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Abstract. We consider a fan as a ringed space (with finitely many points). We develop the cor-
responding sheaf theory and functors, such as direct image Rp� (p is a subdivision of a fan),
Verdier duality, etc. The distinguished sheaf LF, called the minimal sheaf plays the role of an
equivariant intersection cohomology complex on the corresponding toric variety (which exists
if F is rational). Using LF we define the intersection cohomology space IHðFÞ. It is conjectured
that a strictly convex piecewise linear function on F acts as a Lefschetz operator on IHðFÞ. We
show that this conjecture implies Stanley’s conjecture on the unimodality of the generalized
h-vector of a convex polytope.
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1. Introduction

For an n-dimensional convex polytope Q R. Stanley ([S]) defined a set of integers

hðQÞ ¼ ðh0ðQÞ; h1ðQÞ; . . . ; hnðQÞÞ—the ‘generalized h-vector’—which are supposed

to be the intersection cohomology Betti numbers of the toric variety XQ correspond-

ing to Q. In case Q � Rn is a rational polytope the variety XQ indeed exists, and it is

known ([S]) that hiðQÞ ¼ dim IH2iðXQÞ. Thus, for a rational polytope Q, the integers

hiðQÞ satisfy

(1) hiðQÞ5 0,

(2) hiðQÞ ¼ hn�iðQÞ (Poincaré duality),

(3) h0ðQÞ4 h1ðQÞ4 � � � 4 h½n=2	ðQÞ (follows from the Hard Lefschetz theorem for

projective algebraic varieties).

For an arbitrary convex polytope (more generally for an Eulerian poset) Stanley

proved ([S], Theorem 2.4) the property (2) above. He conjectured that (1) and
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(3) also hold without the rationality hypothesis. This is still not known in gen-

eral.

In this paper we propose an approach which we expect to lead to a proof of 1 and

3 for general convex polytopes. Our approach is modeled on the ‘equivariant geome-

try’ of the (non-existent) toric variety XQ as developed in [BL].

Namely, given a convex polytope Q � R
n we consider the corresponding complete

fan F ¼ FQ in Rn and work with F instead of Q. Let A denote the graded ring of

polynomial functions on Rn. Viewing F as a partially ordered set (of cones) we con-

sider a category of sheaves of A-modules on F. In this category we define a minimal

sheaf LF which corresponds to the T-equivariant intersection cohomology complex

on XQ if the latter exists. Our first main result is the ‘elementary’ decomposition the-

orem for the direct image of the minimal sheaf under subdivision of fans (Theorem

5.6). (Recall, that a subdivision of a fan corresponds to a proper morphism of toric

varieties.) We also develop the Borel–Moore–Verdier duality in the derived category

of sheaves of A-modules on F. We show that LF is isomorphic to its Verdier dual

(Corollary 6.23).

Remark 1:1. In fact the usual (equivariant) decomposition theorem for a proper

morphism of toric varieties can be deduced from this ‘elementary’ one by the

equivalence of categories proved in [L] (Theorem 2.6). However the proof of this last

result by itself uses the fundamental properties of the intersection cohomology.

For a complete fan F the minimal sheaf LF gives rise in a natural way to the gra-

ded vector space IHðFÞ which we declare to be the intersection cohomology of F. (For
rational Q it is proved in [BL] that there is an isomorphism IHðFQÞ ffi IHðXQÞ.) Let

ihiðFÞ ¼ dim IHiðFÞ. We establish the following properties of IHðFÞ:

(1) dim IHðFÞ <1;
(2) ihiðFÞ ¼ 0, unless i is even and 04 i4 2n;

(3) ih0ðFÞ ¼ ih2nðFÞ ¼ 1;
(4) ihn�iðFÞ ¼ ihnþiðFÞ.

The last property follows from Poincaré duality in IHðFÞ induced by the Verdier
duality in sheaves. Similar relations are satisfied by the multiplicities in the decom-

position of the direct image of the minimal sheaf under subdivision.

Moreover, there is a natural operator l of degree 2 on the space IHðFÞ, which we
expect to have the Lefschetz property as conjectured below:

CONJECTURE 1.2. For each i5 1 the map li: IHn�iðFÞ ! IHnþiðFÞ is an iso-

morphism.

So far we were unable to prove this conjecture, but it seems to be within reach. In

case Q is rational the conjecture follows from the results in [BL]. This conjecture has

the following standard corollary:
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COROLLARY 1.3 (of the conjecture). ihiðQÞ4 ihiþ2ðQÞ for 04 i < n.

In fact the above conjecture implies ‘everything’:

COROLLARY 1.4. Assume the above conjecture is true. Then

ð1Þ IHðFQÞ is a combinatorial invariant of Q, i.e. it depends only on the face lattice of

Q.

ð2Þ Moreover, ih2jðFQÞ ¼ hjðQÞ hence the h-vector hðQÞ has the properties conjectured

by R. Stanley.

The paper is organized as follows:

. Section 2 gives a brief account of our methods and main results.

. Section 3 discusses the elementary properties of the category of abelian sheaves

on a fan and their cohomology.

. In Section 4 we endow a fan with the structure of a ringed space, single out a

category of sheaves of modules over the structure sheaf and obtain the first ‘geo-

metric’ result (Theorem 4.7).

. In Section 5 we prove that our category of sheaves is semi-simple and identify

the simple objects (Theorem 5.3). We show that our categories of sheaves

are stable by direct image under morphisms induced by subdivision of fans

(Theorem 5.6).

. Section 6 contains an account of duality on our category of sheaves. As a conse-

quence of the existence of the duality involution (Corollary 6.22) and its effect in

cohomology (Theorem 6.18) we obtain the Poincaré duality in intersection coho-

mology of a complete fan (Corollary 6.26). We show that duality commutes with

the direct image under morphisms induced by subdivision of fans (Corollary

6.20) and obtain a relative version of Poincaré duality (Corollary 6.27).

. In Section 7 we make precise Lefschetz type conjectures and discuss their conse-

quences.

. In Section 8 we apply the machinery to a conjecture of G. Kalai (proven recently

in the rational case by T. Braden and R. D. MacPherson) and give our version of

the proof.

2. Summary of Methods and Results

2.1. FANS AS RINGED SPACES

Our point of departure is the observation that a fan F in a (real) vector space V gives

rise to a topological space, which we will denote by F as well, and a sheaf of graded

rings AF on it. Namely, the points of F are cones, open subsets are subfans, and the

stalk AF;s ofAF at the cone s 2 F is the graded algebra of polynomial functions on s
(equivalently on the linear span of s) and the structure maps are given by restriction
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of functions. All of these rings are quotients of the graded algebra A ¼ AV of poly-

nomial functions on V. The grading is assigned so that the linear functions have

degree two.

In case V is the Lie algebra of a torus T the graded ring A is canonically iso-

morphic to H�ðBT Þ – the cohomology ring of the classifying space of T.

In the case of a rational fan F one has the (unique) normal T-toric variety XF such

that the T-orbits in XF are in bijective correspondence with the cones of F and AF;s

is canonically isomorphic to the cohomology ring of the classifying space of the sta-

bilizer of the corresponding orbit.

All AF-modules will be regarded by default as A-modules. Let A
þ denote the ideal

of functions which vanish at the origin. For a graded A-moduleM we will denote by
�MM the graded vector space M=AþM.

2.2. A CATEGORY OF AF-MODULES

To each fan F viewed as the ringed space ðF;AFÞ we associate the additive category

MðAFÞ of (sheaves of finitely generated, graded) AF-modules which are flabby and

locally free over AF. This latter condition means that, for an object M of MðAFÞ,

the stalk Ms is a free graded module of finite rank over AF;s. The flabbiness condi-

tion may be restated as follows: for every cone s the restriction mapMs !Mð@sÞ is
surjective (whereMð@sÞ is the space of section ofM over the subfan @s consisting of
cones properly contained in s). It is easy to see that the sheaf AF is flabby if and only

if the fan F is simplicial.

In the rational case the category MðAFÞ is equivalent to the category of semi-

simple equivariant perverse (maybe shifted) sheaves on XF. The following theorems

verify that the categoryMðAFÞ and the cohomology of an object M ofMðAFÞ have

the expected properties.

Since, by definition, the objects of MðAFÞ are flabby sheaves, it follows that, for

M in MðAFÞ, H
iðF;MÞ ¼ 0 for i 6¼ 0.

THEOREM 2.1. Suppose that F is complete ði.e. the union of the cones of F is all of

V Þ, and M is in MðAFÞ. Then, H
0ðF;MÞ is a free A-module.

In the rational case, H0ðF;MÞ is the equivariant cohomology of the correspond-
ing perverse sheaf on XF.

The proof of Theorem 2.1 rests on the observation that the cohomology of a sheaf

F on a complete fan may be calculated by a ‘cellular’ complex C�ðF Þ whose compo-
nent in degree i is the direct sum of the stalks of F at cones of codimension i and the

differential is given by the sum (with suitable signs) of the restriction maps. In par-

ticular, if the sheaf F is flabby, then the complex C�ðF Þ is acyclic except in degree
zero. This proves the conjecture of J. Bernstein and the second author (Conjecture

15.9 of [BL]) on the acyclicity properties of the ‘minimal complex’, which happens

to be the ‘cellular complex’ of the simple object LF (see below) of MðAFÞ. In the
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simplicial case (when LF ffi AF) an ‘elementary’ proof of this fact was given by

M. Brion in [B].

Concerning the structure of the category MðAFÞ we have the following result.

THEOREM 2.2. Every object in MðAFÞ is a finite direct sum of indecomposable ones.

The indecomposable objects are, up to a shift of the grading, in bijective correspondence

with the set of cones ðsee Theorem 5:3 belowÞ.

2.3. IH AND IP

The indecomposable object ofMðAFÞ which corresponds to the cone s is a sheaf sup-
ported on the star of s (which constitutes the closure of the set fsg in our topology).
Let LF denote the indecomposable object of MðAFÞ which is supported on all of F
(the star of the origin of V ) and whose stalk at the origin is the one-dimensional vec-

tor space in degree zero. The fan F is simplicial if and only if LF ffi AF.

In the rational case, when F is complete (and so is XF), the A-module H
0ðF;LFÞ is

isomorphic to the T-equivariant intersection cohomology IHTðXFÞ of XF and

IHTðXFÞ is the usual (nonequivariant) intersection cohomology of XF. This moti-

vates the following notation:

DEFINITION 2.3. Let F be a complete fan in V. We set IHðFÞ ¼defH0ðF;LFÞ and

denote by ihðFÞ the corresponding Poincaré polynomial.

