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Abstract

We study the shape of the probability mass function of the Markov binomial distribution,
and give necessary and sufficient conditions for the probability mass function to be
unimodal, bimodal, or trimodal. These are useful to analyze the double-peaking results
of a reactive transport model from the engineering literature. Moreover, we give a closed-
form expression for the variance of the Markov binomial distribution, and expressions
for the mean and the variance conditioned on the state at time n.
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1. Introduction

The Markov binomial distribution occurs in diverse applications. Examples are weather
forecasting, stock market trends, DNA matching, quality control (cf. [13]), and biometrics
(cf. [3]; see also [4]). In 1924 Markov [11] showed that, under certain conditions, a Markov
binomial distribution is asymptotically normally distributed. Later in 1953 Dobrušin [6]
studied some other limit distributions of a Markov binomial distribution. In 1960 Edwards
[7] rediscovered the Markov binomial distribution in connection with work on the human sex
ratio. More recently, many authors studied its distribution and moments (cf. [8], [9], and [15]),
and its approximations by compound Poisson distributions and binomial distributions (cf. [1],
[2], and [16]).

Our interest in the possible lack of unimodality of the Markov binomial distribution arose
from [12], where the authors deduced from simulations a somewhat surprising behaviour of
double peaking in the concentration of the aqueous part of a solute undergoing kinetic adsorption
and moving by advection and dispersion. In our paper [5], we explained this behaviour
rigorously using the multimodality properties derived in the present paper.

Let {Yk, k ≥ 1} be a Markov chain on the two states {S, F} with initial distribution ν =
(νS, νF) and transition matrix

P =
[
P(S, S) P (S, F)

P (F, S) P (F, F)

]
=

[
1 − a a

b 1 − b

]
, (1.1)

where we assume that 0 < a, b < 1 throughout the paper. The Markov binomial distribution
(MBD) is defined, for n ≥ 1, as the distribution of the random variable which counts the number
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Multimodality of the Markov binomial distribution 939

of successes in n experiments with the two outcomes success and failure:

Kn =
n∑

k=1

1{Yk=S}.

We say that Kn is a Bin(n, a, b, ν) distributed random variable. Clearly, the MBD generalizes
the binomial distribution, where a + b = 1 and (νS, νF) = (b, a).

In Section 2 we will give an explicit formula for the variance of an MBD. This was not given in
[15], and only implicitly in [9] and [13]. By introducing the notion of ‘excentricity’we can write
down tractable formulae for the expectation and the variance of an MBD. For the application
to the reactive transport model, we need a bit more, namely the variances conditioned on the
state of the chain at time n. Expressions for these formulae will be computed in Section 3.

In Section 4 we will give a closed formula for the probability mass function fn of Kn, and
we study its shape. The probability mass function fn was implicitly given in [8], [9], and [15],
but the closed formula presented here is helpful to study its shape. Surprisingly, the shape can
be unimodal, bimodal, or trimodal. We show in particular that, when a +b ≥ 1, the probability
mass function of Kn is unimodal, and that the probability mass function of Kn restricted to the
interval [1, n − 1] is always unimodal.

In Section 5 we give formulae for the probability mass functions of Kn, conditional on
the state at time n. Here again our interest arises from the fact that in the reactive transport
model of [12] the authors considered the behaviour of the concentration of the aqueous part
of a solute, which corresponds to conditioning at the state of the chain at time n (aqueous ∼
success, adsorbed ∼ failure).

2. The variance of the Markov binomial distribution

Let (πS, πF) be the stationary distribution of the chain {Yk, k ≥ 1}. We have

πS = b

a + b
, πF = a

a + b
.

In fact, diagonalizing P yields, for n = 0, 1, 2 . . . ,

P n =
[
πS πF
πS πF

]
+ γ n

[
πF −πF

−πS πS

]
, (2.1)

where γ = 1 − a − b is the second largest eigenvalue of P . Note that, for 1 ≤ k ≤ n,

Pν(Yk = S) = νSP k−1(S, S) + νFP k−1(F, S) = πS

(
1 −

(
1 − νS

πS

)
γ k−1

)
,

and, similarly,

Pν(Yk = F) = νSP k−1(S, F) + νFP k−1(F, F) = πF

(
1 −

(
1 − νF

πF

)
γ k−1

)
.

It thus appears useful to define the excentricities εS and εF of an initial distribution ν by

ετ := ετ (ν) = 1 − ντ

πτ

for τ ∈ {S, F}.
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Both quantities measure the deviation of the initial distribution ν from the stationary distribu-
tion π . Using them, we can rewrite Pν(Yk = S) and Pν(Yk = F) as

Pν(Yk = S) = πS(1 − εS γ k−1), Pν(Yk = F) = πF(1 − εF γ k−1). (2.2)

Moreover, the expectation of Kn is given by (note that γ < 1 since a + b > 0)

Eν[Kn] =
n∑

k=1

Eν[1{Yk=S}] =
n∑

k=1

Pν(Yk = S) = πS

(
n − εS

1 − γ n

1 − γ

)
. (2.3)

The expectation of Kn is particularly simple if we start in the equilibrium distribution, since in
this case εS = 0.

