecture of quantitative traits and to estimate the associated

parameters. Multiple interval mapping, which was recently proposed for simultaneously mapping

multiple quantitative trait loci (QTL), is well suited to the identification and estimation of the

genetic architecture parameters, including the number, genomic positions, effects and interactions

of significant QTL and their contribution to the genetic variance. With multiple traits and multiple

environments involved in a QTL mapping experiment, pleiotropic effects and QTL by environment

interactions can also be estimated. We review the method and discuss issues associated with

multiple interval mapping, such as likelihood analysis, model selection, stopping rules and

parameter estimation. The potential power and advantages of the method for mapping multiple

QTL and estimating the genetic architecture are discussed. We also point out potential problems

and difficulties in resolving the details of the genetic architecture as well as other areas that require

further investigation. One application of the analysis is to improve genome-wide marker-assisted

selection, particularly when the information about epistasis is used for selection with mating.

1. Introduction

The essence of quantitative genetics is to understand

the genetic basis and architecture of quantitative trait

variation within and between populations. The genetic

architecture of quantitative traits links genotypes to

phenotypes : it consists of the number, genomic

locations, frequencies and effects of quantitative trait

loci (QTL), as well as the interactions of QTL alleles

within (dominance) and between (epistasis) loci,

pleiotropic effects of QTL, QTL by environment

interactions, and so forth. The accurate mapping of a

few significant QTL depends critically on appro-

priately identifying and estimating the architectural

parameters, and similarly the study of the genetic

architecture depends critically on identifying the

genomic positions of individual QTL.

Because of the potential complexity of the genetic

architecture of traits in natural populations, most

* Corresponding author.

QTL mapping studies are performed via designed

experiments. One popular experimental design is to

cross two widely separated inbred lines, populations

or species, to create a heterozygous F1 population,

and then backcross the F1 to parental lines to create

backcross populations, or alternatively to intercross

F1 to create an F2 population. Recombinant inbred

lines are also popular for QTL mapping. For these

standard experimental designs, the number of

segregating QTL alleles is restricted to two, and the

allelic frequencies of the QTL (as well as markers) and

their linkage phases are known, thus greatly sim-

plifying the genetic architecture of the traits. The

inference of the genetic architecture of a quantitative

trait is then restricted to the number, genomic

locations, main and interaction effects of the QTL. If

an experiment contains multiple traits and}or multiple

environments, the issues of pleiotropy and QTL by

environment interaction need be addressed in the

analysis.
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Currently, many statistical methods for mapping

QTL focus predominantly on detecting individual

QTL effects and assigning these effects to genomic

regions. Both interval mapping (IM) (Lander &

Botstein, 1989) and composite interval mapping

(CIM) (Zeng, 1994; Jansen & Stan, 1994) detect QTL

effects at different genomic regions separately. Jiang &

Zeng (1995) have extended CIM to multiple traits and

multiple environments in order to study pleiotropy

and QTL by environment interactions. These methods

have been shown to be successful in detecting a few

significant QTL for a number of traits in a number of

organisms (Tanksley, 1993; Lynch & Walsh, 1998).

However, the methods are still not designed to study

the whole genetic architecture of quantitative traits ;

indeed, many architectural parameters, such as those

describing epistasis of QTL, have not been taken into

account.

Epistasis is a very important component of the

genetic architecture of a trait. The pattern of epistasis

for a trait can be very complex. It is necessary to take

the whole genome into account for mapping multiple

QTL and in inferring the epistatic pattern of QTL.

This dictates that the search for, and mapping of,

multiple epistatic QTL need be performed at multiple

intervals simultaneously: it motivated the develop-

ment of the multiple interval mapping (MIM) method

introduced by Kao & Zeng (1997) and Kao et al.

(1999). The MIM approach can improve the fit of the

model and aid the discovery of more QTL. More

importantly, MIM permits the study of the genetic

architecture by fitting multiple QTL parameters

(including epistasis) in a comprehensive framework

for model identification and parameter estimation.

Previously, Lander & Botstein (1989, appendix A6)

and Knott & Haley (1992) discussed briefly similar

approaches for mapping a few linked QTL. Satagopan

et al. (1996) and Sillanpaa & Arjas (1998) used a

Bayesian approach relying on a Markov chain Monte

Carlo simulation to map multiple QTL, although they

did not discuss epistasis. Broman (1997) treated the

issue of model selection in the context of fitting

multiple marker effects on a quantitative trait. In this

paper, we review the theory and methodology of

MIM, with particular emphasis on its potential power

and advantages in studying the genetic architecture of

quantitative traits. We also point out areas that need

more detailed study.

2. Composite interval mapping and its limitations

As motivation for MIM, we begin with an explanation

of the idea behind CIM and its practical limitations.

Zeng (1993, 1994) introduced CIM to disassociate

linkage effects of multiple linked QTL during the

identification of individual QTL. This is accomplished

by testing for a QTL at a particular genomic region

conditioned on other selected markers, known as co-

factors. The purpose of using these co-factors is to

minimize the effects of QTL in the remainder of the

genome when attempting to identify a QTL in a

particular region.