For each cone s 2 F we may consider the corresponding local Poincaré polyno-

mial. Namely, in the rational case the graded vector space LF;s is the (cohomology

of the) stalk on the corresponding T-orbit Os of the intersection cohomology com-

plex of XF. A normal slice to Os is an affine cone over some projective variety Ys.

Then LF;s is the primitive part of the intersection cohomology of Ys. This motivates

the following notation.

DEFINITION 2.4. For s 2 F we set IPðsÞ ¼def LF;s and denote by ipðsÞ
the corresponding Poincaré polynomial.

As is well known, the projectivity of a toric variety translates into the following

picture. Suppose that F is a complete fan in V and l 2 AFðFÞ is a (continuous)
cone-wise linear (with respect to F) strictly convex function on V. Multiplication

by l is an endomorphism (of degree 2) of LF, H
0ðF;LFÞ and IHðFÞ. In the rational

case it is the Lefschetz operator on IHðFÞ ¼ IHðXFÞ for the corresponding projective

embedding of XF. Thus, we make the following conjecture.

CONJECTURE 2.5 (Hard Lefschetz). Let F be a complete fan. Multiplication by l is

a Lefschetz operator on IHðFÞ i.e. for each i5 1 the map li: IHn�iðFÞ ! IHnþiðFÞ is an
isomorphism.
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2.4. SUBDIVISION AND THE DECOMPOSITION THEOREM

A fan C is a subdivision of a fan F if every cone of the latter is a union of cones of

the former. In this case there is a morphism of ringed spaces p: ðC;ACÞ ! ðF;AFÞ.

In the rational case subdivision corresponds to a proper birational morphism of

T-toric varieties.

THEOREM 2.6 (Decomposition Theorem). The functor of direct image under

subdivision restricts to the functor p�: MðACÞ !MðAFÞ.

It should be pointed out that the only nontrivial part of Theorem 2.6 is the fact

that the direct image of a locally free flabby sheaf is locally free which is proven

by essentially the same argument as the one used in the proof of Theorem 2.1.

Combining Theorem 2.6 with Theorem 2.2 we obtain the statement which in the

rational case amounts to the Decomposition Theorem of A. Beilinson J. Bernstein,

P. Deligne, and O. Gabber ([BBD]) and its equivariant analog ([BL]) for proper bira-

tional morphisms of toric varieties: ‘the direct image of a pure object is a direct sum

of (suitably shifted) pure objects’. Continuing with notations introduced above we

have the following ‘estimate’:

COROLLARY 2.7. Suppose in addition that F is complete ðtherefore so is CÞ. p�LC

contains LF as a direct summand, therefore IHðCÞ contains IHðFÞ as a direct sum-

mand. Hence, there is an inequality ihðCÞ5 ihðFÞ ðcoefficient by coefficientÞ of poly-

nomials with nonnegative coefficients.

2.5. DUALITY

As is well known, the (middle perversity) intersection cohomology of a compact

space admits an intersection pairing (and the same is the case in the equivariant set-

ting). To this end we have the following version of Borel–Moore–Verdier duality

which we develop for the derived category of sheaves of A-modules on F. One of
the results is the following

THEOREM 2.8. Let F be a fan in V. Then,

ð1Þ There is a contravariant involution DF on MðAFÞ ði.e. a functor

DF: MðAFÞ
op
!MðAFÞ and an isomorphism of functors DF �DF ffi IdÞ.

ð2Þ If F is complete, then there is a natural A-linear nondegenerate pairing ðof free A-

modulesÞ H0ðF;MÞ �A H0ðF;DFðMÞÞ ! oA=R for every object M of MðAFÞ.

ð3Þ If p: C! F is a morphism induced by a subdivision, then, for every object M of

MðACÞ, there is a natural isomorphism p�DCðMÞ ffi DFðp�MÞ.

Here oA=R ¼ A� detV� is the dualizing A-module, free of rank one, generated in

degree 2 dimR V in accordance with our grading convention.
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If follows from Theorem 2.8 that D is an anti-equivalence of categories, so, the

dual of an indecomposable object is an indecomposable one. One checks immedia-

tely that the dual DðLFÞ of LF has the properties which characterize the latter.

Therefore there is a (noncanonical) isomorphism DðLFÞ ffi LF. The numerical conse-

quence of the auto-duality of LF is given below.

COROLLARY 2.9. For a complete fan F in a vector space of dimension n the

polynomial ihðFÞ satisfies ihn�kðFÞ ¼ ihnþkðFÞ.

This corollary has a ‘relative’ version. Recall that the indecomposable objects in

MðAFÞ are, up to shift of the grading, in one-to-one correspondence with cones.

For a cone s 2 F we denote the corresponding, suitably normalized indecomposable

by Ls
F. Thus, for every object M 2MðAFÞ there is a (noncanonical) isomorphism

M ffi �
s2F
�
k2Z

Vs;k � Ls
FðkÞ; ð2:1Þ

where Vs;k are finite dimensional vector spaces (trivial for almost all k). Here �ð ÞðkÞ

denotes the shift of grading by k. It is not difficult to show that DFðLs
FðkÞÞ ffi

Ls
Fð�k� 2 dim sÞ.

COROLLARY 2.10. Suppose that p: C! F is a morphism induced by a subdivision.

Then, the vector spaces Vs;k in the decomposition ð2:1Þ of M ¼ p�LC satisfy

dimVs;k ¼ dimVs;�k�2 dim s.

2.6. KALAI TYPE INEQUALITIES

As an application of our technology we give our restatement of the inequality conjec-

tured by G. Kalai in [K] and proven in the rational case by T. Braden and R. D.

MacPherson in [BM]. Namely, suppose that F is a fan in V generated by a single

cone s, i.e. F ¼ ½s	 and t � s. Let StarðtÞ be the collection of cones in F which

contain t. Consider the indecomposable Lt
½s	 on ½s	 which corresponds to t (see

Definition 5.1 below) and put IPðStarðtÞÞ ¼ Lt
½s	;s :

THEOREM 2.11. There is an inequality, coefficient by coefficient, of polynomials

with non-negative coefficients ipðsÞ5 ipðtÞipðStarðtÞÞ :

3. Abelian Sheaves on Fans

3.1. FANS

A fan F in a real vector space V of dimension dimV ¼ n is a collection of closed con-

vex polyhedral cones with vertex at the origin o satisfying

. any two cones in F intersect along a common face;

. if a cone is in F, then so are all of its faces.
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A fan has a structure of a partially ordered set: given cones s and t in F we write

t4s if t is a face of s.
The origin is the unique minimal cone in every fan and will be denoted o.

Let dðsÞ denote the dimension of the cone s. Thus dðsÞ ¼ 0 iff s ¼ o.

The fan F is complete if and only if the union of cones of F is all of V. The fan F is

simplicial if every cone of F is simplicial. A cone of dimension k is simplicial if it has k

one-dimensional faces (rays).

3.2. TOPOLOGY ON A FAN

The (partially ordered) F will be considered as a topological space with the open sets

the subfans of F.
Let F4k denote the subset of cones of dimension at most k; this is an open subset

of F.
A subset, say S, of F generates a subfan, denoted ½S 	. We will frequently abuse

notation and write ½s	 for the irreducible open set ½fsg	.
We denote by @s the complement of fsg in ½s	. That is, @s is the subfan generated

by proper faces of s.
An open subset is irreducible if it is not a union of two open subsets properly con-

tained in it. The irreducible open sets are the subfans generated by single cones.

Remark 3:1. Note that the topological space F has the following property: the

intersection of irreducible open sets is irreducible.

Let s be a cone in F. Denote by StarðsÞ � F the subset of all the cones t such that
s4t. This is a closed subset of F. Its image under the projection V! V=SpanðsÞ is
a fan that will be denoted by StarðsÞ.

3.3. SHEAVES ON A FAN

Regarding F as a topological space with open sets the subfans of F, we consider
sheaves on F.
Let I ðFÞ denote the partially ordered set of irreducible open sets of F and inclu-

sions thereof. This partially ordered set is isomorphic to F.
A sheaf on F restricts to a presheaf (a contravariant functor) on I ðFÞ and this cor-

respondence is an equivalence of categories. Since, for a sheaf F and a cone s, the
stalk Fs is equal to the sections Gð½s	;F Þ of F over the corresponding irreducible

open set, the sheaf F is uniquely determined by the assignment s 7!Fs and the

restriction maps Fs ! Ft whenever t4s.
As usual the support SuppðF Þ of a sheaf F is the closure of the set of s’s, such that

Fs 6¼ 0.

For a sheaf F and a subset S we will denote by FS the extension by zero of the

restriction of F to S. By abuse of notation we will write Fs for Ffsg.
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3.4. FLABBY SHEAVES

Let F be a sheaf and consider the following condition: for every cone s the canonical
map

Fs ! Gð@s;F Þ is surjective: ð3:1Þ

LEMMA 3.2. A sheaf F satisfies the condition ð3:1Þ if and only if it is flabby.

Proof. The condition is obviously necessary. To see that it is sufficient we need to

show that a section of F defined over a subfan C extends to a global section. Clearly,

it is sufficient to show that a section defined over C [ F4k extends to a section

defined over C [ F4kþ1, but this is immediate from (3.1). &

For the rest of this section we restrict our attention to the category of sheaves of

R-vector spaces on F which we will denote by ShðFÞ.

3.5. SOME ELEMENTARY PROPERTIES OF THE CATEGORY ShðFÞ

For a cone s let is: fsg ,!F denote the inclusion. The embedding is is locally closed,

and closed (respectively open) if and only if s is maximal (respectively minimal, i.e.
the origin).

Suppose that W is a vector space considered as a sheaf on fsg.
Since every sheaf on a point is flabby the functor ðisÞ� is exact (i.e. R

pis�W ¼ 0 for

p 6¼ 0). Since every object in R�mod is injective the sheaf is�W is an injective object

in ShðFÞ which is equal to the constant sheafW supported on StarðsÞ. Every sheaf F
is embedded into a direct sum of injective sheaves by the canonical map

F!
L

s2F is�i
�1
s F:

Let i½s	: ½s	 ,!F denote the open embedding of the irreducible open set ½s	.
For a vector spaceW we denote byW½s	 the extension by zero of the constant sheaf

W on ½s	 Since

F 7!HomShðFÞðW½s	;F Þ ¼ HomRðW;FsÞ

is an exact functor, it follows thatW½s	 is a projective object in ShðFÞ. Every sheaf F
admits an epimorphism from a projective object, for example, the canonical mapL

s2FðFsÞ½s	 ! F: Thus, the Abelian category ShðFÞ has enough projectives.