Obtaining varν(Kn) is more involved, because of correlations. A closed formula for the
variance in the following proposition has been obtained by several authors (see, for example [2]
and [13]). Here it is particularly compact by our use of excentricities.

Proposition 2.1. For any Bin(n, a, b, ν) distributed random variable Kn, we have

varν(Kn) = πS

{
n
πF(1 + γ )

1 − γ
+ γ (εS(πS − πF) − 2πF) − εS(πF − νS)

(1 − γ )2 + nγ n 2εS(πF − πS)

1 − γ

+ γ n

(
εS(πS − πF)

1 − γ
+ 2

γπF + εS(πF − νS)

(1 − γ )2

)
− γ 2n πSε2

S

(1 − γ )2

}
.

Proof. Since varν(Kn) = Eν[K2
n] − (Eν[Kn])2, using (2.3), it suffices to calculate

Eν[K2
n] = Eν

[( n∑
k=1

1{Yk=S}
)2]

=
n∑

k=1

Pν(Yk = S) + 2
∑

1≤i<j≤n

Pν(Yi = S, Yj = S)

= Eν[Kn] + 2
∑

1≤i<j≤n

Pν(Yi = S, Yj = S).

Thus, we only need to calculate

Pν(Yi = S, Yj = S) = Pν(Yj = S | Yi = S) Pν(Yi = S)

= (πS + πFγ j−i )πS(1 − εSγ i−1)

= πS(πS + πFγ j−i − εSπSγ i−1 − εSπFγ j−1),

using (2.1) and (2.2). Performing the four summations we obtain

2
∑

1≤i<j≤n

Pν(Yi = S, Yj = S)

= 2πS

{
πS

n(n − 1)

2
+ πFγ

(
n

1 − γ
− 1 − γ n

(1 − γ )2

)
− εSπS

(
n

1 − γ
− 1 − γ n

(1 − γ )2

)

− εSπF

(−nγ n

1 − γ
+ γ (1 − γ n)

(1 − γ )2

)}

= πS

{
n(n − 1)πS + 2n

πFγ − εSπS

1 − γ
+ 2nγ n εSπF

1 − γ
+ 2(1 − γ n)

εSπS − πFγ (1 + εS)

(1 − γ )2

}
,

which, combined with (2.3), completes the proof.
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3. The conditional variance of the Markov binomial distribution

Here we are interested in the variance of Kn given the state of the chain at time n. Let Kτ
n

be the random variable Kn conditioned on Yn = τ ∈ {S, F}. For completeness, we will first
give the corresponding means Eν[KS

n ] and Eν[KF
n ], which were also given in [8], [9], and [15].

Using (2.1) and (2.2), we obtain

Eν[KS
n ] = Eν[Kn | Yn = S]

=
n∑

k=1

Pν(Yk = S | Yn = S)

=
n∑

k=1

Pν(Yn = S | Yk = S) Pν(Yk = S)

Pν(Yn = S)

=
∑n

k=1 P n−k(S, S) Pν(Yk = S)

πS(1 − εSγ n−1)

=
∑n

k=1(πS + πFγ n−k)πS(1 − εSγ k−1)

πS(1 − εSγ n−1)

= n
πS − εSπFγ n−1

1 − εSγ n−1 + (πF − εSπS)(1 − γ n)

(1 − γ )(1 − εSγ n−1)
, (3.1)

and, similarly,

Eν[KF
n ] = n

πS − εFπFγ n−1

1 − εFγ n−1 + (εFπF − πS)(1 − γ n)

(1 − γ )(1 − εFγ n−1)
. (3.2)

Proposition 3.1. The variances of Kτ
n , a Bin(n, a, b, ν) distributed random variable Kn con-

ditioned on Yn = τ ∈ {S, F}, are given by

varν(K
S
n ) = n2 π2

S − εSπ2
Fγ n−1

1 − εSγ n−1 −
(

n
πS − εSπFγ n−1

1 − εSγ n−1 + (πF − εSπS)(1 − γ n)

(1 − γ )(1 − εSγ n−1)

)2

− n

(
πFπS(1 + 3εSγ n−1)

1 − εSγ n−1 + 2
εSπ2

S + π2
Fγ n − 2πFπS(1 + εSγ n−1)

(1 − γ )(1 − εSγ n−1)

)

+ (1 − γ n)

(
πFπS(4 + εS) − (πF + εSπ2

S)

