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Abstract. We consider a fan as a ringed space (with finitely many points). We develop the cor-
responding sheaf theory and functors, such as direct image Rn, (7 is a subdivision of a fan),
Verdier duality, etc. The distinguished sheaf Lo, called the minimal sheaf plays the role of an
equivariant intersection cohomology complex on the corresponding toric variety (which exists
if @ is rational). Using L¢ we define the intersection cohomology space IH(®). It is conjectured
that a strictly convex piecewise linear function on ® acts as a Lefschetz operator on TH(®). We
show that this conjecture implies Stanley’s conjecture on the unimodality of the generalized
h-vector of a convex polytope.
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1. Introduction

For an n-dimensional convex polytope Q R. Stanley ([S]) defined a set of integers
h(Q) = (ho(Q), h1(Q), ..., h,(Q))—the ‘generalized h-vector'—which are supposed
to be the intersection cohomology Betti numbers of the toric variety X correspond-
ing to Q. In case Q0 C R" is a rational polytope the variety X, indeed exists, and it is
known ([S]) that /;(Q) = dim IHZi(XQ). Thus, for a rational polytope Q, the integers
hi(Q) satisfy

(1) h(Q) =0,
(2) hi(Q) = h,_i(Q) (Poincaré duality),
(3) h(Q) < hi(Q) < -+ < hyyyy(Q) (follows from the Hard Lefschetz theorem for

projective algebraic varieties).

For an arbitrary convex polytope (more generally for an Eulerian poset) Stanley
proved ([S], Theorem 2.4) the property (2) above. He conjectured that (1) and
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(3) also hold without the rationality hypothesis. This is still not known in gen-
eral.

In this paper we propose an approach which we expect to lead to a proof of 1 and
3 for general convex polytopes. Our approach is modeled on the ‘equivariant geome-
try’ of the (non-existent) toric variety Xo as developed in [BL].

Namely, given a convex polytope QO C R” we consider the corresponding complete
fan ® = @y in R" and work with @ instead of Q. Let A4 denote the graded ring of
polynomial functions on R”. Viewing @ as a partially ordered set (of cones) we con-
sider a category of sheaves of A-modules on ®. In this category we define a minimal
sheaf L4 which corresponds to the T-equivariant intersection cohomology complex
on Xy if the latter exists. Our first main result is the ‘elementary’ decomposition the-
orem for the direct image of the minimal sheaf under subdivision of fans (Theorem
5.6). (Recall, that a subdivision of a fan corresponds to a proper morphism of toric
varieties.) We also develop the Borel-Moore—Verdier duality in the derived category
of sheaves of A-modules on ®. We show that Lg is isomorphic to its Verdier dual
(Corollary 6.23).

Remark 1.1. In fact the usual (equivariant) decomposition theorem for a proper
morphism of toric varieties can be deduced from this ‘elementary’ one by the
equivalence of categories proved in [L] (Theorem 2.6). However the proof of this last
result by itself uses the fundamental properties of the intersection cohomology.

For a complete fan @ the minimal sheaf L¢ gives rise in a natural way to the gra-
ded vector space /H(®) which we declare to be the intersection cohomology of ®. (For
rational Q it is proved in [BL] that there is an isomorphism /H(®g) = TH(Xp).) Let
ihi(®) = dim /H'(®). We establish the following properties of TH(®):

(1) dim IH(®) < oo;

(2) ihy(®) =0, unless i is even and 0 < i < 2n;
(3)  iho(®) = ihzy(P) = 1;

4 ihy—i( D) = iy i(D).

The last property follows from Poincaré duality in 7H(®) induced by the Verdier
duality in sheaves. Similar relations are satisfied by the multiplicities in the decom-
position of the direct image of the minimal sheaf under subdivision.

Moreover, there is a natural operator / of degree 2 on the space IH(®), which we
expect to have the Lefschetz property as conjectured below:

CONJECTURE 1.2. For each i>1 the map [I': IH""/(®) — IH""(®) is an iso-
morphism.

So far we were unable to prove this conjecture, but it seems to be within reach. In
case Q is rational the conjecture follows from the results in [BL]. This conjecture has
the following standard corollary:
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COROLLARY 1.3 (of the conjecture). ih;(Q) < ihi12(Q) for 0 < i < n.

In fact the above conjecture implies ‘everything’:
COROLLARY 1.4. Assume the above conjecture is true. Then

(1) IH(®y) is a combinatorial invariant of Q, i.e. it depends only on the face lattice of
0.

(2) Moreover, ihy(®g) = hj(Q) hence the h-vector h(Q) has the properties conjectured
by R. Stanley.

The paper is organized as follows:

Section 2 gives a brief account of our methods and main results.
Section 3 discusses the elementary properties of the category of abelian sheaves
on a fan and their cohomology.

e In Section 4 we endow a fan with the structure of a ringed space, single out a
category of sheaves of modules over the structure sheaf and obtain the first ‘geo-
metric’ result (Theorem 4.7).

e In Section 5 we prove that our category of sheaves is semi-simple and identify
the simple objects (Theorem 5.3). We show that our categories of sheaves
are stable by direct image under morphisms induced by subdivision of fans
(Theorem 5.6).

e Section 6 contains an account of duality on our category of sheaves. As a conse-
quence of the existence of the duality involution (Corollary 6.22) and its effect in
cohomology (Theorem 6.18) we obtain the Poincaré duality in intersection coho-
mology of a complete fan (Corollary 6.26). We show that duality commutes with
the direct image under morphisms induced by subdivision of fans (Corollary
6.20) and obtain a relative version of Poincaré duality (Corollary 6.27).

e In Section 7 we make precise Lefschetz type conjectures and discuss their conse-
quences.

e In Section 8 we apply the machinery to a conjecture of G. Kalai (proven recently
in the rational case by T. Braden and R. D. MacPherson) and give our version of
the proof.