3.6. THE CELLULAR COMPLEX OF A SHEAF

Let F be a fan in a (real) vector space V of dimension n. We fix an orientation of each

cone on F, so that the n-dimensional cones are oriented the same way (thus in par-
ticular we fix a global orientation of V ).

DEFINITION 3.3. For a sheaf F on F the cellular complex C�ðF Þ of

0! C 0ðF Þ ! C1ðF Þ ! � � � ! CnðF Þ ! 0
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is defined by CiðFÞ ¼
L

dðsÞ¼n�i Fs with the differential d
i:CiðFÞ ! Ciþ1ðFÞ equal to

the sum of the restriction maps Fs ! Ft with the sign �1 depending on whether

the orientations of s and t agree or disagree.

Remark 3:4: C�ð�Þ is an exact functor from ShðFÞ to complexes of vector spaces,
therefore extends trivially to a functor C�ð�Þ:DbðShðFÞÞ ! DbðR�modÞ.

PROPOSITION 3.5. Assume that the fan F is complete. Then, C�ð�Þ and RGðF; �Þ
are isomorphic as functors DbðShðFÞÞ ! DbðR�modÞ.

Proof. If n ¼ dimV ¼ 0, the statement is trivially true, so we assume that

n 6¼ 0. First, notice that, since F is complete, the natural map

GðF;FÞ !
L

dim s¼n Fs; induces an isomorphism GðF;FÞ ¼ H0ðC�ðF ÞÞ: Indeed, a

global section s 2 GðF;FÞ is equivalent to a collection of local sections

ss 2 Fð½s	Þ, for each cone s of dimension dðsÞ ¼ n such that ss ¼ st in Fð½s \ t	Þ
if dðs \ tÞ ¼ n� 1. This shows that GðF;FÞ ¼ H0ðC�ðFÞÞ (use the fact that

orientations of n-dimensional cones agree).

It remains to show that HiðC�ðI ÞÞ ¼ 0 for i 6¼ 0 for any injective sheaf I. In fact, it

is sufficient to take I ¼WStarðsÞ (i.e. the extension by zero of the constant sheaf with

valueW on StarðsÞ). Assume by induction that this holds for a complete fan in a vec-
tor space of dimension strictly less than n.

The complex C�ðWStarðsÞÞ is isomorphic to the complex C�ðStarðsÞÞ. If s 6¼ o, then

StarðsÞ is a complete fan in the vector space V=SpanðsÞ of dimension dimV=

SpanðsÞ < n and the conclusion follows.

Thus, the only case to consider is s ¼ o (so that StarðsÞ ¼ F). In this case C�ðIÞ is
isomorphic (up to reindexing and shift) to the augmented cellular chain complex

(with coefficients in W ) of a sphere of dimension n� 1. &

Later on we will need the following generalization of the previous

proposition.

PROPOSITION 3.6. Let F be any fan in V. Let F 2 ShðFÞ be such that its support

Z ¼ SuppðF Þ satisfies the following condition:

for each s 2 Z the fan StarðsÞ in V=SpanðsÞ is complete:

Then, the cellular complex C�ðF Þ is naturally isomorphic to RGðF;F Þ.
Proof. Same as that of Proposition 3.5. &

The next two lemmas will be used later on.

LEMMA 3.7. Let s � V be a cone of positive dimension ði.e. s 6¼ oÞ. For any constant

sheaf F on ½s	 the cellular complex C�ðF Þ is acyclic.

Proof. Then the cellular complex C�ðF Þ is isomorphic (up to reindexing and shift)

to an augmented cellular chain complex of a ball of dimension dðsÞ � 1. &
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Remark 3:8. In the notation of the previous lemma notice that if F 6¼ 0, then

H0ð½s	;FÞ 6¼ 0. Thus, for a fan which is not complete, the cellular complex does not
necessarily compute the cohomology of the sheaf.

LEMMA 3.9. Let s be a cone in V with dimV ¼ n. Let F be a flabby sheaf on the fan

½s	. Then

ð1Þ the cellular complex C�ðFÞ is acyclic except in the lowest degree, i.e. HiðC�ðFÞÞ¼ 0

for i 6¼ n� dðsÞ, and
ð2Þ Hn�dðsÞðC�ðFÞÞ ¼ GfsgF.

Proof. The case dðsÞ ¼ 0 being trivial we assume that dðsÞ > 0.

Since C�ð�Þ is an exact functor, the short exact sequence of sheaves

0! F@s ! F! Fs ! 0

gives rise to the short exact sequence of complexes

0! C�ðF@sÞ ! C�ðFÞ ! C�ðFsÞ ! 0:

Since @s is isomorphic to a complete fan, it follows from Proposition 3.5 and the

flabbiness of F that

(1) HiðC�ðF@sÞÞ ¼ 0 for i 6¼ n� dðsÞ þ 1;
(2) Hn�dðsÞþ1ðC�ðF@sÞÞ ¼ Gð@s;FÞ;
(3) the (connecting) map

Hn�dðsÞðC�ðFsÞÞ ¼ Fs ! Gð@s;FÞ ¼ Hn�dðsÞþ1ðC�ðF@sÞÞ

is surjective. Therefore, the long exact sequence in cohomology reduces to

0! Hn�dðsÞðC�ðFÞÞ ! Fs ! Gð@s;FÞ ! 0: &

3.7. COHOMOLOGY OF SOME SIMPLE SHEAVES

LEMMA 3.10. Let s be a cone in V. The functor Gð½s	; �Þ is exact. Equivalently, for
any sheaf F, Hið½s	;FÞ ¼ 0 for i 6¼ 0.

Proof. The functor Gð½s	; �Þ is naturally equivalent to the functor ‘stalk at s’ and
the latter is exact. &

LEMMA 3.11. Let F be a fan in V and F 2 ShðFÞ be the constant sheaf on F with

stalk W. Then,

HiðF;FÞ ¼
W; if i ¼ 0;
0; otherwise.

�

Proof. Since the space F is connected H0ðF;FÞ ¼W. The rest follows from the

injectivity of the sheaf F. &

INTERSECTION COHOMOLOGY ON NONRATIONAL POLYTOPES 255

https://doi.org/10.1023/A:1022232232018 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022232232018


LEMMA 3.12. Let F be a complete fan in V and W be a vector space. Consider the

sheaf Wo on F which is the extension by zero of the sheaf W on the open point o. Then,

HiðF;WoÞ ¼
W; if i ¼ n;
0; otherwise:

�

Equivalently, there is a natural isomorphism ðin the derived categoryÞ RGðF;WoÞ ffi

W½�n	.

Proof. By Proposition 3.5 RGðF;WoÞ ffi C�ðWoÞ and C�ðWoÞ ¼W½�n	. &

4. Fans as Ringed Spaces

4.1. THE STRUCTURE SHEAF OF A FAN

Let F be a fan in V. Let V� denote the constant sheaf s 7!V� on F. Let O1
F denote

the subsheaf of V� given by F 3 s 7!O1
F;s¼def s

? � V�; where s? denotes the sub-
space of linear functions which vanish identically on s.
Let G denote the sheaf determined by the assignment F 3 s 7!Gs ¼ SpanðsÞ

�:

Thus, there is a short exact sequence of sheaves

0! O1
F ! V�!

p G! 0: ð4:1Þ

We will denote by A the symmetric algebra of V� with grading determined by

assigning degree 2 to V�. We will use the notation AF for the corresponding constant

sheaf on F.

DEFINITION 4.1. The structure sheaf AF is the symmetric algebra of G, i.e. the
sheaf of cone-wise polynomial functions, graded so that the linear functions have

degree 2.

Remark 4:2. Clearly, there is an epimorphism of sheaves of graded algebras

AF ! AF. &

Remark 4:3. With these definitions ðF;AFÞ is a ringed space over the one point

ringed space ð;;AÞ which we imagine as ‘the empty fan’ in V.

In what follows ‘an AF-module’ will mean ‘a (locally) finitely generated graded

AF-module’ and similarly for AF-modules. An AF-module M is locally free if, for

every cone s, Ms is a free (graded) AF;s-module.

Let Aþ denote the ideal of elements of positive degree. For an A-moduleM we will

denote by M the graded vector space M=MAþ.

For a graded A-module (or sheaf) M ¼ �Mk denote by MðtÞ the corresponding

shifted object MðtÞk ¼Mkþt:

The flabbiness criterion (3.1) applied to an AF-module together with Nakayama’s

Lemma amounts to the following.
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LEMMA 4.4. An AF-module M is flabby if and only if for every cone s the canonical

map Ms! Gð@s;MÞ is surjective.

DEFINITION 4.5. Let MðAFÞ denote the additive category of flabby locally free

AF-modules considered as a full subcategory of sheaves of AF-modules and

morphisms of degree zero.

LEMMA 4.6. The fan F is simplicial if and only if the structure sheaf AF is flabby.

Proof. The statement is easily seen to be equivalent to the following one: Suppose

that P1; . . . ;Pn are polynomials in variables x1; . . . ; xn which satisfy @Pi=@xi ¼ 0 and

Pijxj¼0 ¼ Pjjxi¼0 for all i and j. Then there is a polynomial Q such that Qjxi¼0 ¼ Pi:

Verification of the latter fact is left to the reader. &

4.2. COHOMOLOGY OF OBJECTS IN MðAFÞ ON COMPLETE FANS

THEOREM 4.7. Suppose that F is a complete fan in V and M is in MðAFÞ. Then,

HiðF;MÞ ¼ 0 for i 6¼ 0 and H0ðF;MÞ is a free A-module.

Proof. The vanishing of higher cohomology is a direct consequence of the flab-

biness of the objects of MðAFÞ.

A graded A-moduleM is free if and only if ExtiAðM;AÞ ¼ 0 for i 6¼ 0. By Proposi-

tion 3.5, H0ðF;MÞ ¼ H0C�ðMÞ. Note that, for every j, ExtiAðCjðMÞ;AÞ ¼ 0 for i 6¼ j.