(1 − γ )(1 − εSγ n−1)
+ 2

εSπ2
S + π2

F − 2πFπS(1 + εS)

(1 − γ )2(1 − εSγ n−1)

)
,

and

varν(K
F
n ) = n2 π2

S − εFπ2
Fγ n−1

1 − εFγ n−1 −
(

n
πS − εFπFγ n−1

1 − εFγ n−1 + (εFπF − πS)(1 − γ n)

(1 − γ )(1 − εFγ n−1)

)2

− n

(
πFπS(1 + (2 + εF)γ n−1)

1 − εFγ n−1 + 2
π2

S + εFπ2
Fγ n − πFπS(1 + εF)(1 + γ n−1)

(1 − γ )(1 − εFγ n−1)

)

+ (1 − γ n)

(
πFπS(4 + εF) − (πS + εFπ2

F)

(1 − γ )(1 − εFγ n−1)
+ 2

π2
S + εFπ2

F − 2πFπS(1 + εF)

(1 − γ )2(1 − εFγ n−1)

)
.
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Proof. Since the calculation of varν(KF
n ) is similar to varν(KS

n ), we only deal with varν(KS
n ).

Note that varν(KS
n ) = Eν[(KS

n )2] − (Eν[KS
n ])2. Using (3.1), it suffices to calculate

Eν[(KS
n )2] = Eν

[( n∑
k=1

1{Yk=S}
)2 ∣∣∣∣ Yn = S

]

=
n∑

k=1

Pν(Yk = S | Yn = S) + 2
∑

1≤i<j≤n

Pν(Yi = S, Yj = S | Yn = S)

= ES [Kn] + 2
∑

1≤i<j≤n

Pν(Yi = S, Yj = S | Yn = S).

It follows from (2.1) and (2.2) that

Pν(Yi = S, Yj = S | Yn = S)

= Pν(Yi = S) Pν(Yj = S, Yn = S | Yi = S)

Pν(Yn = S)

= Pν(Yi = S)P j−i (S, S)P n−j (S, S)

Pν(Yn = S)

= (1 − εSγ i−1)(πS + πFγ j−i )(πS + πFγ n−j )

1 − εSγ n−1

= π2
Fγ n−i − π2

SεSγ i−1

1 − εSγ n−1 + π2
S − π2

FεSγ n−1

1 − εSγ n−1 + πFπS(γ n−j − εSγ j−1)

1 − εSγ n−1

+ πFπS(γ j−i − εSγ n−1−(j−i))

1 − εSγ n−1 .

Performing the eight summations in the above equation we obtain

2
∑

1≤i<j≤n

Pν(Yi = S, Yj = S | Yn = S)

=
(

2(1 − γ n)
π2

SεS + π2
Fγ

(1 − εSγ n−1)(1 − γ )2 − 2n
π2

SεS + π2
Fγ n

(1 − εSγ n−1)(1 − γ )

)

+ n(n − 1)(π2
S − π2

FεSγ n−1)

1 − εSγ n−1 + 2πSπF

1 − εSγ n−1

(
n

1 + εSγ n

1 − γ
− (1 − γ n)

1 + εSγ

(1 − γ )2

)

+ 2πSπF

1 − εSγ n−1

(
n
γ + εSγ n−1

1 − γ
− (1 − γ n)

γ + εS

(1 − γ )2

)

= n(n − 1)
π2

S − π2
FεSγ n−1

1 − εSγ n−1 + 2n
πSπF(1 + γ )(1 + εSγ n−1) − (π2

SεS + π2
Fγ n)

(1 − εSγ n−1)(1 − γ )

+ 2(1 − γ n)
π2

SεS + π2
Fγ − πSπF(1 + γ )(1 + εS)

(1 − εSγ n−1)(1 − γ )2 ,

which, combined with (3.1), yields the expression for varν(KS
n ).

For the special initial distributions (0, 1) and (1, 0), we have the excentricities εS((0, 1)) =
1 = εF((1, 0)). Substituting them into (3.1), (3.2), and Proposition 3.1 we obtain

EF [KS
n ] = ES [KF

n ], varF(KS
n ) = varS(KF

n ),
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where

EF := E(0,1), ES := E(1,0), varF := var(0,1), varS := var(1,0) .

More generally, we have the following.