2. Summary of Methods and Results
2.1. FANS AS RINGED SPACES

Our point of departure is the observation that a fan ® in a (real) vector space V' gives
rise to a topological space, which we will denote by @ as well, and a sheaf of graded
rings Ag on it. Namely, the points of ® are cones, open subsets are subfans, and the
stalk Ag , of Ao at the cone ¢ € @ is the graded algebra of polynomial functions on ¢
(equivalently on the linear span of ¢) and the structure maps are given by restriction
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of functions. All of these rings are quotients of the graded algebra 4 = 4y of poly-
nomial functions on V. The grading is assigned so that the linear functions have
degree two.

In case V is the Lie algebra of a torus T the graded ring A4 is canonically iso-
morphic to H*(BT) — the cohomology ring of the classifying space of T.

In the case of a rational fan @ one has the (unique) normal 7-toric variety X¢ such
that the T-orbits in X are in bijective correspondence with the cones of ® and Ag ,
is canonically isomorphic to the cohomology ring of the classifying space of the sta-
bilizer of the corresponding orbit.

All Ap-modules will be regarded by default as 4-modules. Let 4™ denote the ideal
of functions which vanish at the origin. For a graded A-module M we will denote by
M the graded vector space M JATM.

2.2. A CATEGORY OF Ay-MODULES

To each fan ® viewed as the ringed space (®, Agp) we associate the additive category
Ni(Agp) of (sheaves of finitely generated, graded) Agp-modules which are flabby and
locally free over Ag. This latter condition means that, for an object M of M(Agp),
the stalk M, is a free graded module of finite rank over Aqg . The flabbiness condi-
tion may be restated as follows: for every cone ¢ the restriction map M, — M(Jo) is
surjective (where M (0o) is the space of section of M over the subfan do consisting of
cones properly contained in o). It is easy to see that the sheaf Ay is flabby if and only
if the fan ® is simplicial.

In the rational case the category Yi(Ag) is equivalent to the category of semi-
simple equivariant perverse (maybe shifted) sheaves on Xg. The following theorems
verify that the category J¢(Agp) and the cohomology of an object M of Ni(Agp) have
the expected properties.

Since, by definition, the objects of Mi(Agp) are flabby sheaves, it follows that, for
M in M(Ag), H(D; M) =0 for i # 0.

THEOREM 2.1. Suppose that ® is complete (i.e. the union of the cones of ® is all of
1), and M is in M(Ag). Then, H (®; M) is a free A-module.

In the rational case, H’(®; M) is the equivariant cohomology of the correspond-
ing perverse sheaf on Xgp.

The proof of Theorem 2.1 rests on the observation that the cohomology of a sheaf
F on a complete fan may be calculated by a ‘cellular’ complex C*(F) whose compo-
nent in degree i is the direct sum of the stalks of F at cones of codimension i and the
differential is given by the sum (with suitable signs) of the restriction maps. In par-
ticular, if the sheaf F is flabby, then the complex C*(F) is acyclic except in degree
zero. This proves the conjecture of J. Bernstein and the second author (Conjecture
15.9 of [BL]) on the acyclicity properties of the ‘minimal complex’, which happens
to be the ‘cellular complex’ of the simple object Lg (see below) of i(Agp). In the
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simplicial case (when L¢ =2 Agp) an ‘elementary’ proof of this fact was given by
M. Brion in [B].
Concerning the structure of the category M(Ap) we have the following result.

THEOREM 2.2. Every object in M(Ao) is a finite direct sum of indecomposable ones.
The indecomposable objects are, up to a shift of the grading, in bijective correspondence
with the set of cones (see Theorem 5.3 below).

2.3. IH AND IP

The indecomposable object of M(Ag) which corresponds to the cone ¢ is a sheaf sup-
ported on the star of ¢ (which constitutes the closure of the set {¢} in our topology).
Let L¢ denote the indecomposable object of Wi(Ag) which is supported on all of ®
(the star of the origin of 7)) and whose stalk at the origin is the one-dimensional vec-
tor space in degree zero. The fan @ is simplicial if and only if Lo = Agp.

In the rational case, when ® is complete (and so is Xg), the 4-module H(®; Lg) is
isomorphic to the T-equivariant intersection cohomology IH;(Xg) of X¢ and
IH7(Xg) is the usual (nonequivariant) intersection cohomology of X¢. This moti-
vates the following notation:

DEFINITION 2.3. Let @ be a complete fan in V. We set TH(®) =4.f H'(®; L) and
denote by i(®) the corresponding Poincaré polynomial.

For each cone o € ® we may consider the corresponding local Poincaré polyno-
mial. Namely, in the rational case the graded vector space Lo, is the (cohomology
of the) stalk on the corresponding 7-orbit O, of the intersection cohomology com-
plex of Xp. A normal slice to O, is an affine cone over some projective variety Y.
Then Lo, is the primitive part of the intersection cohomology of Y,. This motivates
the following notation.

DEFINITION 24. For 6 € ® we set IP(0)=4er Lo, and denote by ip(o)
the corresponding Poincaré polynomial.

As is well known, the projectivity of a toric variety translates into the following
picture. Suppose that ® is a complete fan in V' and / € Ag(®P) is a (continuous)
cone-wise linear (with respect to @) strictly convex function on V. Multiplication
by /is an endomorphism (of degree 2) of L, H(®; L¢) and TH(®). In the rational
case it is the Lefschetz operator on /H(®) = IH(X¢) for the corresponding projective
embedding of X¢. Thus, we make the following conjecture.