Since, in addition, HiC�ðMÞ ¼ 0 for i 6¼ 0 it follows by the standard argument that
ExtiAðH

0C�ðMÞ;AÞ ¼ 0 for i 6¼ 0. &

COROLLARY 4.8. Suppose that s is a cone in V, M 2MðA½s	Þ. Then, GfsgM is a

free module over A½s	;s.
Proof. We may assume that s spans V, i.e. A ¼ A½s	;s. The statement is obvious if

dðsÞ ¼ 0, so we assume that dðsÞ5 1.

Choose a vector v in the ‘interior’ of s. The projection V! V=Rv gives rise to an

isomorphism (of ringed spaces) between ð@s;A@sÞ and a complete fan in V=Rv. By

Theorem 4.7 Gð@s;MÞ is a free module over AV=R, therefore it satisfies

ExtiAðGð@s;MÞ;AÞ ¼ 0 for i 6¼ 1:

The exact sequence

0! GfsgM!Ms ! Gð@s;MÞ ! 0

shows that GfsgM satisfies

ExtiAðGfsgM;AÞ ¼ 0 for i 6¼ 0:

The desired statement follows. &
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5. Minimal Sheaves and Intersection Cohomology

5.1. MINIMAL SHEAVES

Recall that, for a cone s, the set StarðsÞ is defined as the collection of those cones t
which satisfy t5s. Namely, StarðsÞ is the closure of the set fsg.
Fix a cone s and consider the following conditions on an object M of MðAFÞ:

(1) Ms 6¼ 0 and Mt 6¼ 0 only if t 2 StarðsÞ;
(2) for every cone t 2 StarðsÞ, t 6¼ s, the canonical mapMt! Gð@t;MÞ is an iso-

morphism.

DEFINITION 5.1. In what follows we will refer to an object as above as a minimal

sheaf based at s. An instance of a minimal sheafM based at s withMs ffi AF;s will

be denoted Ls
F. We will also denote LF ¼ Lo

F:

PROPOSITION 5.2. Let F be any fan.

ð1Þ For every s 2 F and every finitely generated free graded AF;s-module M there

exists a unique ðup to an isomorphismÞ minimal sheaf M based at s such that

Ms ¼M. In particular, the minimal sheaf Ls
F exists for each s 2 F.

ð2Þ Moreover, if M is a minimal sheaf based at s, then M ’ Ls
F �R Ms: In parti-

cular M is a direct sum of sheaves Ls
FðtÞ, t 2 Z.

ð3Þ The minimal sheaves Ls
FðtÞ, t 2 Z are indecomposable objects in the category of

AF-modules.

ð4Þ Let U � F be an open subset, i.e. U is a subfan. Then LFjU ¼ LU:

Proof. Easy exercise. &

THEOREM 5.3. Let F be a fan in V. Every object M of MðAFÞ is isomorphic to a

direct sum of minimal sheaves. In particular, M is a direct sum of indecomposable

objects Ls
FðtÞ, t 2 Z.

Proof. The last part of the theorem follows from the first one using parts 2 and 3

of Proposition 5.2.

Consider an object M of MðAFÞ. We will show that it is isomorphic to a direct

sum of minimal sheaves by induction on jMj ¼
P

s rankAF;sMs: Consider a cone

s such thatMs 6¼ 0 and, for every t 2 @s,Mt ¼ 0. We will show that, for each such

s, M contains as a direct summand a minimal sheaf K based at s with Ks ¼Ms.

That is, we will construct a direct sum decomposition

M ¼ K�N ð5:1Þ

with K as above and N in MðAFÞ. This is sufficient, since, clearly, jN j < jMj.
Note, that we need to specify the direct sum decompostion (5.1) only on StarðsÞ.

Therefore it is sufficient to treat the case when s is the origin o.
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We proceed to construct the decomposition (5.1) by induction on the dimension of

the cone and the number of cones of the given dimension.

Let Ko ¼Mo and N o ¼ 0. Assume that a direct sum decomposition

MjF4 k
¼ K4k �N4k in MðAFjF4k

Þ has been defined and consider a cone s of

dimension kþ 1. Since @s consists of cones of dimension at most k the induction
hypothesis says that there is a direct sum decompostion of Gð@s;AFÞ-modules

Gð@s;MÞ ¼ Gð@s;K4kÞ � Gð@s;N4kÞ:

CLAIM 5.4. There is a decomposition Ms ¼ Ks �Ns into a direct sum of free AF;s-

modules, such that the restriction homomorphism Ms6Gð@s;MÞ maps Ks to

Gð@s;K4 kÞ and Ns to Gð@s;N4 kÞ and induces an isomorphism Ks!
ffi
Gð@s;K4 kÞ and

an epimorphism Ns6Gð@s;N4 kÞ.

Assume the claim for the moment. The desired extension K4kþ1 (respectively

N4kþ1) of K4 k (respectively N4 k) is given, for every cone s of dimension

kþ 1, by K4 kþ1;s ¼ Ks (respectively N4kþ1;s ¼ Ns) and has all the required

properties.

Proof of Claim. Choose a subspace Z � Gð@s;K4 kÞ which maps isomorphically

onto Gð@s;K4 kÞ under the residue map. Choose a subspace S �Ms so that the map

Ms ! Gð@s;MÞ restricts to an isomorphism S!
 
Z. Since S \ AþMs ¼ 0 there is a

subspace T �Ms such that S \ T ¼ 0 and S� T generates Ms freely. Subtracting,

if necessary, elements of A � S from elements of T we may assume that the image of T

under the map Ms! Gð@s;MÞ is contained in Gð@s;N4 kÞ. Thus we may take

Ks ¼ AF;sS and Ns ¼ AF;sT. This concludes the proof of the claim and of the

theorem. &

Remark 5:5. In the course of the proof we have constructed an isomorphism

M ffi
L

s2F Vs � Ls
F, where Vs is a finite dimensional graded vector space such

that Vs ffi kerðMs ! Gð@s;MÞÞ: In terms of homogeneous components we may

write Vs ¼
L

k2Z Vs;kðkÞ for suitable vector spaces Vs;k (trivial for almost all k),

and M ffi
L

s2F

L
k2Z Vs;k � Ls

FðkÞ: Note that the multiplicities dimVs;k in the

decompostion of M into a direct sum of indecomposable objects are uniquely

determined.

5.2. SUBDIVISION OF FANS AND THE DECOMPOSITION THEOREM

Suppose that F and C are two fans in V and C is a subdivision of F, which is to
say, every cone of F is a union of cones of C. (In the rational case this induces
a proper morphism of toric varieties). This corresponds to a morphism of ringed

spaces p: ðC;ACÞ ! ðF;AFÞ. The next theorem combined with the structure

Theorem 5.3 is a combinatorial analog of the decomposition theorem ([BBD], [BL]).
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THEOREM 5.6. In the notations introduced above, for M in MðACÞ,

ð1Þ Rip�M ¼ 0 for i 6¼ 0 and p�M is flabby;

ð2Þ p�M is locally free.

In other words, the direct image under subdivision p restricts to an exact functor p�:
MðACÞ !MðAFÞ.

Proof. The first claim follows from the flabbiness of M.

Since the issue is local on F we may assume that the latter is generated by a single

cone s of top dimension n, i.e. F ¼ ½s	. By induction on dimension it is sufficient to
show that the stalk ðp�MÞs is a free A-module.
Let Z ¼ p�1ðsÞ. This is a closed subset of C which consists of the cones which sub-

divide the interior of s.

CLAIM 5.7. For any sheaf F on C the restriction map H0ðC;F Þ ! H0ðZ;F Þ is an

isomorphism.

Proof. Indeed, a global section a 2 GðC;F Þ is the same as a collection of local

sections at 2 Ft ¼ Gð½t	;FÞ, dðtÞ ¼ n such that at ¼ ax in Ft\x in case

dðt \ xÞ ¼ n� 1. The same local data specifies an element in GðZ;FÞ. This proves the
claim. &

By Claim 5.7 pull-back and restriction to Z establish

ðp�MÞs ffi H0ðF; p�MÞ ffi H0ðC;MÞ ffi H0ðC;MZÞ:

By Proposition 3.6 the cellular complex C�ðMZÞ is quasi-isomorphic to

RGðC;MZÞ. Note that the sheaf MZ is flabby. Now the same argument as in the

proof of Theorem 4.7 shows that the A-module H0ðC;MZÞ is free. &

5.3. INTERSECTION COHOMOLOGY OF FANS

DEFINITION 5.8. For a complete fan F we define the intersection cohomology of F
as the graded vector space IHðFÞ ¼def H0ðF;LFÞ and denote by ihðFÞ the corre-
sponding Poincaré polynomial.

LEMMA 5.9. The intersection cohomology of a complete fan F enjoys the following

properties:

ð1Þ dim IHðFÞ <1;

ð2Þ ihjðFÞ ¼ 0 for j < 0 or j odd;

ð3Þ ih0ðFÞ ¼ 1.

Proof. The A-module H0ðF;LFÞ is finitely generated, hence the first

claim follows.

Using induction on the dimension of the cone it follows from the definition of LF

that, for each s 2 F the (graded) A-module LF;s has no nontrivial components of
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negative or odd degree. Hence, the same is true for H0ðF;LFÞ and the second claim

follows.

Using induction on the dimension of the cone and Lemma 3.11 one checks easily

that the degree zero component of LF;s is one-dimensional. In other words, the

degree zero component of the sheaf LF is the constant sheaf RF. Thus, by

Lemma 3.11, ih0ðFÞ ¼ 1. &

LEMMA 5.10. Suppose that F is a complete fan. Let C be a subdivision of F. Then
IHðFÞ is a direct summand of IHðCÞ. In particular, one has the inequality

ihðCÞ > ihðFÞ ðcoefficient by coefficientÞ of polynomials with nonnegative coefficients.

Proof. Let p: ðC;ACÞ ! ðF;AFÞ denote the corresponding morphism of ringed

spaces. Since ðp�LCÞo ¼ R it follows that the sheaf ðp�LCÞ contains LF as a direct

summand (see Theorem 5.3). The lemma follows. &

DEFINITION 5.11. For a cone s in V we define the local intersection cohomology

ðspaceÞ by IPðsÞ ¼ L½s	;s and denote by ipðsÞ the corresponding Poincaré polynomial.

Remark 5:12: Note that ipjðsÞ ¼ 0 if j is odd or negative.

6. Borel–Moore–Verdier Duality

Let F be a fan in V ¼ Rn. Let AF as usual be the constant sheaf on F with stalk A.