For a backcross population of n individuals, the

composite interval mapping model is

y
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where y
i
is the phenotypic value of individual i and x$

i

is a coded variable for the genotype of a putative QTL

at the test site : x$
i

takes on a value of "

#
or ®"

#

corresponding to the two QTL genotypes. Parameters

in the model include the mean (µ), effect of a putative

QTL (b*) and the variance (σ#) of a residual effect (e
i
)

assumed to have a normal distribution with mean

zero. Co-factors are included in the regression model

via the sum in (1). The kth co-factor has associated

with it an effect b
k

that is the partial regression

coefficient of the phenotypes at the co-factor. The

datum for co-factor k in individual i is encoded by x
ik
,

which also takes on values of "

#
and ®"

#
. A test is

performed at every possible genomic position for

significance of the QTL effect, b*, conditioned on the

co-factor effects (b
k
’s) : If b* is found to be statistically

significant, a QTL is declared to be in the region. If

multiple genomic regions show significant QTL effects,

multiple QTL are indicated based on independence of

the tests in different genomic regions (Zeng, 1994). See

Basten et al. (1995) for practical issues involved in

data analysis with CIM.

This method creates a relatively simple and sys-

tematic procedure to map multiple QTL. It detects

and estimates each individual QTL by conditioning

the test on other selected linked and unlinked markers

(X
i
). This means that the test statistic is affected

primarily by QTL near the test site (Zeng, 1994).

However, there are some limitations to CIM. One is

that the analysis can be affected by an uneven

distribution of markers in the genome, meaning that

the test statistic in a marker-rich region may not be

comparable to that in a marker-poor region. Another

limitation concerns the difficulty of estimating the

joint contribution to the genetic variance of multiple

linked QTL. Thirdly, CIM is not directly extendable

to analysing epistasis. Finally, the use of tightly linked

markers as co-factors can reduce the statistical power

to detect a QTL.

3. Multiple interval mapping

To address the limitations of CIM, Kao & Zeng

(1997) and Kao et al. (1999) proposed and imple-
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mented a MIM procedure for mapping multiple QTL

simultaneously. The idea of MIM is to fit multiple

putative QTL effects and associated epistatic effects

directly in a model to facilitate the search, test and

estimation of positions, effects and interactions of

multiple QTL. MIM thus combines QTL mapping

analysis with the analysis of the genetic architecture of

quantitative traits.

MIM consists of four components :

1. An e�aluation procedure designed to analyse the

likelihood of the data given a genetic model

(number, positions and epistatic terms of QTL).

2. A search strategy optimized to select the best

genetic model (among those sampled) in the

parameter space.

3. An estimation procedure for all parameters of the

genetic architecture of the quantitative traits

(number, positions, effects and epistasis of QTL;

genetic variances and covariances explained by

QTL effects) given the selected genetic model.

4. A prediction procedure to estimate or predict the

genotypic values of individuals and their offspring

based on the selected genetic model and estimated

genetic parameter values for marker assisted

selection.

For m putative QTL in a backcross population, the

MIM model is defined by

y
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¯µ­3

m

r="

α
r
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ir
­ 3
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As before, y
i
is the phenotypic value of individual i

while x$
ir

is a coded variable denoting the genotype of

putative QTL r (defined by "

#
or ®"

#
for the two

genotypes : see Kao & Zeng (2000) for the reason).

The variable x$
ir

is unobserved, but its conditional

probability given observed marker phenotypes can be

analysed (Jiang & Zeng, 1997). Parameters include the

mean (µ), the marginal effects of the putative QTL

(α
r
’s), the variance (σ#) of the residual effect (e

i
,

assumed to be normally distributed with mean zero)

and epistatic effects. The epistatic effect between

putative QTL r and s is denoted β
rs
. We use a subset

of all QTL pairs, indicated by r1 s ` (1,…,m), to

avoid the over-parameterization that could result

when using all pairs. The m putative QTL are chosen

based on either their significant marginal effects or

their epistatic effects, while t is the number of

significant pairwise epistatic effects. The MIM model

can be extended to an F2 population. See Kao & Zeng

(2000) for an appropriate genetic model with epistasis

in an F2 population.

Since the genotypes of an individual at many

genomic locations are not observed (but marker

phenotypes are), the model contains missing data and

thus the likelihood function of the data given the

model is a mixture of normal distributions:

L(E,µ,σ# rY,X)¯ 0
n
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The term in square brackets is the weighted sum

of a series of normal density functions, one for each of

the 2m possible multiple-QTL genotypes. p
ij

is the

probability of each multilocus genotype conditioned

on marker data. The QTL parameters (α’s and β’s) are

contained in the column vector E while the row vector

D
j
specifies the configuration of x*’s associated with

each α and β for the jth QTL genotype (see Kao &

Zeng, 1997). Finally, φ(y rµ,σ#) denotes a normal

density function for y with mean µ and variance σ#.

Clearly, the probability density of each individual is

a mixture of 2m possible normal densities with different

means, µ­D
j
E, and mixing proportions, p

ij
, which are

calculated using marker information (Jian & Zeng,

1997).

Kao & Zeng (1997) described a procedure to obtain

maximum likelihood parameter estimates using an

expectation}maximization (EM) algorithm. The EM

algorithm is an iterative procedure involving an E-

step (Expectation) and an M-step (Maximization) in

each iteration. In the [t­1]th iteration, the E-step is
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and the M-step is
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where E
r

is the rth element of E and D
jr

is the rth

element of D
j
.