CONIJECTURE 2.5 (Hard Lefschetz). Let ® be a complete fan. Multiplication by [ is

a Lefschetz operator on IH(®) i.e. for eachi > 1 the map I': IH"~/(®) — IH"(®) is an
isomorphism.
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2.4. SUBDIVISION AND THE DECOMPOSITION THEOREM

A fan W is a subdivision of a fan @ if every cone of the latter is a union of cones of
the former. In this case there is a morphism of ringed spaces n: (¥, Ay) — (D, Aop).
In the rational case subdivision corresponds to a proper birational morphism of
T-toric varieties.

THEOREM 2.6 (Decomposition Theorem). The functor of direct image under
subdivision restricts to the functor m.: M(Ay) — M(Ag).

It should be pointed out that the only nontrivial part of Theorem 2.6 is the fact
that the direct image of a locally free flabby sheaf is locally free which is proven
by essentially the same argument as the one used in the proof of Theorem 2.1.

Combining Theorem 2.6 with Theorem 2.2 we obtain the statement which in the
rational case amounts to the Decomposition Theorem of A. Beilinson J. Bernstein,
P. Deligne, and O. Gabber ([BBD]) and its equivariant analog ([BL]) for proper bira-
tional morphisms of toric varieties: ‘the direct image of a pure object is a direct sum
of (suitably shifted) pure objects’. Continuing with notations introduced above we
have the following ‘estimate’:

COROLLARY 2.7. Suppose in addition that ® is complete (therefore so is V). n, Ly
contains Lo as a direct summand, therefore IH(Y) contains IH(®) as a direct sum-
mand. Hence, there is an inequality ih(W) = ih(®) (coefficient by coefficient) of poly-
nomials with nonnegative coefficients.

2.5. DUALITY

As is well known, the (middle perversity) intersection cohomology of a compact
space admits an intersection pairing (and the same is the case in the equivariant set-
ting). To this end we have the following version of Borel-Moore—Verdier duality
which we develop for the derived category of sheaves of 4-modules on ®. One of
the results is the following

THEOREM 2.8. Let ® be a fan in V. Then,

(1) There is a contravariant involution D¢ on I(Ae) (ie. a functor
Do: M(Ap)” — M(Ae) and an isomorphism of functors Dg o De =2 1d).

(2) If © is complete, then there is a natural A-linear nondegenerate pairing (of free A-
modules) H'(®; M) ® 4 H'(®; Dp(M)) — w4 /r for every object M of M(Ap).

3) If . ¥ — @ is a morphism induced by a subdivision, then, for every object M of
MU Awy), there is a natural isomorphism m,Dy(M) = De(m, M).

Here w,/r = A ® det " is the dualizing 4-module, free of rank one, generated in
degree 2dimg V in accordance with our grading convention.
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If follows from Theorem 2.8 that 1D is an anti-equivalence of categories, so, the
dual of an indecomposable object is an indecomposable one. One checks immedia-
tely that the dual D(Lg) of Lo has the properties which characterize the latter.
Therefore there is a (noncanonical) isomorphism D(L¢) = L. The numerical conse-
quence of the auto-duality of Lg is given below.

COROLLARY 2.9. For a complete fan ® in a vector space of dimension n the
polynomial ih(®) satisfies ihy_(®) = ihy k(D).

This corollary has a ‘relative’ version. Recall that the indecomposable objects in
WNi(Agp) are, up to shift of the grading, in one-to-one correspondence with cones.
For a cone ¢ € ® we denote the corresponding, suitably normalized indecomposable
by L§. Thus, for every object M € M(Agp) there is a (noncanonical) isomorphism

M= @ @ Vi ® LK), 2.1
oed ke,

where V; . are finite dimensional vector spaces (trivial for almost all k). Here (e)(k)
denotes the shift of grading by k. It is not difficult to show that Dg¢(Lg(k)) =
Ly(—k —2dim o).

COROLLARY 2.10. Suppose that n: ¥ — ® is a morphism induced by a subdivision.
Then, the vector spaces Vg in the decomposition (2.1) of M = n,Ly satisfy
dim Vi, = dim V5 —x—2dimo-

2.6. KALAI TYPE INEQUALITIES

As an application of our technology we give our restatement of the inequality conjec-
tured by G. Kalai in [K] and proven in the rational case by T. Braden and R. D.
MacPherson in [BM]. Namely, suppose that ® is a fan in V" generated by a single
cone g, i.e. ® =[o] and © C 0. Let Star(zr) be the collection of cones in ® which
contain 7. Consider the indecomposable Eﬁr] on [o] which corresponds to 7 (see

Definition 5.1 below) and put /P(Star(r)) = £},

70-.

THEOREM 2.11. There is an inequality, coefficient by coefficient, of polynomials
with non-negative coefficients ip(a) = ip(t)ip(Star(7)) .

3. Abelian Sheaves on Fans

3.1. FANS

A fan ® in a real vector space V of dimension dim V' = n is a collection of closed con-
vex polyhedral cones with vertex at the origin o satisfying

e any two cones in @ intersect along a common face;
e if a cone is in @, then so are all of its faces.
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A fan has a structure of a partially ordered set: given cones ¢ and 7 in @ we write
t<gif tis a face of g.

The origin is the unique minimal cone in every fan and will be denoted o.

Let d(o) denote the dimension of the cone . Thus d(o) = 0 iff ¢ = 0.

The fan @ is complete if and only if the union of cones of @ is all of V. The fan @ is
simplicial if every cone of @ is simplicial. A cone of dimension k is simplicial if it has k
one-dimensional faces (rays).

3.2. TOPOLOGY ON A FAN

The (partially ordered) @ will be considered as a topological space with the open sets
the subfans of ®.

Let ® <, denote the subset of cones of dimension at most k; this is an open subset
of ®.

A subset, say S, of ® generates a subfan, denoted [S]. We will frequently abuse
notation and write [¢] for the irreducible open set [{a}].

We denote by do the complement of {¢} in [¢]. That is, Jo is the subfan generated
by proper faces of ¢.