Proposition 3.2. For any Bin(n, a, b, ν) distributed random variable Kn and any positive
integer m, the mth moment of KS

n conditioned on Y1 = F is equal to the mth moment of KF
n

conditioned on Y1 = S, i.e. for m = 1, 2, . . . ,

EF [(KS
n )m] = ES [(KF

n )m].
Proof. Note that, for m ≤ n,

Km
n =

( n∑
k=1

1{Yk=S}
)m

= C1

n∑
k=1

1{Yk=S} + C2

∑
i1<i2

1{Yi1=S, Yi2 =S} + · · ·

+ Cm

∑
i1<i2<···<im

1{Yi1=S, Yi2 =S,...,Yim=S},

where the Cis are constants related to n and m. This implies that, for τ ∈ {S, F},

Eτ̄ [(Kτ
n )m] = C1

n∑
k=1

Pτ̄ (Yk = S | Yn = τ) + C2

∑
i1<i2

Pτ̄ (Yi1 = S, Yi2 = S | Yn = τ) + · · ·

+ Cm

∑
i1<i2<···<im

Pτ̄ (Yi1 = S, Yi2 = S, . . . , Yim = S | Yn = τ),

where S̄ = F, F̄ = S and PF := P(0,1), PS := P(1,0). Thus, we only need to show that, for
1 ≤ i1 < · · · < ik ≤ n,

PF(Yi1 = S, . . . , Yik = S | Yn = S) = PS(Yn−ik+1 = S, . . . , Yn−i1+1 = S | Yn = F). (3.3)

It is easy to see that both sides of (3.3) equal 0 if i1 = 1. Now suppose that i1 ≥ 2. Since
{Yk, k ≥ 1} is a homogeneous time reversible Markov chain, we have

PF(Yi1 = S, . . . , Yik = S | Yn = S)

= PF(Yn = S | Yik = S) PF(Yik = S | Yik−1 = S) · · · PF(Yi2 = S | Yi1 = S) PF(Yi1 = S)

PF(Yn = S)

= P n−ik (S, S)P ik−ik−1(S, S) · · · P i2−i1(S, S)P i1−1(F, S)

P n−1(F, S)

= P n−ik (S, S)P ik−ik−1(S, S) · · · P i2−i1(S, S)πSP i1−1(S, F)/πF

πSP n−1(S, F)/πF

= PS(Yn−ik+1 = S, Yn−ik−1+1 = S, . . . , Yn−i1+1 = S | Yn = F),

which yields (3.3). Thus, the proposition is established for m ≤ n. In a similar way, we can
show that the proposition holds for all m > n.
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4. The probability mass function of the Markov binomial distribution

For any Bin(n, a, b, ν) distributed random variable Kn, we will give sufficient and necessary
conditions for the probability mass function of Kn to be unimodal, bimodal, or trimodal. These
three kinds of shape are mentioned by Viveros et al. [15] without any further explanation.

Given n ≥ 1, let fn be the probability mass function of Kn, i.e.

fn(j) = Pν(Kn = j).

In particular, fn(j) = 0 if j < 0 or j > n. By an easy computation,

fn+2(j + 1) = Pν(Kn+1 = j + 1, Yn+1 = F)P (F, F)

+ Pν(Kn+1 = j, Yn+1 = F)P (F, S)

+ Pν(Kn+1 = j + 1, Yn+1 = S)P (S, F)

+ Pν(Kn+1 = j, Yn+1 = S)P (S, S)

= fn+1(j + 1)P (F, F) + Pν(Kn+1 = j + 1, Yn+1 = S)(P (S, F) − P(F, F))

+ fn+1(j)P (S, S) + Pν(Kn+1 = j, Yn+1 = F)(P (F, S) − P(S, S))

= P(F, F)fn+1(j + 1) + P(S, S)fn+1(j) + (P (S, F) − P(F, F))fn(j),

where the last equality holds since

P(S, F) + P(S, S) = P(F, F) + P(F, S) = 1.

Substituting (1.1) into the above recursion equation yields, for n ≥ 1,

fn+2(j + 1) = (1 − b)fn+1(j + 1) + (1 − a)fn+1(j) − (1 − a − b)fn(j) (4.1)

with initial conditions

f1(0) = νF, f1(1) = νS,

f2(0) = νF(1 − b), f2(1) = νFb + νSa, f2(2) = νS(1 − a).
(4.2)

In [8], [9], and [15] (implicit) expressions for the probability mass function of Kn are given,
but the closed form presented here is more helpful to study its shape.

Proposition 4.1. The probability mass function fn of a Bin(n, a, b, ν) distributed random
variable Kn can be written as

fn(j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

νF(1 − b)n−1, j = 0,

(1 − b)n−j (1 − a)j−1
j−1∑
k=0

(
j − 1

k

)
δkcj−1,k(n), 1 ≤ j ≤ n − 1,

νS(1 − a)n−1, j = n,

0, otherwise,

where δ = ab/((1 − a)(1 − b)) and

cj,k(n) = νS

(
n − 2 − j

k − 1

)
+ νSa + νFb

1 − b

(
n − 2 − j

k

)
+ νFab

(1 − b)2

(
n − 2 − j

k + 1

)
.
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Proof. It is easy to see that the recursion equation (4.1) with initial conditions (4.2) has a
unique solution. We only need to check that fn presented in the proposition satisfies (4.1) and
(4.2), and that the summation of fn(j) from j = 0 to n equals 1. It is easy to see that (4.1)
holds for j < 0 and j > n. Equation (4.1) holds for j = 0 since