Denote by Db
cðAF �modÞ the bounded derived category of (locally finitely gener-

ated) AF-modules. In particular the additive category of sheavesMðAFÞ is a full sub-

category of Db
cðAF �modÞ.

In this section we define the duality functor, i.e. a contravariant involution D on

the category Db
cðAF �modÞ. We show that duality preserves the subcategoryMðAFÞ

and DðLFÞ ’ LF. Among other things, it gives rise to Poincaré duality in IHðFÞ.

6.1. THE DUALIZING OBJECT

Let o ¼ oA=R denote the dualizing A-module. That is, oA=R ¼ A� detV� is a free

graded A-module of rank one generated in degree 2 dimV. Recall that oo denotes

the extension by zero of the constant sheaf o on the (open) point o.

DEFINITION 6.1. The object DF ¼def oo½n	 of D
b
cðAF �modÞ is called the dualizing

object.

Since the functor C�ð�Þ is exact, it extends naturally to a functor

C�ð�Þ: Db
cðAF �modÞ ! Db

cðA�modÞ.

PROPOSITION 6.2. The morphism of functors Db
cðAF �modÞ

op
! Db

cðA�modÞ

RHom�AF
ð�;DFÞ ! RHom�AðC

�ð�Þ;oÞ
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induced by the ðexactÞ functor C�ð�Þ is an isomorphism. ðNote that the complex C�ðDFÞ

is equal to o.Þ
Proof. Every object of Db

cðAF �modÞ is isomorphic to a bounded complex of

projective objects which are finite direct sums of AF-modules of the form W½s	 (i.e.

the extension by zero of the constant sheaf W on ½s	), where W is a free A-module.

Therefore, it is sufficient to show that for any P as above the map

RHom�AF
ðP;DFÞ ! RHom�AðC

�ðPÞ;oÞ

is an isomorphism.

Since P is projective, RHom�AF
ðP;DFÞ ffi Hom

�
AF
ðP;ooÞ½n	. In addition, RHom

�
A

ðC�ðPÞ;oÞ ffi Hom�AðC
�ðPÞ;oÞ because C�ðPÞ is a complex of free A-modules. There-

fore, the map in question reduces to the map of complexes

HomAF ðP;ooÞ½n	 ! Hom�AðC
�ðPÞ;oÞ

which sends a map f: P! oo to the corresponding map of stalks at the origin (i.e.

to a map CnðPÞ ! o).
Assume that P ¼W½s	. If s ¼ o, then C�ðW½s	Þ ¼W½�n	 and the map is an equal-

ity. Otherwise, HomAF ðP;ooÞ ¼ 0 and C�ðW½s	Þ is acyclic by Lemma 3.7. &

6.2. TRACE MAPS

LEMMA 6.3. Suppose that F is complete. Then there is a canonical isomorphism

RGðF;DFÞ ! o.
Proof. Follows from the definition of DF and Lemma 3.12. &

DEFINITION 6.4. The isomorphism of Lemma 6.3 will be denoted by
R
F and

called the integration map or the ðabsoluteÞ trace map.

PROPOSITION 6.5. Suppose that p:C! F is a subdivision.

ð1Þ There is a natural isomorphism p�1DF ffi DC in Db
cðAC �modÞ.

ð2Þ The canonical morphism DF ! Rp�p�1DF ffi Rp�DC is an isomorphism

ðin Db
cðAF �modÞÞ.

Proof. The first claim follows directly from the definitions.

The second claim is proved by inspecting the map induced on stalks. Since the

issue is local on F we may assume that F ¼ ½s	. The claim is clearly true at the origin.

Since DF is supported at the origin it is sufficient to show that so is

Rp�p�1DF ffi Rp�DC.

By induction on the dimension we may assume that the statement holds at every

cone of @s.
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The stalk of Rp�p�1DF at s is given by

ðRp�p�1DFÞs ffi RGðF;Rp�p�1DFÞ

ffi RGðC; p�1DFÞ

ffi RGðC;DCÞ

ffi Hom�AðC
�ðACÞ;oÞ

using Proposition 6.2. The complex C�ðACÞ is acyclic since it is isomorphic to the

augmented cellular chain complex (with coefficients in A) of a contractible

space. &

DEFINITION 6.6. In what follows we will denote by
R
p: Rp�DC ! DF the

(inverse) isomorphism of Proposition 6.5.

6.3. DUALITY À LA VERDIER

In what follows we use Hom to denote the ‘sheaf Hom’. Note that, for s 2 F and any
two sheaves F and G HomðF;GÞs ¼ HomðF½s	;GÞ:

DEFINITION 6.7. The functor

DFð�Þ ¼def RHomAF
ð�;DFÞ : D

b
cðAF �modÞ

op
! Db

cðAF �modÞ

is called the duality functor.

Remark 6:8. Note the isomorphism DF ffi DFðAFÞ.

Our next goal is to prove Theorem 6.17 below. Let us begin with some

preparations.

DEFINITION 6.9. A nonempty open subset U � F is saturated if, for any cone

s 2 F of dimension dim s5 2, the inclusion @s � U implies s 2 U.

EXAMPLE 6.10. F and fog are saturated.

DEFINITION 6.11. For a nonempty open subset U � F define its opposite U0 as

follows:

U0 :¼ fs 2 Fj8t 2 U; t \ s ¼ og:

Remark 6:12: (1) F0 ¼ fog, fog0 ¼ F. (2) For any U its opposite U0 is saturated.

(3) We have U � U00.

LEMMA 6.13. If U is saturated then U ¼ U00.

Proof. Let o 6¼ s 2 U00. Let t4s be a face of dimension 1. Then t =2U0. Hence,
t 2 U. Thus by induction on dimension all faces of s are in U and so s is in U. &

INTERSECTION COHOMOLOGY ON NONRATIONAL POLYTOPES 263

https://doi.org/10.1023/A:1022232232018 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022232232018


COROLLARY 6.14. The map U 7!U0 is an involution of the collection of saturated

open subsets of F.

For an open subset U � F and an A-module M we denote as usual by MU the

extension by zero to F of the constant sheaf M on U. In case U ¼ fog we will also

denote this sheaf by Mo.

Remark 6:15: Let U � F be open. Note the equality of sheaves HomðAU;ooÞ ¼

oU0 . Hence, if U is saturated, then by Lemma 6.13 the obvious map

AU! HomðHomðAU;ooÞ;ooÞ

a 7! ð f 7! fðaÞÞ

is an isomorphism.

PROPOSITION 6.16. Let s 2 F and put U :¼ ½s	0. Then,

ð1Þ H�nRHomðAU;DFÞ ffi HomðAU;ooÞ and

ð2Þ HiRHomðAU;DFÞ ¼ 0 for i > �n.

Equivalently, RHomðAU;DFÞ ffi HomðAU;ooÞ½n	.

Proof. The first claim is clear. To prove the second claim we need to show that it

holds on stalks.

For t 2 F we putW ¼ U \ ½t	 and calculate the stalk of RHomðAU;DFÞ at t using
Proposition 6.2:

RHomðAU;DFÞt ffi RHom�ðAW;DFÞ

ffi Hom�ðC�ðAWÞ;oÞ:

If t 2 ½s	, then W ¼ fog and the complex C�ðAWÞ is concentrated in degree n, so

Hom�ðC�ðAWÞ;oÞ is concentrated in degree �n.
So, suppose that t =2 ½s	, in particular t 6¼ o. Then, either t 2 U, in which case

W ¼ ½t	 and C�ðAWÞ is acyclic by Lemma 3.7, or t =2U.
In the latter case, let m be the unique cone such that s \ t ¼ m. Note that m 2 @t.

Then, W ¼ ½t	nZ, where

Z ¼
[

o<l4m

StarðlÞ:

In particular, t 2 Z and, therefore, W � @t.
The complex C�ðAWÞ is isomorphic (up to reindexing and shift) to the

reduced cellular complex of the intersection S \ SuppðWÞ of the sphere S centered

at the origin and the support SuppðWÞ of W (with the induced cellular decom-

position). Now, S \ SuppðWÞ is the complement in the ðdim t� 2Þ-dimensional
sphere S \ Suppð@tÞ of the star-neighborhood of S \ SuppðmÞ (homeomorphic
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to an embedded open ðdim t� 2Þ-dimensional ball), hence itself (homeomorphic
to) a closed ðdim t� 2Þ-dimensional ball. Therefore, the complex C�ðAWÞ is

acyclic. &

We are ready to prove the main result of this section.

THEOREM 6.17. The canonical natural transformation Id! DF �DF given on an

object F � of Db
cðAF �modÞ by

F � ! RHomAF
ðRHomAF

ðF �;DFÞ;DFÞ

a 7! ð f 7! fðaÞÞ

is an isomorphism of functors.

Proof. Let s 2 F. Then A½s	 is an indecomposable projective AF-module and

every indecomposable projective is of this form. Since every object of Db
cðAF �modÞ

is isomorphic to a bounded complex of modules which are finite direct sums of

indecomposable projectives we may assume that F � ¼ A½s	.

By Remark 6.15 and Proposition 6.16 we have

RHomAF
ðRHomAF

ðA½s	;DFÞ;DFÞ ffi RHomAF
ðHomAF

ðA½s	;ooÞ½n	;oo½n	Þ

ffi RHomAF
ðo½s	0 ;ooÞ

ffi HomAF
ðo½s	0 ;ooÞ

ffi A½s	: &

6.4. GLOBAL DUALITY

Here we show that the duality functor commutes in the appropriate sense with the

functor of global sections over complete fans.

THEOREM 6.18. Suppose that F is complete. Then, the natural transformation of

functors Db
cðAF �modÞ

op
! Db

cðA�modÞ

RGðF;DFð�ÞÞ ! RHomAðRGðF; �Þ;oÞ

given on an object F � of Db
cðAFÞ by the composition

RGðF;DFðF
�ÞÞ ¼ RHomAF ðF

�;DFÞ

! RHomAðRGðF;F �Þ;RGðF;DFÞÞ

!

R
F
RHomAðRGðF;F �Þ;oÞ

is an isomorphism.

Proof. Follows from Propositions 3.5 and 6.2, and Lemma 6.3. &
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6.5. RELATIVE DUALITY

Here we show that the duality functor commutes in the appropriate sense with direct

image under subdivision.