An open subset is irreducible if it is not a union of two open subsets properly con-
tained in it. The irreducible open sets are the subfans generated by single cones.

Remark 3.1. Note that the topological space ® has the following property: the
intersection of irreducible open sets is irreducible.

Let ¢ be a cone in ®. Denote by Star(c) C ® the subset of all the cones 7 such that
o < 1. This is a closed subset of ®. Its image under the projection V' — V//Span(o) is
a fan that will be denoted by Star(o).

3.3. SHEAVES ON A FAN

Regarding ®@ as a topological space with open sets the subfans of ®, we consider
sheaves on O.

Let Z(®) denote the partially ordered set of irreducible open sets of ® and inclu-
sions thereof. This partially ordered set is isomorphic to ®.

A sheaf on @ restricts to a presheaf (a contravariant functor) on Z(®) and this cor-
respondence is an equivalence of categories. Since, for a sheaf F and a cone g, the
stalk F, is equal to the sections I'([o]; F) of F over the corresponding irreducible
open set, the sheaf F is uniquely determined by the assignment ¢+ F, and the
restriction maps F, — F; whenever 7 < o.

As usual the support Supp(F) of a sheaf F'is the closure of the set of ¢’s, such that
F, £0.

For a sheaf F and a subset S we will denote by Fs the extension by zero of the
restriction of F to S. By abuse of notation we will write F, for F,.
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3.4. FLABBY SHEAVES

Let F be a sheaf and consider the following condition: for every cone ¢ the canonical
map

F, — I'(0g; F)is surjective. (3.1

LEMMA 3.2. A sheaf F satisfies the condition (3.1) if and only if it is flabby.
Proof. The condition is obviously necessary. To see that it is sufficient we need to
show that a section of F defined over a subfan ¥ extends to a global section. Clearly,
it is sufficient to show that a section defined over ¥ U @ extends to a section
defined over W U @ 41, but this is immediate from (3.1). O

For the rest of this section we restrict our attention to the category of sheaves of
R-vector spaces on ® which we will denote by Sh(®).

3.5. SOME ELEMENTARY PROPERTIES OF THE CATEGORY Sh(®)

For a cone g let i,: {o} — ® denote the inclusion. The embedding i, is locally closed,
and closed (respectively open) if and only if ¢ is maximal (respectively minimal, i.e.
the origin).

Suppose that W is a vector space considered as a sheaf on {g}.

Since every sheaf on a point is flabby the functor (i,), is exact (i.e. R?i;, W = 0 for
p # 0). Since every object in R—mod is injective the sheaf i,, W is an injective object
in Sh(®) which is equal to the constant sheaf W supported on Star(c). Every sheaf F
is embedded into a direct sum of injective sheaves by the canonical map
F— @,cqini; 'F.

Let ijs): [0] — @ denote the open embedding of the irreducible open set [a].

For a vector space W we denote by W), the extension by zero of the constant sheaf
W on [a] Since

Fr Homgy@)(Wie), F') = Homg(W, F)

is an exact functor, it follows that W, is a projective object in Sh(®). Every sheaf F
admits an epimorphism from a projective object, for example, the canonical map
Doeo(Fo)) — F. Thus, the Abelian category Sh(®) has enough projectives.

3.6. THE CELLULAR COMPLEX OF A SHEAF

Let @ be a fan in a (real) vector space V' of dimension n. We fix an orientation of each
cone on @, so that the n-dimensional cones are oriented the same way (thus in par-
ticular we fix a global orientation of V).

DEFINITION 3.3. For a sheaf F on ® the cellular complex C*(F) of
0> C'F)->C(F)—» - > C"(F)> 0
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is defined by C'(F) = @ )—,_; F» with the differential d': C'(F) — C*'(F) equal to
the sum of the restriction maps F, — F; with the sign +1 depending on whether
the orientations of ¢ and 7 agree or disagree.

Remark 3.4. C*(e) is an exact functor from Sh(®) to complexes of vector spaces,
therefore extends trivially to a functor C*(e): D’(Sh(®)) — D’(R — mod).

PROPOSITION 3.5. Assume that the fan ® is complete. Then, C*(e) and RI'(®; o)
are isomorphic as functors D?(Sh(®)) — D’(R — mod).

Proof. If n=dim V' =0, the statement is trivially true, so we assume that
n#0. First, notice that, since @ is complete, the natural map
[(®; F) = @yimo_n Fo» induces an isomorphism I'(®; F) = H'(C*(F)). Indeed, a
global section se I'(d; F) is equivalent to a collection of local sections
s, € F([o]), for each cone ¢ of dimension d(¢) = n such that s, = s, in F([o N7])
if dlont)=n—1. This shows that I'(®; F) = H'(C*(F)) (use the fact that
orientations of n-dimensional cones agree).

It remains to show that H'(C*(1)) = 0 for i # 0 for any injective sheaf /. In fact, it
is sufficient to take / = W) (i.€. the extension by zero of the constant sheaf with
value W on Star(s)). Assume by induction that this holds for a complete fan in a vec-
tor space of dimension strictly less than n.

The complex C*(Wsar(s)) is isomorphic to the complex C*(Star(o)). If o # o, then
Star(c) is a complete fan in the vector space V/Span(s) of dimension dim V/
Span(c) < n and the conclusion follows.

Thus, the only case to consider is ¢ = o (so that Star(s) = ®). In this case C*(J) is
isomorphic (up to reindexing and shift) to the augmented cellular chain complex
(with coefficients in ') of a sphere of dimension n — 1. OJ

Later on we will need the following generalization of the previous
proposition.

PROPOSITION 3.6. Let ® be any fan in V. Let F € Sh(®) be such that its support
Z = Supp(F) satisfies the following condition:
for each o € Z the fan Star(o) in V/Span(o) is complete.