(1 − b)fn+1(1) + (1 − a)fn+1(0) − (1 − a − b)fn(0)

= (1 − b)n+1c0,0(n + 1) + νF(1 − a)(1 − b)n − νF(1 − a − b)(1 − b)n−1

= (1 − b)n−1((1 − b)(νSa + νFb) + (n − 1)νFab + νF(1 − a)(1 − b)

− νF(1 − a − b))

= (1 − b)n−1((1 − b)(νSa + νFb) + nνFab)

= fn+2(1).

Similarly, (4.1) holds for j = n.
Suppose now that 1 ≤ j ≤ n − 1. From simple properties of the binomial coefficients in

cj,k(n), it follows that

cj−1,k(n) = cj,k(n + 1) = cj+1,k(n + 2)

and

cj,k(n + 2) = cj+1,k(n + 2) + cj+1,k−1(n + 2). (4.3)

We write cj,k := cj,k(n + 2) for short. Thus,

(1 − b)fn+1(j + 1) + (1 − a)fn+1(j) − (1 − a − b)fn(j)

= (1 − b)n+1−j (1 − a)j
j∑

k=0

(
j

k

)
δkcj+1,k + (1 − b)n+1−j (1 − a)j

j∑
k=0

(
j − 1

k

)
δkcj,k

− (1 − δ)(1 − b)n+1−j (1 − a)j
j∑

k=0

(
j − 1

k

)
δkcj+1,k

= (1 − b)n+1−j (1 − a)j
[ j∑

k=0

(
j − 1

k

)
δkcj+1,k +

j∑
k=0

(
j − 1

k − 1

)
δkcj+1,k

+
j∑

k=0

(
j − 1

k

)
δkcj,k −

j∑
k=0

(
j − 1

k

)
δkcj+1,k

+
j∑

k=0

(
j − 1

k − 1

)
δkcj+1,k−1

]

= (1 − b)n+1−j (1 − a)j
[ j∑

k=0

(
j − 1

k − 1

)
δk(cj+1,k + cj+1,k−1) +

j∑
k=0

(
j − 1

k

)
δkcj,k

]

= (1 − b)n+1−j (1 − a)j
[ j∑

k=0

(
j − 1

k − 1

)
δkcj,k +

j∑
k=0

(
j − 1

k

)
δkcj,k

]

= (1 − b)n+1−j (1 − a)j
j∑

k=0

(
j

k

)
δkcj,k

= fn+2(j + 1).
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Figure 1: Probability mass function f200 of K200 with a = 0.01, b = 0.03, and ν = (0.1, 0.9).

Now we show by induction that
∑n

j=0 fn(j) = 1 for each n ≥ 1. For n = 1, 2, we have
f1(0) + f1(1) = νF + νS = 1 and

f2(0) + f2(1) + f2(2) = νF(1 − b) + νFb + νSa + νS(1 − a) = 1.

Suppose that fn and fn+1 are probability mass functions. Then, by (4.1),

n+2∑
j=0

fn+2(j) = (1 − a)

n+2∑
j=0

fn+1(j) + (1 − b)

n+2∑
j=0

fn+1(j − 1)

− (1 − a − b)

n+2∑
j=0

fn(j − 1)

= (1 − a) + (1 − b) − (1 − a − b)

= 1.

This completes the proof.

Example 4.1. Let n = 200, a = 0.01, b = 0.03, and ν = (0.1, 0.9). By Proposition 4.1 we
obtain the probability mass function of K200 shown in Figure 1. Apparently, f200 is trimodal.

A finite sequence of real numbers {xi}ni=0 is said to be unimodal if there exists an index
0 ≤ n∗ ≤ n, called a mode of the sequence, such that x0 ≤ x1 ≤ · · · ≤ xn∗ and xn∗ ≥ xn∗+1 ≥
· · · ≥ xn. In particular, we call the sequence {xi}ni=0 strictly unimodal if all modes n∗ satisfy
0 < n∗ < n. From the definition, it is easy to see that a monotonic sequence is unimodal.

A nonnegative sequence {xi}ni=0 is called log-concave (or strictly log-concave) if xi−1xi+1 ≤
x2
i (or xi−1xi+1 < x2

i ) for all 1 ≤ i ≤ n − 1. It is well known that the sequence {xi}ni=0 is log-
concave if and only if xi1−1xi2+1 ≤ xi1xi2 for all 1 ≤ i1 ≤ i2 ≤ n−1. Moreover, log-concavity
implies unimodality.

The definitions of unimodality and log-concavity can be extended naturally to infinite
sequences.