THEOREM 6.19. Suppose that p: C! F is a subdivision. The canonical natural

transformation of functors DbðACÞ
op
! DbðAFÞ

Rp�RHomAC
ð�;DCÞ ! RHomAF

ðRp�ð�Þ;Rp�DCÞ

is an isomorphism.

Proof. Since the issue is local (on F) we may assume that F ¼ ½s	. By induction on
dimension we may assume that the statement holds on every cone of @s. It remains to
show that the statement holds on stalks at s. We begin with a calculation of

respective stalks.

If F � is in DbðACÞ, then

ðRp�RHomAC
ðF �;DCÞÞs ffi RGð½s	;Rp�RHomAC

ðF �;DCÞÞ

ffi RGðC;RHomAC
ðF �;DCÞÞ

ffi RHomAC ðF
�;DCÞ

ffi RHomAðC
�ðF �Þ;oÞ

and

ðRHomA½s	
ðRp�ðF �Þ;Rp�DCÞÞs ffi RGð½s	;RHomA½s	

ðRp�F �;Rp�DCÞÞ

ffi RHomA½s	 ðRp�F
�;Rp�DCÞ

ffi RHomAC ðp
�1Rp�F �;DCÞ

ffi RHomAðC
�ðp�1Rp�F �Þ;oÞ

Under these identifications the map in question corresponds to the map

RHomAðC
�ðF �Þ;oÞ ! RHomAðC

�ðp�1Rp�F �Þ;oÞ

induced by the adjunction map p�1Rp�F � ! F �. Thus, it is sufficient to show that the

map C�ðp�1Rp�F �Þ ! C�ðF �Þ (induced by the adjunction map) is an isomorphism.

By induction we may assume that the statement holds on @C ¼ p�1ð@sÞ, i.e. that
the map

C�ððp�1Rp�F �Þ@CÞ ! C�ððF �Þ@CÞ

is an isomorphism. Therefore it is sufficient to show that the map

C�ððp�1Rp�F �ÞZÞ ! C�ðF �ZÞ;

where Z ¼ p�1ðfsgÞ, is an isomorphism as well.
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The stalks of the sheaf p�1Rp�F � are given by

ðp�1Rp�F �Þt ffi ðRp�F
�ÞpðtÞ

ffi RGð½pðtÞ	;Rp�F �Þ

ffi RGðp�1ð½pðtÞ	Þ;F �Þ:

In particular, the sheaf ðp�1Rp�F �ÞZ is the extension by zero of the constant sheaf
with stalk RGðC;F �Þ on Z.

For any constant sheaf WC the short exact sequence of complexes

0! C�ðW@CÞ ! C�ðWCÞ ! C�ðWZÞ ! 0

shows that the cellular complex C�ðWZÞ is isomorphic (up to reindexing and shift) to

a cellular chain complex with coefficients inW of the pair ðD; @DÞ, where D is a ball

(of dimension dimC� 1 ¼ dim s� 1) so that the natural map W½dim s� n	 !

C�ðWZÞ is a quasi-isomorphism. Therefore, it is sufficient to show that the composi-

tion

RGðC;F �Þ½dim s� n	 ! C�ððp�1Rp�F �ÞZÞ ! C�ðF �ZÞ

is an isomorphism.

It follows from Proposition 3.6 that there is a natural isomorphism

C�ðF �ZÞ ffi RGðC;F �ZÞ½dim s� n	. The map RGðC;F �Þ ! RGðC;F �ZÞ induced after

the above identification is the natural map induced by the restriction map

F � ! F �Z. It is a natural isomorphism because

(1) the restriction map induces an isomorphism GðC;F �Þ ! GðC;F �ZÞ, and

(2) if F � is a complex of flabby sheaves then so is F �Z. &

COROLLARY 6.20. Suppose that p:C! F is a subdivision. The natural transfor-

mation of functors Db
cðACÞ

op
! Db

cðAFÞ Rp� �DC ! DF � Rp� given on an object F �

of DbðACÞ by the composition

Rp�DCðF
�Þ ¼ Rp�RHomAC

ðF �;DCÞ

! RHomAF
ðRp�F �;Rp�DCÞ

!

R
p
RHomAF

ðRp�F �;DFÞ ¼ DFðRp�F �Þ

is an isomorphism.

Using Corollary 6.20 we will establish (Corollary 6.27) the analog of the Poincaré

duality for the direct image of the indecomposable object LC.

6. POINCARÉ DUALITY

THEOREM 6.21. Suppose that M 2MðAFÞ. Then,

INTERSECTION COHOMOLOGY ON NONRATIONAL POLYTOPES 267

https://doi.org/10.1023/A:1022232232018 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022232232018


ð1Þ HiDFðMÞ ¼ 0 for i 6¼ 0; we put DFðMÞ ¼def H0DFðMÞ;
ð2Þ the sheaf DFðMÞ is flabby.
ð3Þ the AF-module DFðMÞ is, in fact, a AF-module;

ð4Þ the AF-module DFðMÞ is locally free.

Proof. Since the issue is local we may assume that F ¼ ½s	. By induction on

dimension we may assume that the statement holds on @s.
Applying DFð�Þ to the exact sequence 0!M@s!M!Ms ! 0 we obtain the

exact triangle

DFðMsÞ ! DFðMÞ ! DFðM@sÞ ! DFðMsÞ½1	: ð6:1Þ

The isomorphisms

DFðMsÞ ¼ RHomAF
ðMs;DFÞ

 
ffi
RHomAF

ðAs;RHomAF
ðM;DFÞÞ ¼ RGfsgDFðMÞ

lead to the identification of the exact triangle (6.1) with the canonical exact triangle

RGfsgDFðMÞ ! DFðMÞ ! Rj�j
�1DFðMÞ ! RGfsgDFðMÞ½1	;

where j: @s ,!½s	 is the inclusion (of an open subset).
By inductive assumption j�1DFðMÞ ffi D@sðj

�1MÞ satisfies the conclusions of the
theorem. In particular, it is a flabby sheaf. Therefore, Rij�j

�1DFðMÞ ¼ 0 for i 6¼ 0
and j�j

�1DFðMÞ is flabby. Consequently, DFðM@sÞ is (isomorphic to) a flabby sheaf.

Next we examine DFðMsÞ, which is supported on fsg. Thus, it is concentrated in
degree zero if and only if RGðF;DFðMsÞÞ is. By Proposition 6.2

RGðF;DFðMsÞÞ ffi RHomAðC
�ðMsÞ;oÞ

ffi RHomðMs½dðsÞ � n	;oÞ

ffi Ext
n�dðsÞ
A ðMs;oÞ

(becauseMs is a free module overAF;s). This calculation shows thatDFðMsÞ is (iso-

morphic to) the skyscraper sheaf Ext
n�dðsÞ
A ðMs;oÞs, in particular it is flabby and

locally free over AF.

So far we have shown that both DFðMsÞ and DFðM@sÞ are complexes concentra-

ted in degree zero. Hence, so is DFðMÞ. This proves the first claim.
It follows that the exact triangle (6.1) is equivalent to the short exact sequence of

sheaves

0! DFðMsÞ ! DFðMÞ ! DFðM@sÞ ! 0:

(where we have written D for H0D). Since DFðMsÞ and DFðM@sÞ are flabby, so is

DFðMÞ. This proves the second claim.
By inductive assumption, for t 2 @s, the stalk DFðMÞt is a free AF;t-module.

It remains to show that the same hold with t ¼ s. Since F ¼ ½s	, the stalk at s is
given by
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DFðMÞs ffi RGðF;DFðMÞÞ
ffi RHomAðC

�ðMÞ;oÞ
ffi RHomAðGfsgM½dðsÞ � n	;oÞ

ffi Ext
n�dðsÞ
A ðGfsgM;oÞ ;

(using Proposition 6.2, Lemma 3.9, and Corollary 4.8) and the latter is a free AF;s-

module. &

COROLLARY 6.22. The duality functor induces an anti-involution of the category

MðAFÞ.

Proof. Since D is an anti-involution of Db
cðAF �modÞ and it preservesMðAFÞ the

corollary follows. &

COROLLARY 6.23. Suppose that s is a cone in F. The minimal sheaf Ls
FðkÞ on F

based at s ðsee Definition 5:1Þ satisfies DFðLs
FðkÞÞ ffi Ls

Fð�k� 2dðsÞÞ ðnoncanonicallyÞ.
In particular, DFðLFÞ ffi LF.

Proof. By Corollary 6.22 the dual of an indecomposable object is indecompo-

sable. In addition, SuppðDðLs
FðkÞÞÞ � SuppðLs

FðkÞÞ ¼ StarðsÞ. It follows from the

proof of Theorem 6.21 that DFðLs
FðkÞÞs ¼ Ext

n�dðsÞ
A ðAF;sðkÞ;oÞ ffi AF;sð�k� 2dðsÞÞ.

Thus, the corollary follows from Proposition 5.2 and Theorem 5.3. &

COROLLARY 6.24. Let F be a complete fan. Then there exists a non-canonical

isomorphism of A-modules GðF;LFÞ ffi HomAðGðF;LFÞ;oÞ ; i.e. the free A-module

GðF;LFÞ is self-dual.

Proof. By Theorem 4.7 and Corollary 6.22 the natural isomorphism of

Theorem 6.18

RGðF;DFðLFÞÞ ffi RHomðRGðF;LFÞ;oÞ

reduces to

GðF;DðLFÞÞ ffi HomAðGðF;LFÞ;oÞ:

A choice of an isomorphism of DFðLFÞ and LF provides an isomorphism

of A-modules

GðF;LFÞ ffi HomAðGðF;LFÞ;oÞ:

Consider the one-dimensional (graded) vector space o. It has degree 2n. &

COROLLARY 6.25. Let F be a complete fan. Then, there exists an isomorphism of

graded vector spaces IHðFÞ ffi HomRðIHðFÞ;oÞ:
Proof. Immediate from the previous corollary. &

COROLLARY 6.26. Let F be a complete fan. Then,
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ð1Þ ihn�jðFÞ ¼ ihnþjðFÞ for all j;
ð2Þ ihjðFÞ ¼ 0 unless j is even and j 2 ½0; 2n	;

ð3Þ ih0ðFÞ ¼ ih2nðFÞ ¼ 1.