Previously, Kao & Zeng (1997) expressed the M-

step in matrix notation as

E[t+"] ¯ diag(V[t+"])−"

[D«Π[t+"]«(Y®µ[t])®nondiag(V[t+"])E[t]], (8)

µ[t+"] ¯
1

n
1«[Y®Π[t+"] DE[t+"]], (9)
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σ#[t+"] ¯
1
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and Π¯²π
ij
´, (11)

where g denotes the Hadamard product, which is the

element-by-element product of corresponding

elements of two matrices of the same order, and «
denotes transposition of a matrix or vector.

Aside from notation, there is a subtle difference

between (5) and (8). In (5), we use E [t+"]

s
for s¯1,…,

(r®1), not E [t]

s
as implied in (8). It turns out that this

is very important to ensure the convergence of the

algorithm, particularly when m­t is large. Thus for

numerical stability and convergence of the algorithm,

(4)–(7) should be used for coding the algorithm.

To clarify the meaning of, and contrast the

difference between, p
ij

and π
ij
, note that p

ij
is the

probability of each multilocus QTL genotype con-

ditioned on marker genotypes while π
ij

is the prob-

ability of each multilocus QTL genotype conditioned

on marker genotypes and also phenotypic value of a

trait. If we let g denote a QTL genotype, M a marker

genotype and y a phenotype, π
ij
¯Prob(g rM, y)¯

Prob(g rM )Prob(y r g)}3g Prob(g rM )Prob(y rM ) as

shown in (4). Compare this with p
ij
¯Prob(g rM ) and

Prob(y r g)¯φ(y
i
rµ­D

j
E,σ#), which is the prob-

ability of observing the phenotype given a genotype,

within the context of the model defined in (2).

We also emphasize that when m is large, the number

of possible mixture components (QTL genotypes)

can become prohibitively large for efficient numerical

analysis. However, since the probabilities of different

genotypes for each observation sum to unity, and as

the number of genotypes increases, an increasingly

large proportion of genotypes have zero or very small

probabilities, and many need not be evaluated. In a

practical implementation of the algorithm, as an

alternative option, we have also adopted a selection

procedure to choose a subset of ‘significant ’ mixture

components for evaluation. The procedure uses

mixture components that have p
ij
" δ (defaults δ¯

0±001) and requires that the sum of these ‘significant ’

p
ij

be larger than 0±95 (otherwise the criterion (δ) for

the p
ij

will be lower). After selection, the ‘significant ’

p
ij
’s will be normalized so that they sum to unity.

Using this selection procedure, we discovered that the

number of ‘significant ’ mixture components is usually

on the order of tens, and occasionally hundreds,

depending on the marker density, and the number and

positions of the putative QTL selected. This selection

procedure greatly reduces the burden of numerical

analysis with little loss in the accuracy of the likelihood

evaluation.

The test for each QTL effect, say E
r
, is performed

by a likelihood ratio test conditioned on the other

selected QTL effects :

LOD¯ log
"!

L(E
"
1 0,…,E

m+t
1 0)

L(E
"
1 0,…,E

r−"
1 0,E

r
¯ 0,E

r+"
1 0,…,E

m+t
1 0)

.

(12)

For given positions of m putative QTL and m­t

QTL effects, the likelihood analysis can proceed as

outlined above. The task is then to search for and select

the genetic model (number, positions and interaction

of QTL) that best fits the data.

4. Model selection

Model selection is the key component of the analysis.

It is the basis for genetic parameter estimation and

data interpretation. Because our analysis is based on

genomic positions, not necessarily on the markers, the

search for QTL positions becomes more complicated.

Kao et al. (1999) outlined a stepwise approach to

search for QTL positions. Although not ideal, it is a

very practical solution. Here we describe a modified

procedure that we are currently using for data analysis.

In order to save computation time, we simplify our

methods to select a good initial model for MIM

analysis. For example, we can first use a backward

stepwise regression or a combined forward}backward

stepwise regression (Stuart & Ord, 1991) to select a

subset of significant markers. For this purpose, we

have found that using a stopping rule based on an F-

to-enter statistic with α¯ 0±01 is generally satisfactory.

Then, we can use the results from marker selection to

perform CIM to scan the genome for candidate

positions.

To identify candidate epistatic terms for the initial

model, we use a procedure that pools markers and

marker pairs together in a combined forward stepwise

regression analysis. This combined analysis treats

marker marginal effects and pairwise interaction

effects equally during the selection phase. Thereafter,

it is appropriate to compare the results of this analysis

with CIM results to reach a consensus initial model

that includes m marginal effects in m positions and t

epistatic effects.

Each parameter in this initial model is then tested

for significance using MIM. Those estimates that turn

out to be non-significant are dropped stepwise from

the model. After the first evaluation of the initial

model, we perform the following stepwise selection

analysis to finalize the search for a genetic model

under MIM:
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1. Begin with a model that contains m QTL and t

epistatic effects.