Proposition 4.2. Let a +b ≥ 1, and let fn be the probability mass function of a Bin(n, a, b, ν)

distributed random variable Kn. Then the sequence {fn(j)}nj=0 is log-concave, and, hence,
unimodal. Moreover, the mode n∗ satisfies �Eν[Kn]� ≤ n∗ ≤ �Eν[Kn]	.
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Proof. Let Gn be the generating function of Kn, i.e. for all real s,

Gn(s) = Eν[sKn ] =
n∑

j=0

fn(j)sj .

Without loss of generality, we suppose that 0 < νS < 1. Then (by Proposition 4.1) Gn has
positive coefficients. It follows from the recursion equation (4.1) that

Gn+2(s) = ((1 − a)s + (1 − b))Gn+1(s) − (1 − a − b)sGn(s).

Since a + b ≥ 1, we find, by Corollary 2.4 of [10], that, for each n ≥ 1, all 0s of Gn are real.
Thus, the sequence {fn(j)}nj=0 is log-concave and, hence, unimodal with mode n∗ between
�Eν[Kn]� and �Eν[Kn]	.

We remark that it follows from Proposition 4.2 and Theorem 1 of [14] that, when a +b ≥ 1,
the distribution of Kn is a Bernoulli convolution, i.e. the distribution of a random variable∑n

i=1 Xi with Xi independent Bernoulli random variables having parameters pi ∈ {1/(1−s) :
Gn(s) = 0}.

When a + b < 1, Figure 1 suggests that the probability mass function {fn(j)}nj=0 is not
unimodal. However, Figure 1 also suggests that {fn(j)}n−1

j=1 is unimodal. We will indeed show
in Proposition 4.3 that the sequence {fn(j)}n−1

j=1 is log-concave, implying unimodality. In order
to prove Proposition 4.3, it is helpful to use the following lemma which can be derived directly
from Lemma 2.2 and Proposition 2.4 of [17]. To be more self-contained, we give a proof that
uses simple properties of binomial coefficients and log-concave sequences.

Lemma 4.1. For any positive integer j and a nonnegative log-concave sequence {xk}k , let
dj,k := (

j
k

)
xk . Then, for any 0 ≤ 2� ≤ m ≤ 2j ,

�m/2�∑
k=�

Dj,k(m) ≥ 0,

where, for k < m/2,

Dj,k(m) = 2dj,kdj,m−k − dj−1,kdj+1,m−k − dj+1,kdj−1,m−k,

and, for even m and k = m/2,

Dj,k(m) = d2
j,k − dj−1,kdj+1,k.

Proof. Note that, for k < m/2,

Dj,k(m) =
[

2

(
j

k

)(
j

m − k

)
−

(
j − 1

k

)(
j + 1

m − k

)
−

(
j + 1

k

)(
j − 1

m − k

)]
xkxm−k

=
[(

j − 1

k − 1

)(
j

m − k

)
−

(
j

k − 1

)(
j − 1

m − k

)]
xkxm−k

−
[(

j − 1

k

)(
j

m − k − 1

)
−

(
j

k

)(
j − 1

m − k − 1

)]
xkxm−k.
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For brevity, we only show the lemma for odd m. Let m = 2s + 1. Then, for 0 ≤ � ≤ s < j ,

s∑
k=�

Dj,k(m) =
s−1∑

k=�−1

[(
j − 1

k

)(
j

m − k − 1

)
−

(
j

k

)(
j − 1

m − k − 1

)]
xk+1xm−k−1

−
s∑

k=�

[(
j − 1

k

)(
j

m − k − 1

)
−

(
j

k

)(
j − 1

m − k − 1

)]
xkxm−k

=
s−1∑
k=�

[(
j − 1

k

)(
j

m − k − 1

)
−

(
j

k

)(
j − 1

m − k − 1

)]
(xk+1xm−k−1 − xkxm−k)

+
[(

j − 1

� − 1

)(
j

m − �

)
−

(
j

� − 1

)(
j − 1

m − �

)]
x�xm−�

≥ 0,

where the last inequality holds since
(

j − 1

k

)(
j

m − k − 1

)
≥

(
j

k

)(
j − 1

m − k − 1

)
for k ≤ s − 1

and the sequence {xk}k is log-concave. This completes the proof.

Inspired by the proof of Theorem 3.10 of [17], we use Lemma 4.1 to show the log-concavity
of an important class of sequences.

Lemma 4.2. Let δ > 0, and let {cj,k}j,k∈Z be an nonnegative double sequence satisfying

cj,k = cj+1,k + cj+1,k−1,

and cj,k = 0 for all j ∈ Z and k ≤ −2. Then the sequence

{ j∑
k=0

(
j

k

)
δkcj,k

}
j≥0

is log-concave.