Proof. Immediate from the previous corollary and Lemma 5.9. &

COROLLARY 6.27. Suppose F is a fan and p: C! F is a morphism induced by

subdivision. Let

p�LC ffi �
s2F
�
k2Z

Vs;k � Ls
FðkÞ ð6:2Þ

be a decomposition of p�LC into a direct sum of indecomposable objects of MðAFÞ ðsee

Theorem 5:3 and Remark 5:5Þ with Vs;k finite-dimensional vector spaces. Then,

dimVs;k ¼ dimVs;�k�2dðsÞ:

Proof. Applying DF to both sides of (6.2) and, using Corollary 6.23, we obtain

DFðp�LCÞ ffi �
s2F
�
k2Z

Vs;k � Ls
Fð�k� 2dðsÞÞ ð6:3Þ

By Corollaries 6.20 and 6.23 there is an isomorphism DFðp�LCÞ ffi p�LC: The claim

is now established by matching the multiplicities in (6.2) and (6.3). &

6.7. DUALITY À LA BOREL–MOORE

We conclude with a brief account of duality patterned after Borel–Moore duality for

sheaves on locally compact spaces. Informally speaking, the Borel–Moore dual of a

sheaf F is defined as the ‘pointwise’ linear dual of the co-sheaf GcðFÞ of ‘compactly

supported’ sections of F.

6.7.1. Co-sheaves

Suppose that C is a category. While a C-valued sheaf on a fan F is a functor Fop! C,
a (C-valued) co-sheaf is a functor F! C.
Assume that C is Abelian. Then, so is the category of co-sheaves.
Suppose that W is in C and s is a cone. Let WStarðsÞ denote the co-sheaf, obtained

by extending by zero the constant co-sheaf with value W on StarðsÞ. Every co-sheaf
is a quotient of a direct sum of co-sheaves of this form.

If W is projective then so is WStarðsÞ. If C has enough projectives, then so does the
category of C-valued co-sheaves.

6.7.2. Homology of co-sheaves

Recall that, for a sheaf F on F its space of global sections, defined as GðF;FÞ ¼ lim
�!
Fo

F,

is a left exact functor of F.
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DEFINITION 6.28. For a co-sheaf V:F! C we define its space of global co-

sections as the direct limit lim
�!
F

F.

LEMMA 6.29. The functor of global co-sections is right exact.

Assume from now on that the category C has enough projectives.

DEFINITION 6.30. For a co-sheaf V on F we define the ith homology of (F with

coefficients in) V as the ith left derived functor of global co-sections: HiðF;VÞ ¼def
H�iL lim

�!
F

V:

6.7.3. Co-sheaf of Sections with Compact Support

Suppose that F is a fan in a vector space of dimension n. Fix an orientation of each

cone s in F.
For a sheaf F on F and s 2 F let

GcðFÞs¼ def C
�ðF½s	Þ: ð6:4Þ

This is a complex which is concentrated in degrees ½n� dðsÞ; n	. For t4s we have
the obvious inclusion of complexes GcðFÞt ,!GcðFÞs. This makes the assignment

GcðFÞ : s 7!GcðFÞs ð6:5Þ

a complex of co-sheaves.

DEFINITION 6.31. The complex of co-sheaves GcðF Þ defined by (6.5) and (6.4) is

called the co-sheaf of compactly supported sections ðof F Þ.

Clearly, GcðF Þ is functorial in F. The functor Gcð�Þ is exact, thus it extends trivially

to the derived category of sheaves on F.

LEMMA 6.32. The functors ðwith values in the category of complexesÞ lim
�!
F

Gcð�Þ and

C�ð�Þ are isomorphic.

Proof. Straightforward consequence of the definitions. &

COROLLARY 6.33. The natural map

L lim
�!
F

Gcð�Þ ! lim
�!
F

Gcð�Þ

is a quasiisomorphism.

Proof. Follows from Lemma 6.32 and the exactness of C�ð�Þ½n	. &

COROLLARY 6.34. Assume that the fan F is complete. Then, the functors

L lim
�!
F

Gcð�Þ and RGðF; �Þ are naturally isomorphic.
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Proof. Follows from Proposition 3.5, Lemma 6.32 and Corollary 6.33. &

6.7.4. Borel–Moore Duality

Note that, if V is a co-sheaf on F with values in C and T : Cop ! D is a functor, then

T � V is a D-valued sheaf on F which we denote TðVÞ.
Note also that, for a AF-module F, the co-sheaf GcðFÞ takes values in the category

of complexes of A-modules.

DEFINITION 6.35. The functor DBM
F :Db

cðAF �modÞ
op
! Db

cðAF �modÞ
op is

defined by

DBM
F ðF

�Þ: s 7!HomAðGcðF
�Þs; I

�Þ

where I� is an injective resolution of o, i.e.

D
BM
F ðF

�Þ ¼ HomAðGcðF
�Þ; I �Þ ¼ RHomAðGcðF

�Þ;oÞ:

It is clear that the functor DBM
F is essentially independent of the choice of the injec-

tive resolution I�.

As we will see (Proposition 6.38 below) the functors DF and DBM
F essentially coin-

cide. In the course of the proof we will need the following flabby resolution of the

dualizing object.

For a cone s 2 F let is : fsg ,!F denote the inclusion. Consider o as a sheaf on

the point s. Then, the AF-module is�o is a constant sheaf on StarðsÞ with stalk o.
If t4s then there is a natural surjection of sheaves rts : it�o! is�o. Let
K�nþj¼def

L
dðsÞ¼j is�o. As usual, the maps rts with the sign �1 define the differential

in the complex K�

0! K�n! K�nþ1 ! � � � ! K0! 0:

The natural map oo! io�o ¼ K�n gives rise to the morphism DF ! K�.

LEMMA 6.36. The complex K� is a flabby resolution of DF.

Proof. The sheaves Ki are direct sums of flabby sheaves, therefore flabby. It

remains to show that, for o 6¼ s 2 F the complex of stalks K�ns ! K�nþ1s ! � � � ! K0
s

is acyclic. Now, the above complex is isomorphic to the complex HomRðC
�ðR½s	Þ;oÞ,

and C�ðR½s	Þ is acyclic by Lemma 3.7. &

Remark 6:37. Note that HomAFðF; is�oÞ ¼ HomAðFs;oÞ for any AF-module F.

Hence, for any AF-module F, there is a natural isomorphism of complexes

Hom�AF
ðF;K�Þ ffi Hom�AðC

�ðF Þ;oÞ: ð6:6Þ

PROPOSITION 6.38. The functors DF and D
BM
F are naturally isomorphic.
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Proof. Since the category AF �mod has enough projectives it is sufficient to give,

for each projective P, an isomorphism DBM
F ðPÞ ffi DFðPÞ natural in P.

Suppose that P is a projective AF-module. Then, for every s 2 F, GcðPÞs is a com-

plex of projective A-modules, therefore the map

HomAðGcðPÞs;oÞ ! HomAðGcðPÞs; I
�Þ

is a quasiisomorphism compatible with restriction maps. Thus, DBM
F ðPÞ ffi

HomAðGcðPÞ;oÞ. From Remark 6.37 one has the isomorphism(s)

HomAðGcðPÞs;oÞ ¼ HomAðC
�ðP½s	Þ;oÞ

ffi HomAF ðP½s	;K
�
AÞ

¼ HomAF
ðP;K�AÞs

compatible with restriction maps. Thus DBM
F ðPÞ ffi HomAF

ðP;K�AÞ ffi DFðPÞ (since P

is projective). &

Remark 6:39: Perhaps the main motivation for the Borel–Moore version of the

duality functor is that global duality for a sheaf F on a complete fan F
(Theorem 6.18) follows very naturally from Corollary 6.34 and general properties of

derived functors of limits:

RGðF;DBM
F ðF ÞÞ ffi R lim

�!
Fop

RHomAðGcðF Þ;oÞ

ffi RHomAðL lim
�!
F

GcðF Þ;oÞ

ffi RHomAðRGðF;F Þ;oÞ

7. Toward Hard Lefschetz and the Combinatorial Invariance

Throughout this section F will denote a complete fan in a vector space V of dimen-

sion n.

7.1. AMPLENESS IN THE CONTEXT OF FANS

Consider the short exact sequence of sheaves 0! O1
F ! V� ! G! 0 ; where V�

denotes the constant sheaf and O1
F;s ¼ SpanðsÞ

?. Since constant sheaves have trivial

higher cohomology and O1
F is supported on F4n�1, the long exact sequence in

cohomology reduces, in low degrees, to the short exact sequence of vector spaces

0! V� ! GðF;GÞ ! H1ðF;O1
FÞ ! 0 : The space GðF;GÞ consists of continuous,

cone-wise linear functions on F.
For any objectM ofMðAFÞ, the elements of GðF;GÞ act naturally on the free gra-

ded A-module GðF;MÞ by endomorphisms of degree two. Clearly, the induced

action on the graded vector space GðF;MÞ factors through H1ðF;O1
FÞ.

DEFINITION 7.1. An element �ll of H1ðF;O1
FÞ is called ample iff it admits a lifting

l 2 GðF;GÞ which is strictly convex.
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7.2. HARD LEFSCHETZ FOR COMPLETE FANS

The statement of Conjecture 7.2 (below) is the analog of the Hard Lefschetz Theo-

rem in the present context. Recall that LF denotes the indecomposable object of

MðAFÞ which is based at the origin and satisfies LF;o ¼ R.

For a graded vector spaceW we will denote byWðiÞ the subspace of homogeneous

elements of degree i.

CONJECTURE 7.2 (Hard Lefschetz Conjecture). An ample �ll 2 H1ðF;O1
FÞ induces

a Lefschetz operator on the graded vector space IHðFÞ, i.e. for every i the map
�lli: IHðFÞðn�iÞ ! IHðFÞðnþiÞ is an isomorphism.

For a rational fan F this conjecture follows immediately from results in [BL],

ch.15. The above conjecture has the following standard corollary.

COROLLARY 7.3. Assume the Hard Lefschetz Conjecture. Then for an ample �ll the

map �ll : IHðFÞðiÞ ! IHðFÞðiþ2Þ is injective for i4 n� 1 and surjective for i5 n� 1. In

particular ih0ðFÞ4 ih2ðFÞ4 � � � 4 ih2½n=2	ðFÞ:

7.3. THE GLOBAL-LOCAL FORMULA

Suppose that s is a cone of dimension dðsÞ ¼ dþ 15 2 in V. LetW ¼ SpanðsÞ � V.

Choose a linear isomorphism

W ffi Rd
%R ð7:1Þ

so that the ray ð0;RþÞ lies in the interior of s. Let p:W! Rd denote the projection.