2. Scan the genome to determine the best position of

the (m­1)st QTL. When found, perform a

likelihood ratio test for the marginal effect of this

putative QTL. If the test statistic exceeds the

critical value, this effect is retained in the model.

3. Search for the (t­1)st epistatic effect among those

pairwise interaction terms not yet included in the

model, and perform the likelihood ratio test on

the effect. If the LOD exceeds the critical value, the

effect is retained in the model. Repeat the process

until no more significant epistatic effects are found.

4. Re-evaluate the significance of each QTL effect

currently fitted in the model. If the LOD for a QTL

(marginal or epistatic) effect falls below the

significance threshold conditioned on the other

fitted effects, the effect is removed from the model.

However, if the marginal effect of a QTL that has

a significant epistatic effect with other QTL falls

below the threshold, this marginal effect is still

retained. This process is repeated until the test

statistic for each effect is above the significance

threshold.

5. Optimize the estimates of the QTL positions based

on the currently selected model. Instead of per-

forming a multi-dimensional search around the

regions of the current estimates of the QTL

positions (which is a option), the estimates of the

QTL positions are updated in turn for each region.

For the ith QTL in the model, the region between

its two neighbour QTL is scanned to find the

position that maximizes the likelihood (conditioned

on the current estimates of positions of other QTL

and QTL epistasis). This refinement process is

repeated sequentially for each QTL position until

there is no change in the estimates of the QTL

positions.

6. Return to step 2 and repeat the process until no

more significant QTL effects can be added into the

model and the estimates of the QTL positions are

optimized.

It may be worthwhile to attempt to search for

significant epistatic effects between selected and

unselected QTL positions. This is accomplished in a

stepwise manner by searching for the largest epistatic

effect between a current QTL position and an

unselected genomic position at 1 or 2 cM intervals,

and testing for significance. Of course, numerical

calculation is very intensive for this analysis.

Sometimes, the stepwise search may fail to uncover

QTL in close repulsion linkage or to identify complex

epistatic patterns that involve multiple components.

When this happens, we may need to add more than

one component at a time in order to improve the fit of

the model significantly. Chunkwise selection (Kaol et

al., 1999) accomplishes this, although it is difficult to

perform automatically, and thus needs to be done on

an interactive basis.

The analysis of model selection in a high and

unknown dimension is very complicated, particularly

when it is performed on the whole genome (not just

on the observed markers). The multi-dimensional

likelihood landscape could have numerous peaks

separated by valleys or connected by ridges. A model

selected from this landscape may well be just a local

peak, and there is no guarantee that a global peak can

be found. There are also issues concerning the

appropriate criteria used in model selection for an

analysis (see below) and appropriate strategies to

search for epistaticQTLand to estimateQTL epistasis.

Clearly, more detailed and in-depth analyses of these

issues are needed. These analyses need to be globally

(i.e. genome wide) and architecturally (i.e. multiple

components and multiple levels of genetic effects)

oriented to be informative for the study of the genetic

architecture of quantitative traits.

5. Stopping rules

Two important issues associated with model selection

are the stopping rule for the model search algorithm

as well as the criterion for comparing different models.

In regression analysis, there exist many variable}
model selection procedures including the Akaike

information criterion (AIC) (Akaike, 1969), the C
p

method (Mallows, 1973), the Bayes information

criterion (BIC) (Schwartz, 1978; Hannan & Quinn,

1979), the final prediction error method (Shibata,

1984), the generalized information criterion (Rao &

Wu, 1989) and its analogues (Potscherm, 1989), the

delete-one cross-validation (Allen, 1974; Stone, 1974),

the generalized cross-validation (Craven & Wahba

1979), the delete-d cross-validation (Shao, 1993;

Geisser, 1975; Burman, 1989; Zhang, 1993), the

bootstrap model selection (Shao, 1996) and the

minimizing posterior predictive loss (Gelfand &

Ghosh, 1998). As pointed out by Broman (1997),

QTL mapping analysis is also a model selection

analysis. However, unlike many model selection

problems in regression analysis, the independent

variables (QTL genotypes) are not observed, but the

markers are. Model selection practised on markers

only (Broman, 1997) is very informative, but

insufficient in achieving the main objective of QTL

mapping: locating QTL positions. Currently, many

statistical analyses for mapping QTL use likelihood

ratio or F statistic to test each genetic effect fitted in

the model as a basis of model selection, with

adjustment on significance value for each test to

account for multiple tests practised in searching for

QTL (Lander & Botstein, 1989; Zeng, 1994).
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Many of these methods and criteria, though based

on different principles and considerations, are in fact

intimately related. For example, the final production

error (FPE) criterion is based on minimizing S
k
¯

(n­k)RSS
k
}(n®k), where RSS(k) is the residual sum

of squares and k is the number of parameters fitted in

the model. The information criterion of the general

form is based on minimizing IC¯®2(log

L
k
®kc(n)}2), where L

k
is the likelihood of data given

a genetic model with k parameters and c(n) is a

penalty function. This is approximately equivalent to

IC¯ log[RSS
k
}n]­kc(n)}n in regression analysis.