Proof. We fix j ≥ 1. Let dj,k := (
j
k

)
δk . We have to show that z2

j ≥ zj−1zj+1, where

zj :=
j∑

k=0

(
j

k

)
δkcj,k =

j∑
k=0

dj,kcj,k.

We use the shorthand notation vk := cj+1,k . Since cj,k = cj+1,k + cj+1,k−1, this yields

zj+1 =
j+1∑
k=0

dj+1,kvk, zj =
j∑

k=0

dj,k(vk + vk−1),

zj−1 =
j−1∑
k=0

dj−1,k(vk + 2vk−1 + vk−2).
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Note that vk = cj+1,k = 0 for all j and k ≤ −2 and dj,k = 0 for k < 0 or k > j , by the
definition of

(
j
k

)
. Rewrite

zj+1 =
j+2∑
k=0

dj+1,k−1vk−1, zj =
j+2∑
k=0

(dj,k−1 + dj,k)vk−1,

zj−1 =
j+2∑
k=0

(dj−1,k−1 + 2dj−1,k + dj−1,k+1)vk−1.

Then z2
j −zj−1zj+1 can be rewritten in a quadratic form of j+3 variables v−1, v0, v1, . . . , vj+1:

z2
j − zj−1zj+1 =

2(j+2)∑
m=0

�m/2�∑
k=0

ej,k(m)vk−1vm−k−1,

where
ej,k(m) = 2(dj,k−1 + dj,k)(dj,m−k−1 + dj,m−k)

− (dj−1,k−1 + 2dj−1,k + dj−1,k+1)dj+1,m−k−1

− dj+1,k−1(dj−1,m−k−1 + 2dj−1,m−k + dj−1,m−k+1).

Since the vks are all nonnegative, it suffices to show that
∑�m/2�

k=0 ej,k(m) ≥ 0 for all 0 ≤ m ≤
2(j + 2). Rewrite

ej,k(m) = Pk + 2Qk + Rk,

where
Pk = 2dj,k−1dj,m−k−1 − dj−1,k−1dj+1,m−k−1 − dj+1,k−1dj−1,m−k−1,

Qk = dj,k−1dj,m−k + dj,kdj,m−k−1 − dj−1,kdj+1,m−k−1 − dj+1,k−1dj−1,m−k,

Rk = 2dj,kdj,m−k − dj−1,k+1dj+1,m−k−1 − dj+1,k−1dj−1,m−k+1.

Then we only need to show that

�m/2�∑
k=0

Pk ≥ 0,

�m/2�∑
k=0

Qk ≥ 0,

�m/2�∑
k=0

Rk ≥ 0.

For brevity, we show this only for the case when m is odd. For even m, the proof is very similar,
but somewhat longer. Let m = 2s + 1. It follows from Lemma 4.1 that

s∑
k=0

Pk =
s∑

k=0

Dj,k−1(m − 2) =
s−1∑
k=0

Dj,k(m − 2) ≥ 0,

where the second equality holds since Dj,k(m − 2) = 0 for k < 0. Recalling from Lemma 4.1
that Dj,s(m − 1) = d2

j,s − dj−1,sdj+1,s , we also have

s∑
k=0

Qk =
s−1∑

k=−1

(dj,kdj,m−k−1 − dj+1,kdj−1,m−k−1) +
s∑

k=0

(dj,kdj,m−k−1 − dj−1,kdj+1,m−k−1)

=
s∑

k=0

Dj,k(m − 1)

≥ 0.
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Moreover,
s∑

k=0

Rk = 2
s∑

k=0

dj,kdj,m−k −
s+1∑
k=1

dj−1,kdj+1,m−k −
s−1∑

k=−1

dj+1,kdj−1,m−k

=
s∑

k=0

Dj,k(m) + dj−1,0dj+1,m

≥
s∑

k=0

Dj,k(m)

≥ 0.

This completes the proof.

Proposition 4.3. For any Bin(n, a, b, ν) distributed random variable Kn, let fn be its proba-
bility mass function. Then the sequence {fn(j)}n−1

j=1 is log-concave.

Proof. According to Proposition 4.1 we have, for 1 ≤ j ≤ n − 1,

fn(j) = (1 − b)n−j (1 − a)j−1
j−1∑
k=0

(
j − 1

k

)
δkcj−1,k,

where δ > 0, and the double sequence {cj,k}j,k∈Z satisfies the recursion equation cj,k =
cj+1,k + cj+1,k−1 (cf. (4.3)), and cj,k = 0 for k ≤ −2. It follows from Lemma 4.2 that the
sequence {fn(j)}n−1

j=1 is log-concave.