Then, the cellular complex C*(F) is naturally isomorphic to RT'(®; F).
Proof. Same as that of Proposition 3.5. O

The next two lemmas will be used later on.

LEMMA 3.7. Let o C V be a cone of positive dimension (i.e. ¢ # 0). For any constant
sheaf F on [o] the cellular complex C*(F) is acyclic.

Proof. Then the cellular complex C*(F') is isomorphic (up to reindexing and shift)
to an augmented cellular chain complex of a ball of dimension d(g) — 1. O
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Remark 3.8. In the notation of the previous lemma notice that if F # 0, then
H(o]; F) # 0. Thus, for a fan which is not complete, the cellular complex does not
necessarily compute the cohomology of the sheaf.

LEMMA 3.9. Let 6 be a cone in V with dim V = n. Let F be a flabby sheaf on the fan
[6]. Then

(1)  the cellular complex C*(F) is acyclic except in the lowest degree, i.e. H(C*(F))=0
for i #n—d(e), and
(2) H™=AO(C(F) = Ty F.

Proof. The case d(o) = 0 being trivial we assume that d(g) > 0.
Since C*(e) is an exact functor, the short exact sequence of sheaves
0— Fyp, > F—>F,— 0
gives rise to the short exact sequence of complexes
0— C*(Fy,) > C*(F) > C*(F,) — 0.

Since do is isomorphic to a complete fan, it follows from Proposition 3.5 and the
flabbiness of F' that

(1) H(C*(Fs5)) =0 for i #n—d(o)+1;
2) H'"OH(C*(F,)) = T(9a; F);
(3) the (connecting) map

H'™O(C(F,) = F, — T(00; F) = B0 (C(Fy))
is surjective. Therefore, the long exact sequence in cohomology reduces to

0 — H")(C*(F)) — F, — T'(Jo; F) — 0. O

3.7. COHOMOLOGY OF SOME SIMPLE SHEAVES

LEMMA 3.10. Let ¢ be a cone in V. The functor I'([g]; e) is exact. Equivalently, for
any sheaf F, H([o]; F) =0 for i # 0.

Proof. The functor I'([¢]; e) is naturally equivalent to the functor ‘stalk at ¢’ and
the latter is exact. O

LEMMA 3.11. Let ® be a fan in V and F € Sh(®) be the constant sheaf on ® with
stalk W. Then,

Wa lfl = Oa
0, otherwise.

H'(®; F) = {

Proof. Since the space ® is connected H'(®; F) = W. The rest follows from the
injectivity of the sheaf F. O
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LEMMA 3.12. Let ® be a complete fan in V and W be a vector space. Consider the
sheaf W, on ® which is the extension by zero of the sheaf W on the open point o. Then,

i(Fy. _ Wv lfl =n,
H(®; W) = { 0, otherwise.
Equivalently, there is a natural isomorphism (in the derived category) RI'(®; W,) =
Wl—n].
Proof. By Proposition 3.5 RI'(®; W,) = C*(W,) and C*(W,) = W[-n]. O

4. Fans as Ringed Spaces
4.1. THE STRUCTURE SHEAF OF A FAN

Let ® be a fan in V. Let I* denote the constant sheaf ¢+ F* on ®. Let Qf denote
the subsheaf of V* given by ® 3 6> Q) , =gero- € V*, where o denotes the sub-
space of linear functions which vanish identically on o.

Let G denote the sheaf determined by the assignment ® 5 ¢+ G, = Span(o)*.
Thus, there is a short exact sequence of sheaves

0— Q- 1r5g—o. (4.1)

We will denote by A4 the symmetric algebra of V* with grading determined by
assigning degree 2 to V*. We will use the notation Ag for the corresponding constant
sheaf on ®.

DEFINITION 4.1. The structure sheaf Ag is the symmetric algebra of G, i.e. the
sheaf of cone-wise polynomial functions, graded so that the linear functions have
degree 2.

Remark 4.2. Clearly, there is an epimorphism of sheaves of graded algebras
Acp —> Aq). I:‘

Remark 4.3. With these definitions (®, Ag) is a ringed space over the one point
ringed space (4, A) which we imagine as ‘the empty fan’ in V.

In what follows ‘an Ag-module’ will mean ‘a (locally) finitely generated graded
Agp-module’ and similarly for Agp-modules. An Agp-module M is locally free if, for
every cone g, M, is a free (graded) Ag ,-module.

Let AT denote the ideal of elements of positive degree. For an 4-module M we will
denote by M the graded vector space M/MA™*.

For a graded A-module (or sheaf) M = &M denote by M(?) the corresponding
shifted object M(¢), = Mj;.

The flabbiness criterion (3.1) applied to an Ag-module together with Nakayama’s
Lemma amounts to the following.
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LEMMA 4.4. An Ag-module M is flabby if and only if for every cone o the canonical
map My — T(3a; M) is surjective.

DEFINITION 4.5. Let M(Ag) denote the additive category of flabby locally free
Agp-modules considered as a full subcategory of sheaves of Agp-modules and
morphisms of degree zero.

LEMMA 4.6. The fan ® is simplicial if and only if the structure sheaf' Ag is flabby.
Proof. The statement is easily seen to be equivalent to the following one: Suppose

that Py, ..., P, are polynomials in variables xi, ..., x, which satisfy dP;/dx; = 0 and
Pil;—o = Pjl— for all i and j. Then there is a polynomial Q such that Q|,_, = P;.
Verification of the latter fact is left to the reader. O

4.2. COHOMOLOGY OF OBJECTS IN 9¢{(Ap) ON COMPLETE FANS

THEOREM 4.7. Suppose that @ is a complete fan in V and M is in IN(Ag). Then,
Hi(®; M) =0 for i # 0 and H(®; M) is a free A-module.