Akaike (1969) suggests c(n)¯ 2, whereas Schwarz

(1978) recommends c(n)¯ log(n) and Hannan &

Quinn (1979) considered c(n)¯ 2 log(log n). It has

been shown that S
k
and Akaike’s IC produce equiva-

lent results asymptotically (Shibata, 1984). Breiman

& Freedman (1983) showed that S
k

is asymptotically

optimal in the sense of minimizing the prediction

error. The Schwarz and Hannan–Quinn criteria

produce consistent estimators in the sense that the

probability of selecting the true model (components)

approaches one as nU¢ : FPE and AIC do not

achieve this, and typically include too many terms.

These asymptotic results, however, give no indication

of the behaviour of statistics for finite sample sizes.

The IC criteria can also be related to F-to-enter

statistic (for regression analysis) or LR-to-enter

statistic (for likelihood analysis) in the stepwise

selection procedure. (It needs to be pointed out that

the IC criteria can be used to compare any models, not

necessarily the nested models under stepwise re-

gression analysis.) For example, it can be shown that

the likelihood ratio test statistic can be expressed

as LR
k
¯®2 log(L

k
}L

k+"
)% n log(c(n)}n­1)E c(n)

(Miller, 1990, p. 208). The criterion is basically defined

by c(n) if interpreted under BIC. Using AIC with c(n)

¯ 2 would yield a final LOD threshold of 0±43!

In reference to QTL analysis on markers, Broman

(1997) suggested using c(n)¯ δ log n and recom-

mended that δ be between 2 and 3. For n¯100C 500,

the LOD threshold would be 2C 2±7 for δ¯ 2 and 3

C 4 for δ¯ 3. This, on the surface, appears to be in

line with some current practice in interval mapping

(Lander & Botstein, 1989; Zeng, 1994) based on

different arguments.

However, this argument is still rather arbitrary and

is not related to the experimental design parameters,

such as the genetic length of linkage map and the

number and distribution of the markers. In fact, the

threshold c(n)¯ δ log n is somewhat strange for finite

sample size, being higher for larger n. This points out

the insufficiency of using asymptotic results in finite

samples. Also, the problem of a stopping rule

inherently depends on the underlying genetic model in

question, the information obviously not available for

the analysis. From simulation studies (S. Wang &

Z.-B. Zeng, unpublished), we found that some genetic

parameters, such as the heritability, play a very

important role in the stopping rule and model

selection. Clearly more studies on stopping rules are

needed in the context of estimating the genetic

architecture of quantitative traits.

Also it needs to be emphasized that model selection

and stopping rules depend on the purpose of the

analysis. If the main purpose of an experiment is to

infer genetic parameters, such as number of QTL,

model selection based on BIC-type criteria tend to be

more appropriate. However, if the main purpose of an

experiment is for marker-assisted selection (see below),

model selection based on FPE or cross-validation is

more appropriate.

6. Permutation test

For mapping QTL, Churchill & Doerge (1994)

proposed using a permutation test to estimate

empirically the threshold for a test statistic for

detection of a QTL. First, a permuted sample is

generated from the data by randomly pairing pheno-

types and genotypes in the sample, stimulating the

null hypothesis of no intrinsic association between

genotypes and phenotypes (no QTL). The statistical

test is then performed over the whole genome on the

permuted sample for QTL, and the maximum test

statistic is recorded. This permutation analysis is

repeated for a number of replicates to obtain a

distribution of the maximum test statistic, and from

the distribution to obtain the threshold value. One

then compares this threshold with the test statistic

from the original sample, and declares the existence of

a QTL if the peak test statistic in a region exceeds the

threshold.

Subsequently, Doerge & Churchill (1996) extended

the permutation method for detecting multiple QTL

in two ways. One, called CET (conditional empirical

threshold), is based on stratification. After a QTL is

identified, a marker close to the QTL is selected and

the data are permuted within each marker class. The

analysis is then performed on other chromosomes in

permuted samples to estimate the threshold for testing

for more QTL. The other method is called RET

(residual empirical threshold). This method subtracts

estimated effects of a QTL from the phenotypic value

once a QTL is identified, and then regards the

estimated residuals as new trait data for a subsequent

permutation test. Both procedures can be performed

sequentially in multiple steps for detecting multiple

QTL. Compared with the standard permutation test,

these methods tend to have greater statistical power to

find more (unlinked) QTL, because in later steps the

test statistic (for minor QTL) tends to be relatively

higher (as the residual variance becomes smaller) and
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the threshold tends to be lower (as the search is

performed over a smaller genome size). However, the

methods are not designed for detecting multiple linked

QTL, as linkage effects of possible multiple QTL are

not properly safeguarded in the analysis, which may

result in under-counting linked QTL and biasing the

estimation of QTL positions.

7. Bootstrap test

Alternatively, we could use a bootstrap resampling

method for hypothesis testing (Efron, 1979; Mammen,

1993). (Shao (1996) also described a bootstrap model

selection procedure based on minimizing prediction

error.) Hypothesis testing can be performed sequen-

tially either forwards or backwards. However, in

general, the backward search and test is preferred. In

our situation, we could first perform a forward search

using a lower threshold to overselect candidate QTL

positions, and then perform backward elimination to

eliminate some less significant candidate QTL. At

some point, we may want to compare a model of k

QTL with that of (k­1) QTL. We assume that the k

QTL positions are contained in the model of (k­1)

QTL, and we want to test whether the smallest QTL,

say the (k­1)th, is significant. Thus, our hypotheses

are :

H
!
: α

i
1 0 (i¯1,…,k) and α

k+"
¯ 0

(k QTL model),

H
"
: α

i
1 0 (i¯1,…,k) and α

k+"
1 0

(k­1 QTL model).