Let @s denote the image of @s under p. Then, @s is a complete fan in Rd and

@s is the graph of a continuous piecewise linear function l:Rd
! R which is

strictly convex with respect to the fan @s. In particular �ll 2 H1ð@s;O1

@s
Þ is an

ample class.

Note that AW ¼ A
Rd ½l	. Letm1 � AW andm2 � A

Rd denote the maximal ideals, so

that m1 ¼ m2½l	.

The A½@s	-module structure on the minimal sheaf L½@s	 is obtained by extension of
scalars: L½@s	 ¼ A½@s	 �A

@s
L
@s. Thus, the intersection cohomology IHð@sÞ is an R½l	-

module. We have

IHð@sÞ=l � IHð@sÞ ’ Gð@s;L½@s	Þ=m1Gð@s;L½@s	Þ ’ L½s	;s ¼ IPðsÞ ;

where IPðsÞ is defined in 5.11.
The Hard Lefschetz Conjecture (for @s) implies that �ll is a Lefschetz operator on

IHð@sÞ. Thus IPðsÞ is isomorphic to the l-primitive part of IHð@sÞ. In particular, the
Poincaré polynomial ihð@sÞ depends only on s and not on a particular choice of the
isomorphism (7.1).

Let us summarize our discussion in the following corollary.
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COROLLARY 7.4. Let s � V be a cone of dimension dþ 15 2. Choose an iso-

morphism SpanðsÞ ’ Rd
%R as in ð7:1Þ, so that the image @s of @s under the pro-

jection to Rd is a complete fan in Rd. Then, the Hard Lefschetz Conjecture implies that

ð1Þ The Poincaré polymonial ihð@sÞ is independent of the choices made.

ð2Þ The polynomial ipðsÞ ðsee Definition 5:11Þ is given by

ipjðsÞ ¼
ihjð@sÞ � ihj�2; ð@sÞ; for 04 j4 d;
0; otherwise:

�

DEFINITION 7.5. For a cone s in V we define the polynomial ihðsÞ by

ihðsÞ ¼
1; if dðsÞ4 1;
ihð@sÞ; if dðsÞ5 2:

�

Remark 7:6. Corollary 7.4 implies that ihðsÞ is well defined and

ipjðsÞ ¼
ihjðsÞ � ihj�2ðsÞ for 04 j4 d
0 otherwise

n

We call the last equation the global-local formula. Note also that if cones s and s0 are
linearly isomorphic, then ipðsÞ ¼ ipðs0Þ and ihðsÞ ¼ ihðs0Þ.

7.4. THE LOCAL-GLOBAL FORMULA

In this section we express the Poincaré polynomial ihðFÞ of a complete fan F in terms

of the local Poincaré polynomials ipðsÞ for s 2 F. The argument is standard and is
independent of any conjectures.

PROPOSITION 7.7. For a complete fan F in Rn we have the following relation

between Poincaré polynomials in the variable q:

ihðFÞðqÞ ¼
X
s2F

ðq2 � 1Þn�dim sipðsÞðqÞ:

Proof. The quasi-isomorphism (Proposition 3.5) GðF;LFÞ ! C�ðLFÞ induces the

quasi-isomorphism GðF;LFÞ �
L
A R! C�ðLFÞ �

L
A R and the equality of the graded

Euler characteristics

wðGðF;LFÞ �
L
A RÞ ¼ wðC�ðLFÞ �

L
A RÞ:

Since GðF;LFÞ is free over A, the canonical map

GðF;LFÞ �
L
A R! GðF;LFÞ �A R ¼ IHðFÞ

is a quasi-isomorphism and wðGðF;LFÞ �
L
A RÞ ¼ ihðFÞ:

Since C�ðLFÞÞ is a complex of finitely generated A-modules and A has finite Tor-

dimension it follows that

wðC�ðLFÞ �
L
A RÞ ¼

X
i

ð�1ÞiwðCiðLFÞ �
L
A RÞ:
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Since CiðLFÞ is isomorphic to
L

dim s¼n�i LF;s the above formulas imply the equality

ihðFÞ ¼
X
s2F

ð�1Þn�dim swðLF;s �
L
A RÞ:

By definition of LF, the stalk LF;s is a free module over AF;s of graded rank ipðsÞ.
The standard calculation with the Koszul complex shows that AF;s �

L
A R is represen-

ted by the complex (with trivial differential)
L

i

Vis?. It follows that

wðLF;s �
L
A RÞ ¼ ð1� q2Þn�dim sipðsÞ

and

ihðFÞ ¼
X
s2F

ð�1Þn�dim s
ð1� q2Þn�dim sipðsÞ ¼

X
s2F

ðq2 � 1Þn�dim sipðsÞ: &

7.5. SUMMARY

Assuming the Hard Lefschetz Conjecture for complete fans we have associated two

polynomials ipðsÞ and ihðsÞ to any cone s � V. The odd coefficients of these polyno-

mials vanish and the following relations hold (here dþ 1 ¼ dðsÞ):

(1) ipðoÞ ¼ ihðoÞ ¼ 1;

(2) ipjðsÞ ¼
ihjðsÞ � ihj�2; ðsÞ for 04 j4 d;
0; otherwise,

�

(3) ihðsÞðqÞ ¼
P

t<sðq
2 � 1Þd�dðtÞipðtÞðqÞ:

Indeed, the first two relations are contained in Definition 7.5 and the third one fol-

lows from Proposition 7.7 applied to the complete fan @s as in Corollary 7.4.
As an immediate consequence of the above relations we obtain (by induction on

the dimension dðsÞ) that the polynomials ipðsÞ and ihðsÞ are combinatorial invariants
of s, i.e. they depend only on the face lattice of s.
Recall that in case d > 0 the polynomial ihðsÞ is defined as ihð@sÞ for a complete

fan @s of dimension d. Hence, it follows from Corollary 6.26 and Corollary 7.3 that

(1) ih0ðsÞ ¼ 1 ¼ ih2dðsÞ;
(2) ihjðsÞ ¼ 0, unless j is even and j 2 ½0; 2d	;

(3) for all j ihd�jðsÞ ¼ ihdþjðsÞ for all j,
(4) ih0ðsÞ4 ih2ðsÞ4 � � � 4 ih2½d=2	ðsÞ.

7.6. THE h-VECTOR AND STANLEY’S CONJECTURES

Let Q � Rn be a convex polytope of dimension d. In [S] Stanley defined two polyno-

mials gðQÞ and hðQÞ. These polynomials are defined simultaneously and recursively

for faces of Q, including the empty face ;, as follows:
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(1) gð;Þ ¼ hð;Þ ¼ 1,

(2) gjðQÞ ¼
hjðQÞ � hj�1ðQÞ; for 04 j4 ½d=2	;
0 otherwise;

�

(3) hðQÞðtÞ ¼
P

P�Qðt� 1Þ
d�dðPÞ�1gðPÞðtÞ; where the last summation is over all

proper faces P of Q including the empty face ;. Here dðPÞ is the dimension

of P and dð;Þ ¼ �1.

Stanley proved (in a more general context of Eulerian posets) the ‘Poincaré dua-

lity’ for hðQÞ: hj ¼ hd�j and conjectured that 04 h04 h14 � � � 4 h½d=2	.

Let us show how this conjecture follows from the Hard Lefschetz Conjecture.

Namely, consider the space Rn (which contains Q) as a hyperplane

ðRn; 1Þ � Rnþ1. Let s � Rnþ1 be the cone with vertex at the origin o which is

spanned by Q. Then dðsÞ ¼ dþ 1. Nonempty faces of s are in bijective correspon-
dence with faces of Q (with a shift of dimension by 1), where the origin o corre-

sponds to the empty face ; � Q. Assuming the Hard Lefschetz Conjecture the

polynomials ihðsÞ and ipðsÞ are defined, and, by induction on dimension, one con-
cludes that

ihðsÞðqÞ ¼ hðQÞðq2Þ; ipðsÞðqÞ ¼ gðQÞðq2Þ:

Thus Stanley’s conjecture follows from the corresponding statement about the coef-

ficients of ihðsÞ.

8. Kalai Conjecture (After T. Braden and R. MacPherson)

The statement of the following theorem is the ip-analog of the inequalities conjec-

tured by G. Kalai and proven, in the rational case, by T. Braden and R.D. MacPher-

son in [BM]. Our proof follows the same pattern as the one in [BM]. However, major

simplifications result from absence of rationality hypotheses and, consequently, any

ties to geometry whatsoever.

Suppose that s is a cone in V and let ½s	 denote as usual the corresponding ‘affine’
fan which consists of s and all of it’s faces. Let t4s be a face. By Proposition 5.2
L½s	j½t	 ¼ L½t	: Recall the graded vector spaces (Definition 5.11) IPðsÞ ¼ L½s	;s;
IPðtÞ ¼ L½t	;t and the corresponding Poincaré polynomials ipðsÞ, ipðtÞ. Consider
the minimal sheaf Lt

½s	 2MðA½s	Þ. Its support is StarðtÞ and we put IPðStarðtÞÞ :¼
Lt
½s	;s. Let ipðStarðtÞÞ denote the corresponding Poincaré polynomial.

THEOREM 8.1. Suppose that s is a cone ðin V Þ and t is a face of s. Then, there is an
inequality, coefficient by coefficient, of polynomials with nonnegative coefficients

ipðsÞ5 ipðtÞ � ipðStarðtÞÞ :

Proof. Let i: StarðtÞ ! F denote the closed embedding. Then i�i�1L½s	 2MðA½s	Þ.
Indeed, the sheaf i�1L½s	 is flabby, hence so is i�i�1L½s	. Moreover, i� is the extension
by zero, so i�i�1L½s	 is locally free.
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Thus by the structure Theorem 5.3 there is a direct sum decomposition

i�i�1L½s	 ’
L

r5t L
r
½s	 � Vr, where the multiplicities Vr are certain graded vector

spaces. Comparing the stalks at t we find that L½s	;t ’ Lt
½s	;t � Vt. Hence Vt ¼ IPðtÞ.

On the other hand, comparing the stalks at s we find

L½s	;s ’ Lt
½s	;s � Vt �

M
r>t

Lr
½s	;s � Vr:

In particular

IPðsÞ ’ IPðStarðtÞÞ � IPðtÞ �
M
r>t

Lr
½s	;s � Vr:

Numerically this amounts to the inequality ipðsÞ5 ipðtÞipðStarðtÞÞ. &
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