Proof. The vanishing of higher cohomology is a direct consequence of the flab-
biness of the objects of M(Agp).

A graded 4-module M is free if and only if Extil(M, A) =0 for i # 0. By Proposi-
tion 3.5, H'(®; M) = H°C*(M). Note that, for every j, Ext'(C/(M), 4) = 0 for i # j.
Since, in addition, H'C*(M) = 0 for i # 0 it follows by the standard argument that
Ext/,(H°C*(M), A) = 0 for i # 0. O

COROLLARY 4.8. Suppose that ¢ is a cone in V, M € N(Ay). Then, T'i;yM is a
Jree module over Ay .

Proof. We may assume that ¢ spans V, i.e. 4 = A;,. The statement is obvious if
d(o) = 0, so we assume that d(o) > 1.

Choose a vector v in the ‘interior’ of a. The projection V' — V/Ruv gives rise to an
isomorphism (of ringed spaces) between (dag,.4y,) and a complete fan in V/Rv. By
Theorem 4.7 I'(0o; M) is a free module over 4y/g, therefore it satisfies

Ext',(T(0o; M), A) =0 for i # 1.
The exact sequence

0— I'gM —> M, — T'(9g; M) - 0
shows that I'; M satisfies

Ext), (s M; A) =0 for i 0.

The desired statement follows. O

https://doi.org/10.1023/A:1022232232018 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022232232018

258 PAUL BRESSLER AND VALERY A. LUNTS

5. Minimal Sheaves and Intersection Cohomology
5.1. MINIMAL SHEAVES

Recall that, for a cone g, the set Star(o) is defined as the collection of those cones ©
which satisfy t > o. Namely, Star(o) is the closure of the set {d}.
Fix a cone ¢ and consider the following conditions on an object M of M(Agp):

(1) Mgy #0 and M, # 0 only if = € Star(o);
(2) for every cone 1 € Star(c), T # g, the canonical map M, — I'(0t; M) is an iso-
morphism.

DEFINITION 5.1. In what follows we will refer to an object as above as a minimal
sheaf based at ¢. An instance of a minimal sheaf M based at ¢ with M, =~ Ag , will
be denoted £3. We will also denote Lo = L5,

PROPOSITION 5.2. Let @ be any fan.

(1) For every o € ® and every finitely generated free graded Ag s-module M there
exists a unique (up to an isomorphism) minimal sheaf M based at ¢ such that
Mg = M. In particular, the minimal sheaf L, exists for each ¢ € ®.

(2) Moreover, if M is a minimal sheaf based at o, then M ~ L§ @ M. In parti-
cular M is a direct sum of sheaves L(1), t € 7.

(3) The minimal sheaves Lg(t), t € Z are indecomposable objects in the category of
Agp-modules.

(4) Let U C ® be an open subset, i.e. U is a subfan. Then Lo|y = Ly.

Proof. Easy exercise. O

THEOREM 5.3. Let ® be a fan in V. Every object M of M(Ag) is isomorphic to a
direct sum of minimal sheaves. In particular, M is a direct sum of indecomposable
objects LG(1), t € 7.

Proof. The last part of the theorem follows from the first one using parts 2 and 3
of Proposition 5.2.

Consider an object M of M(Ap). We will show that it is isomorphic to a direct
sum of minimal sheaves by induction on |[M|=}"_ranky, M,. Consider a cone
o such that M, # 0 and, for every © € do, M, = 0. We will show that, for each such
o, M contains as a direct summand a minimal sheaf C based at ¢ with I, = M,.
That is, we will construct a direct sum decomposition

M=KoN (5.1)

with K as above and A in I(Ag). This is sufficient, since, clearly, |[N| < |M]|.
Note, that we need to specify the direct sum decompostion (5.1) only on Star(o).
Therefore it is sufficient to treat the case when ¢ is the origin o.
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We proceed to construct the decomposition (5.1) by induction on the dimension of
the cone and the number of cones of the given dimension.

Let K, =M, and N,=0. Assume that a direct sum decomposition
Mlo_, =K<k ® N<i in D(Aslep_,) has been defined and consider a cone ¢ of
dimension k 4 1. Since Jo consists of cones of dimension at most k the induction
hypothesis says that there is a direct sum decompostion of I'(Js; Ag)-modules

I['(0o; M) =T(90; K<i) ® T'(00; N <i).

CLAIM 5.4. There is a decomposition M, = K, @ N, into a direct sum of free Ap s~
modules, such that the restriction homomorphism Mq;—»I'(d0; M) maps K, to
I'(30; K<) and N, to T'(3c; N <) and induces an isomorphism K,—T(d0; K< 1) and
an epimorphism N,—»T (303 N < ).

Assume the claim for the moment. The desired extension Ky (respectively
Nciy1) of K<y (respectively N¢y) is given, for every cone ¢ of dimension
k+1, by K<iy1o =K, (respectively N¢ri1,=N,) and has all the required
properties.

Proof of Claim. Choose a subspace Z C I'(dg; K <) which maps isomorphically
onto I'(da; KC < ) under the residue map. Choose a subspace S C M, so that the map
M — I'(3a; M) restricts to an isomorphism S—>Z. Since SN AT M, = 0 there is a
subspace 7' C M, such that SN T =0 and S & T generates M, freely. Subtracting,
if necessary, elements of 4 - S from elements of 7' we may assume that the image of T
under the map M, — I'(do; M) is contained in I'(do; N'<x). Thus we may take
K; = Ao S and N, = Ao T. This concludes the proof of the claim and of the
theorem. O

Remark 5.5. In the course of the proof we have constructed an isomorphism
M2P, o Ve ® Ly, where V, is a finite dimensional graded vector space such
that V, = ker(M, — I'(35; M)). In terms of homogeneous components we may
write V, = @, Vor(k) for suitable vector spaces V, (trivial for almost all k),
and M@, o DBicy Vo ® Ly(k). Note that the multiplicities dimV,; in the
decompostion of M into a direct sum of indecomposable objects are uniquely
determined.