5

6
7

8

(13)

Let yW
i rH

!

and yW
i rH

"

be the estimated phenotypic value

of individual i by (14) under H
!
and H

"
, respectively.

There are generally two ways to generate bootstrap

samples under H
!

(Efron, 1979; Mammen, 1993).

1. Paired bootstrap : Sample pairs of genotypes and

phenotypes ²(X$
i
,Y$

i
)´ with replacement from

²(X
j
, y

j
®yW

j rH
"

­yW
j rH

!

), j¯1,…, n´ with equal

probability.

2. Residual bootstrap : Let eW
i
¯ y

i
®yW

i rH
!

and εW
i
¯

eW
i
®ea with ea ¯3

i
eW
i
}n. To generate a bootstrap

sample ²(X$
i
,Y$

i
)´, we first generate a random

sample of residuals ²ε$
i
´ from ²εW

j
, j¯1,…, n´ with

replacement, and define X$
i
¯X

i
and Y$

i
¯

yW
i rH

!

­ε$
i
.

The bootstrap test can be performed as follows:

1. Draw a bootstrap sample ²(X$
i
,Y$

i
)´.

2. Search for the best position in the genome (other

than the positions of the k QTL) for the hy-

pothetical k­1 QTL and perform the likelihood

ratio test (12) for the hypotheses in (13).

3. Repeat steps 1 and 2 for a predetermined number

of times to obtain an empirical bootstrap dis-

tribution of the test statistic, T*.

4. Reject H
!
if the test statistic for (13) in the original

data exceeds TWα, where TWα is the (1®α)th quantile of

the bootstrap distribution of T*.

Mammen (1993) proved that the bootstrap test is

asymptotically correct. Rayner (1990) showed that

this bootstrap test is correct to second order in the

sense that its type I error, the probability of rejecting

H
!
when H

!
is true, differs from α by a term of order

O(n−").

If the sampling for residuals (under residual

bootstrap) is without replacement, the sample is a

kind of residual permutation sample, and the cor-

responding test is a kind of residual permutation test.

This test is closely related to, but somewhat different

from RET of Doerge & Churchill (1996). We (S.

Wang and Z.-B. Zeng, unpublished) have performed

simulations to evaluate the performance of this

residual bootstrap}permutation test in relation to

QTL mapping. There are some interesting obser-

vations from the simulation study. As expected, there

is little difference in the threshold between the residual

bootstrap and the residual permutation tests. Ob-

viously, the threshold value depends significantly on

the size of the genome, among other things. However,

it seems that the threshold value is relatively in-

dependent of what and how many (k) QTL are

currently fitted in the model (13). Detailed results of

the simulation study will be presented elsewhere.

However, one difficult problem as yet unresolved is

how to account for the tests in multiple steps in the

search for QTL.

8. Estimating the genotypic value and marker-

assisted selection

Given estimates of the QTL parameters, one can

estimate genotypic values of an individual for marker-

assisted selection (MAS). This estimation is compli-

cated by the fact that QTL genotypes are not observed

directly. Only marker genotypes are observed. Thus,

the estimation for an individual is the weighted mean

of the genotypic values for all possible genotypes,

weighted by the probability (πW
ij
) of each QTL genotype

conditioned on the marker and phenotypic data.

From (2) and (6), this estimator is

yW
i
¯µW ­3

#
m

j="

3
m+t

r="

πW
ij
D

jr
EW

r
, (14)

where the first summation is over all possible 2m QTL

genotypes (in numerical analysis, only those ‘sig-

nificant ’ QTL genotypes may be analysed and

summed here : see above) and the second summation

is over all effects of the model (m main effects and t

epistatic effects). µW is the maximum likelihood estimate

(MLE) of µ obtained from (6) at the equilibrium of

the final model, and EW
r

is MLE of QTL effect E
r

obtained from (5). πW
ij

is obtained from (4).
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Equation (14) is directly related to MAS. Lande &

Thompson (1990) outlined a framework for MAS

based on a selection index that combines phenotypic

information and molecular genetic marker infor-

mation. Their selection index uses a weighted mean of

phenotypic value and a molecular score to estimate

the breeding value of an individual for MAS. The

molecular score is constructed based on a multiple

regression of phenotypic value on a number of

(selected) marker alleles (Gimelfarb & Lande, 1994a,

b), and the weight is constructed based on the

heritability and the proportion of the additive genetic

variance explained by the molecular score. If an

experiment contains molecular genetic marker in-

formation that is saturated throughout the whole

genome, nearly all the genetic variance can be

explained by a selected MIM model. Thus, in this

case, the selection index is essentially determined by

the molecular score. We feel that model (2) with (14)

is a more appropriate way to estimate the molecular

score or genotypic value than a multiple regression on

markers.