In fact, we can show by sharpening the proof of Lemma 4.2 that {fn(j)}n−1
j=1 is strictly log-

concave, i.e. fn(j)2 > fn(j − 1)fn(j + 1) for j = 2, . . . , n − 2. Proposition 4.3 implies that
the shape of the probability mass function of Kn, which can be unimodal, bimodal, or trimodal,
is determined by the following six values: fn(0), fn(1), fn(2), fn(n−2), fn(n−1), and fn(n).

Theorem 4.1. For any Bin(n, a, b, ν) distributed random variable Kn, let fn be its probability
mass function. Then fn is unimodal, except that

• fn is bimodal with one peak on the left if and only if fn(0) > fn(1) ≤ fn(2) and either
fn(n − 1) ≥ fn(n) or fn(n − 2) < fn(n − 1) < fn(n);

• fn is bimodal with one peak on the right if and only if fn(n − 2) ≥ fn(n − 1) < fn(n)

and either fn(0) ≤ fn(1) or fn(0) > fn(1) > fn(2);

• fn is trimodal if and only if fn(0) > fn(1) ≤ fn(2) and fn(n−2) ≥ fn(n−1) < fn(n).

Example 4.2. We consider the special case ν = π = (b/(a + b), a/(a + b)) and n = 50. It
follows from Proposition 4.1 that

fn(0) = (1 − b)n−1 a

a + b
, fn(1) = (1 − b)n−2ab

a + b

(
2 + (n − 2)

a

1 − b

)
,

and

fn(2) = (1 − b)n−3ab

a + b

{
(1 − a)

(
2 + (n − 3)

a

1 − b

)

+ b

(
1 + (n − 3)

2a

1 − b
+

(
a

1 − b

)2(
n − 3

2

))}
.
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In a similar way we obtain the formulae for fn(n − 2), fn(n − 1), and fn(n). Figure 2 is
obtained via Theorem 4.1. For some examples of probability mass functions in this class, see
Figure 3.

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

Figure 2: (i) When (a, b) is in the grey region, f50 is strictly unimodal; when (a, b) is in the lower light-
grey region, f50 is decreasing; when (a, b) is in the upper light-grey region, f50 is increasing. (ii) When
(a, b) is in the dark-grey region, f50 is bimodal with one peak on the left; when (a, b) is in the black
region, f50 is bimodal with one peak on the right. (iii) When (a, b) is in the white region, f50 is trimodal.
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Figure 3: Probability mass function of K50 with ν = π . In the upper-left graph a = 0.3 and b = 0.5; in
the upper-right graph a = 0.05 and b = 0.2; in the lower-left graph a = 0.09 and b = 0.05; and in the

lower-right graph a = 0.02 and b = 0.5.
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5. The conditional probability mass functions

For any Bin(n, a, b, ν) distributed random variable Kn, let f τ
n be the probability mass

function of Kτ
n with τ ∈ {S, F} , i.e.

f τ
n (j) = Pν(K

τ
n = j) = Pν(Kn = j | Yn = τ).

In order to deal with f τ
n , it is simpler to deal with the partial probability mass functions

f̂ τ
n (j) = Pν(Kn = j, Yn = τ) = f τ

n (j) Pν(Yn = τ).

Since f̂ F
n = fn − f̂ S

n , we only deal with f̂ S
n . It is easy to obtain the recursion equation

f̂ S
n+2(j + 1) = (1 − b)f̂ S

n+1(j + 1) + (1 − a)f̂ S
n+1(j) − (1 − a − b)f̂ S

n (j),

with initial conditions

f̂ S
1 (0) = 0, f̂ S

1 (1) = νS,

f̂ S
2 (0) = 0, f̂ S

2 (1) = νFb, f̂ S
2 (2) = νS(1 − a).

Then we obtain the following proposition in a similar way as Proposition 4.1.

Proposition 5.1. The partial probability mass function f̂ S
n of a Bin(n, a, b, ν) distributed

random variable Kn can be written as

f̂ S
n (j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − b)n−j (1 − a)j−1
j−1∑
k=0

(
j − 1

k

)
δkcS

j−1,k(n), 1 ≤ j ≤ n − 1,

νS(1 − a)n−1, j = n,

0, otherwise,

where δ = ab/((1 − a)(1 − b)) and

cS
j,k(n) = νS

(
n − 2 − j

k − 1

)
+ νFb

1 − b

(
n − 2 − j

k

)
.

From Lemma 4.2, it follows that the sequence {f̂ S
n (j)}n−1

j=0 is log-concave, and, hence,

{f S
n (j)}n−1

j=0 is log-concave. Thus, in contrast to fn, f S
n cannot have a trimodal shape. The

unimodal or bimodal (with one peak on the right) shape of f S
n depends on the values of f S

n (j)

for j = n − 2, n − 1, n.
Similarly, the shape of f F

n can only be unimodal or bimodal (with one peak on the left)
depending on the values of f F

n (j) for j = 0, 1, 2.
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