5.2. SUBDIVISION OF FANS AND THE DECOMPOSITION THEOREM

Suppose that ® and ¥ are two fans in V" and W is a subdivision of ®, which is to
say, every cone of @ is a union of cones of W. (In the rational case this induces
a proper morphism of toric varieties). This corresponds to a morphism of ringed
spaces 7: (W, Ay) — (@, Ap). The next theorem combined with the structure
Theorem 5.3 is a combinatorial analog of the decomposition theorem ((BBD], [BL]).
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THEOREM 5.6. In the notations introduced above, for M in M(Ay),

(1) R'n,M =0 for i # 0 and n,M is flabby;
(2) m M is locally free.

In other words, the direct image under subdivision © restricts to an exact functor m,:
WM(Ay) — D(Ag).

Proof. The first claim follows from the flabbiness of M.

Since the issue is local on ® we may assume that the latter is generated by a single
cone ¢ of top dimension n, i.e. ® = [¢]. By induction on dimension it is sufficient to
show that the stalk (M), is a free 4-module.

Let Z = n~!(0). This is a closed subset of ¥ which consists of the cones which sub-
divide the interior of o.

CLAIM 5.7. For any sheaf F on ¥ the restriction map H*(¥; F) — H°(Z; F) is an
isomorphism.

Proof. Indeed, a global section o € I'(W; F) is the same as a collection of local
sections o, € Fy =I([t]; F), d(t)=n such that o,=a¢ in F,n¢ in case
d(t N &) =n — 1. The same local data specifies an element in I'(Z; F). This proves the
claim. |

By Claim 5.7 pull-back and restriction to Z establish
(m, M), = H(®; 1, M) = H(¥; M) = H(¥; My).

By Proposition 3.6 the cellular complex C*(My) is quasi-isomorphic to
RI'(W; My). Note that the sheaf M is flabby. Now the same argument as in the
proof of Theorem 4.7 shows that the 4-module H°(\¥; M) is free. ]

5.3. INTERSECTION COHOMOLOGY OF FANS

DEFINITION 5.8. For a complete fan ® we define the intersection cohomology of ®
as the graded vector space TH(®) =4r H'(®; Lp) and denote by ih(®D) the corre-
sponding Poincaré polynomial.

LEMMA 5.9. The intersection cohomology of a complete fan ® enjoys the following
properties:

(1) dimIH(®) < oc;
(2) ihj(®) =0 for j <0 orj odd,
(3) ihy(®) = 1.

Proof. The A-module H°(®;Lp) is finitely generated, hence the first
claim follows.

Using induction on the dimension of the cone it follows from the definition of L
that, for each o € ® the (graded) A-module Lo, has no nontrivial components of
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negative or odd degree. Hence, the same is true for H(®; L) and the second claim
follows.

Using induction on the dimension of the cone and Lemma 3.11 one checks easily
that the degree zero component of L, is one-dimensional. In other words, the
degree zero component of the sheaf Lg is the constant sheaf Rg. Thus, by
Lemma 3.11, ihy(®) = 1. O

LEMMA 5.10. Suppose that ® is a complete fan. Let ¥ be a subdivision of ®. Then
IH(®) is a direct summand of IH(Y). In particular, one has the inequality
ih(W) > ih(®) (coefficient by coefficient) of polynomials with nonnegative coefficients.

Proof. Let 7: (¥, Ay) — (@, Agp) denote the corresponding morphism of ringed
spaces. Since (n.Ly), = R it follows that the sheaf (n,.Ly) contains L as a direct
summand (see Theorem 5.3). The lemma follows. O

DEFINITION 5.11. For a cone ¢ in V we define the local intersection cohomology

(space) by IP(6) = L4, and denote by ip(c) the corresponding Poincaré polynomial.
Remark 5.12. Note that ipj(c) = 0 if j is odd or negative.

6. Borel-Moore—Verdier Duality

Let ® be a fan in V' = R”. Let A¢ as usual be the constant sheaf on ® with stalk 4.
Denote by D?(4¢ —mod) the bounded derived category of (locally finitely gener-
ated) Ap-modules. In particular the additive category of sheaves M(Agp) is a full sub-
category of D?(4¢ — mod).

In this section we define the duality functor, i.e. a contravariant involution D on
the category D?(4p — mod). We show that duality preserves the subcategory M (Ag)
and D(Lge) ~ Lo. Among other things, it gives rise to Poincaré duality in IH(®).

6.1. THE DUALIZING OBJECT

Let = wy/r denote the dualizing A-module. That is, w,/r = A @ detV™ is a free
graded A-module of rank one generated in degree 2dimV. Recall that w, denotes
the extension by zero of the constant sheaf w on the (open) point o.

DEFINITION 6.1. The object Do =ger w,[n] of DP(A¢ — mod) is called the dualizing
object.

Since the functor C°®(e) is exact, it extends naturally to a functor
C*(e): Db(A4p — mod) — D’(4 — mod).

PROPOSITION 6.2. The morphism of functors D?(4¢ — mod)” — D’(4 — mod)
RHom? (e, Dp) — RHom?(C*(e), ®)
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induced by the (exact) functor C*(e) is an isomorphism. (Note that the complex C*(Dg)
is equal to .)

Proof. Every object of ch’(Aq) — mod) is isomorphic to a bounded complex of
projective objects which are finite direct sums of Ag-modules of the form W, (i.e.
the extension by zero of the constant sheaf W on [¢]), where W is a free A-module.
Therefore, it is sufficient to show that for any P as above the map

RHom? (P, Dy) — RHom%(C*(P), w)

is an isomorphism.