To predict the genotypic value of an individual in a

different sample or population based on marker

information, such as in the cases of cross-validation

and early selection, we need to use

yW
i
¯µW ­3

#
m

j="

3
m+t

r="

pW
ij
D

jr
EW

r
(15)

as πW
ij

is a function of the phenotype y
i
, that is

unavailable in the early selection.

There is a question on whether to use interaction

effects in model (2) for MAS. If mating is random

after selection, interaction effects may not be used to

estimate the breeding value of an individual for MAS,

as the allelic combination of an individual will not be

transmitted to the next generation. However, if

interaction of QTL is significant and contributes a

significant part to the genetic variance, we should take

mating into account in MAS by selecting pairs of

individuals (a male and a female) based on the

predicted genotypic value of offspring of the two

individuals. For that purpose, we need to use model

(2) with interaction effects for mapping QTL and

estimating QTL parameters, and then use equation

(15) for predicting the genotypic value of offspring of

two individuals. In this case, pW
ij

is the estimated

probability of multilocus QTL genotype of an

offspring, estimated based on its parental QTL

genotype distributions, estimated positions of QTL

and recombination probabilities between QTL pairs.

This selection scheme can maximally utilize the genetic

marker and phenotypic information in the current

population for predicting selection response in the

next generation. The performance of this selection

scheme for quantitative traits with epistasis for MAS

will be explored further and published elsewhere.

9. Estimating the variance explained by QTL

The genetic variances and covariances explained by

each QTL effect can be estimated directly from the

likelihood analysis. At the convergence of the EM

algorithm, (8) leads to

E# ¯V# −"D«Π# «(Y®µW ). (16)

From (10), this means that

σW #¯
1

n
[(Y®µW )«(Y®µW )®E# «V# E# ] (17)

or

σW #¯
1

n 93
n

i="

(y
i
®µW )#®3

m+t

r="

3
m+t

s="

3
n

i="

3
#
m

j="

πW
ij
D

jr
D

js
EW

r
EW

s:
¯

1

n 93
n

i="

(y
i
®ya )#®3

m+t

r="

3
m+t

s="

3
n

i="

3
#
m

j="

πW
ij
(D

jr
®Da

r
)

¬(D
js
®Da

s
)EW

r
EW

s: , (18)

where ya ¯3n

i="
y
i
}n and Da

r
¯3n

i="
3#

m

j="
πW
ij
D

jr
}n. In

this form σW # is expressed as a difference between the

MLE of the total phenotypic variance, σW #
p
, in the first

term of (18), and that of genetic variance σW #g, in the

second term of (18).

The estimated genetic variance, σW #g, can be further

partitioned into

σW #g ¯ 3
m+t

r="

91n 3
n

i="

3
#
m

j="

πW
ij
(D

jr
®Da

r
)#EW #

r:
­3

m+t

r=#

3
r−"

s="

92n 3
n

i="

3
#
m

j="

πW
ij
(D

jr
®Da

r
) (D

js
®Da

s
)EW

r
EW

s:
¯ 3

m+t

r="

σW #
Er

­3
m+t

r=#

3
r−"

s="

σW
Er,Es

(19)

with σW #
Er

estimating genetic variance due to QTL effect

E
r

and σW
Er,Es

estimating genetic covariance between

QTL effects E
r
and E

s
.

There has been some concern about the inflated

estimate of the variance explained by QTL conditional

on the detection of QTL in a small sample (Beavis,

1994). Estimation conditional on testing or model

selection is a typical problem in statistical inference.

From simulation studies we have observed, as did

Beavis (1994), that when the heritability (the pro-

portion of the variance due to QTL) is small, say 0±2
with n¯ 300, the estimate based on forward-then-

backward model selection can be inflated – about

25% in our analysis. However, when the heritability is

high, say 0±5 or higher, the estimate is usually close to

the parameter value. Also, part of the bias can be

corrected by using adjusted R# to estimate the total

variance explained by QTL (Miller, 1990).

To obtain the sampling variances of architectural

parameter estimates, Kao & Zeng (1997) described a
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procedure based on the Fisher information matrix

allowing for missing data. The confidence intervals of

parameter estimates can also be estimated from the

bootstrap analysis (Efron & Tibshirani, 1993; Shao &

Tu, 1995; Visscher et al., 1996). One advantage of

using the bootstrap for model testing and selection is

that the same bootstrap samples can be used for

estimating confidence intervals once a model is selected

(Shao, 1996).

10. Application

We have applied MIM to data derived from several

QTL mapping experiments. Kao et al. (1999) analysed

QTL mapping data for three traits in a sample of 134

radiata pine. Based on MIM analysis, seven QTL

were mapped for cone number, six for three diameter

and five for branch quality. There are significant

epistatic effects between four pairs of QTL in two

traits. Together, these QTL explains 56%, 52% and

38% of the total phenotypic variances for the three

traits, respectively. The MIM analysis indicated strong

repulsion linkage effects of closely linked QTL. This

was missed by the CIM analysis. Since three traits

were analysed, we also estimated the phenotypic,

genotypic and environmental (residual) correlations

between the three traits in the context of the identified

genetic models. It is interesting to note that, although

the phenotypic correlation between cone number and

branch quality is very small (0±013), the genetic

correlation is estimated to be significantly negative

(®0±196) due to linkage effects of QTL, and the

environmental correlation is estimated to be signifi-

cantly positive (0±189).

We also applied the method to a much larger

mapping experiment in Drosophila (Zeng et al., 1999).

Two Drosophila species, D. simulans and D.

mauritiana, were crossed to make F1 hybrids. Because

F1 males are sterile, females of the F1 population

were backcrossed to each of the parental lines to

produce two backcross populations, each of about

500 individuals. The trait is the morphology of the

posterior lobe of the male genital arch analysed as the

first principal component in an elliptical Fourier

analysis (Liu et al., 1996). Both parental difference (35

environmental standard deviations) and the heri-

tability of the trait in backcross populations (93±2%

in the simulans backcross and 91±6% in the mauritiana

backcross) are quite large, providing a very favourable

situation for QTL mapping. The use of MIM analysis

gives evidence of 19 QTL (based on the joint analysis

in two backcrosses) distributed on the three Drosophila

major chromosomes: X, II and III. The additive effect

estimates range from 1±0% to 11±4% of the parental

difference. The greatest additive effect estimate equals

4±0 environmental standard deviations, but could

represent multiple, closely linked QTL. Dominance

parameter estimates vary among loci from essentially

no dominance to complete dominance, and mauritiana

alleles tend to be dominant over simulans alleles.

Epistasis appears to be relatively unimportant as a

source of variation. All but one of the additive effect

estimates have the same sign, which means that one

species has nearly all the plus alleles and the other

nearly all the minus alleles. This result is unexpected

under most evolutionary scenarios, and suggests a

history of strong directional selection acting on the

posterior lobe.

An analysis of the data using CIM yielded only 14

of the above 19 QTL. In this case, the use of MIM and

the incorporation of the genetic complexity in the

mapping analysis (two backcrosses and epistasis)

helped to identify minor QTL, and this in turn aided

the estimation of the parameters of the trait’s genetic

architecture.

Our third application is to a set of 519 recombinant

isogenic lines in Drosophila melanogaster (Weber et

al., 1999) derived from a cross between two divergently

selected lines on wing shape. Only genes on the third

chromosome are segregating in the RI lines : genotypes

on the first and second chromosomes are identical.

The trait is a shape index based on two wing

dimensions. Using 65 in-situ-labelled transposable

elements as markers, 11 QTL were estimated by MIM

analysis with additive effect estimates ranging from

2±3% to 18±9% of the parental line difference. Again,

all but one of the additive effect estimates have the

same sign. Together, the 11 additive effects explain

0±947 of the total phenotypic variance with 0±274 due

to the variance of additive effects and 0±673 due to the

covariances between additive effects. There are nine

QTL pairs that show significant additive by additive

interaction effects. However, epistatic effect estimates

are about equally positive and negative, and the nine

epistatic effects explain only 0±012 of the total variance

(0±072 due to the variance of epistatic effects and

®0±060 due to the covariance between epistatic

effects). The covariances between additive and epi-

static effects, expected to be zero asymptotically (Kao

et al., 1999), are negative and very small (®0±004) due

to sampling. Thus the model explains 0±955 of the

total phenotypic variance.

11. Discussion

As pointed out by Kao et al. (1999), there are several

advantages to using MIM for QTL mapping studies.

First, by directly using multiple QTL components and

QTL epistasis in the analysis, MIM can aid the

identification of QTL. It can improve the statistical

power to identify more minor and complex QTL, and

also improve the precision of estimating QTl positions.

A second advantage is that MIM can help to

identify patterns and individual elements of QTL
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epistasis, and to provide appropriate and integral

estimation of individual QTL effects, variances and

covariance contributions. These parameter estimates

tend to be more stable statistically. This estimation

can also help us to assess the relative contribution and

importance of different genetic components, and to

understand the genetic architecture of quantitative

trait values and variation in a population.

Thirdly, with improved identification and esti-

mation of QTL parameters, MIM can provide

appropriate and powerful estimates of the genotypic

values of individuals that can be used for marker-

assisted selection. In particular, with identification of

QTL epistasis, marker-assisted selection can be

performed on pairs of individuals based on the

predicted genotypic values of offspring of two

individuals. This selection scheme can effectively

utilize the information of QTL epistasis to maximize

selection response in the next generation.

MIM helps to bring the three important studies

(QTL mapping, genetic architecture and marker-

assisted selection) together and provides a unified

approach to study the genetic basis of quantitative

traits.

The search algorithm and the stopping rule are at

the heart of an MIM-based analysis. This is the basis

for us to select a genetic model to interpret the genetic

architecture of the quantitative traits in the data. The

efficiency, reliability and robustness of the search

algorithm are the key to the applicability, reliability

and utility of this multiple gene based approach. We

have studied many issues related to this general

question. But many questions still remain to be

answered, such as: What is an efficient algorithm to

guide the search process to maximization? How

robust is the search process? What is the appropriate

procedure to determine the stopping rule for the

search process? We are aware of many current

developments using Markov chain Monte Carlo

approaches to guide the search process to sample

likelihoods in QTL mapping analysis, and will

incorporate many such techniques in our search

algorithms. The need to perform large-scale simulation

studies to evaluate the reliability and robustness of the

method in the genetic model identification is apparent

and will be pursued.
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