Since P is projective, RHomY (P, Do) = Hom} (P,®,)[n]. In addition, RHom}
(C*(P), w) = Hom%(C*(P), ) because C*(P) is a complex of free A-modules. There-
fore, the map in question reduces to the map of complexes

Hom 4, (P, w,)[n] — Hom?%(C*(P), w)

which sends a map ¢: P — w, to the corresponding map of stalks at the origin (i.e.
to a map C"(P) — o).

Assume that P = Wy,. If 6 = o, then C*(W4;) = W[—n] and the map is an equal-
ity. Otherwise, Hom 4, (P, w,) = 0 and C*(W|4) is acyclic by Lemma 3.7. O

6.2. TRACE MAPS

LEMMA 6.3. Suppose that ® is complete. Then there is a canonical isomorphism
RI'(®; Do) — o.
Proof. Follows from the definition of D¢ and Lemma 3.12. O

DEFINITION 6.4. The isomorphism of Lemma 6.3 will be denoted by fq) and
called the integration map or the (absolute) trace map.

PROPOSITION 6.5. Suppose that n:¥ — ® is a subdivision.

(1) There is a natural isomorphism n~'Dg = Dy in D’(Ay — mod).
(2) The canonical morphism D¢ — R, 'Dy = Rn,Dy is an isomorphism
(in D?(Ap — mod)).

Proof. The first claim follows directly from the definitions.

The second claim is proved by inspecting the map induced on stalks. Since the
issue is local on ® we may assume that ® = [g]. The claim is clearly true at the origin.
Since D¢ is supported at the origin it is sufficient to show that so is
Rr.n 'Dp = R, Dy.

By induction on the dimension we may assume that the statement holds at every
cone of do.
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The stalk of R, n~!' Do at ¢ is given by
(Rr,n'Dg), = RI(®; R, ' D)
~ RI(Y; 77 ' Do)
~ RI(¥; Dy)
=~ Hom%(C*(A4y), w)

using Proposition 6.2. The complex C*(A4y) is acyclic since it is isomorphic to the
augmented cellular chain complex (with coefficients in 4) of a contractible
space. J

DEFINITION 6.6. In what follows we will denote by fn: Rn.Dy — D¢ the
(inverse) isomorphism of Proposition 6.5.

6.3. DUALITY A LA VERDIER
In what follows we use Hom to denote the ‘sheaf Hom’. Note that, for ¢ € ® and any
two sheaves F and G Hom(F, G), = Hom(F4, G).
DEFINITION 6.7. The functor
Do(e) =qer RHom 4, (e, Do) : Df(Aq) —mod)” — Df,(Aq; — mod)

is called the duality functor.

Remark 6.8. Note the isomorphism Dg = Dg(Ap).

Our next goal is to prove Theorem 6.17 below. Let us begin with some
preparations.

DEFINITION 6.9. A nonempty open subset U C ® is saturated if, for any cone
o € ® of dimension dim ¢ > 2, the inclusion do C U implies o € U.

EXAMPLE 6.10. ® and {o} are saturated.

DEFINITION 6.11. For a nonempty open subset U C @ define its opposite U’ as
follows:

U:={ced®dVteU, 1No=o)}

Remark 6.12. (1) ® = {0}, {0} = ®. (2) For any U its opposite U’ is saturated.
(3) We have U C U".

LEMMA 6.13. If U is saturated then U = U".

Proof. Let 0 #0 € U". Let 1 < ¢ be a face of dimension 1. Then t¢ U'. Hence,
7 € U. Thus by induction on dimension all faces of ¢ are in U and so g isin U. []
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COROLLARY 6.14. The map U U’ is an involution of the collection of saturated
open subsets of ®.

For an open subset U C ® and an 4-module M we denote as usual by My the
extension by zero to @ of the constant sheaf M on U. In case U = {0} we will also
denote this sheaf by M,.

Remark 6.15. Let U C @ be open. Note the equality of sheaves Hom(A4y, w,) =
wy. Hence, if U is saturated, then by Lemma 6.13 the obvious map

AU - M(Hﬂ(AU7 (}Jg), wg)
ar> (f=>fla))

is an isomorphism.

PROPOSITION 6.16. Let o € ® and put U := [o]'. Then,

(1) H7"RHom(Ay, D¢) = Hom(Ay, w,) and
(2) H'RHom(Ay, Do) =0 for i > —n.

Equivalently, RHom(Ay, Do) =2 Hom(Ay, w,)[n].

Proof. The first claim is clear. To prove the second claim we need to show that it
holds on stalks.

For t € ® we put W = U N |[r] and calculate the stalk of RHom(Ay, Dg) at 7 using
Proposition 6.2:

RHom(A4y, Do), = RHom®(4y, Do)
=~ Hom®*(C*(Ay), »).

If t € [0], then W = {0} and the complex C*(A4y) is concentrated in degree n, so
Hom*(C*(4w), w) is concentrated in degree —n.

So, suppose that t¢[g], in particular t # 0. Then, either t € U, in which case
W = [1] and C*(Aw) is acyclic by Lemma 3.7, or ¢ U.

In the latter case, let p be the unique cone such that ¢ Nt = u. Note that u € Jr.
Then, W = [t]\Z, where

z= | star(4).

o<A<u

In particular, T € Z and, therefore, W C 0Or.

The complex C°®(Ay) is isomorphic (up to reindexing and shift) to the
reduced cellular complex of the intersection SN Supp(W) of the sphere S centered
at the origin and the support Supp(W) of W (with the induced cellular decom-
position). Now, SN Supp(W) is the complement in the (dim7t — 2)-dimensional
sphere SN Supp(dr) of the star-neighborhood of SN Supp(r) (homeomorphic
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to an embedded open (dimzt — 2)-dimensional ball), hence itself (homeomorphic
to) a closed (dimz — 2)-dimensional ball. Therefore, the complex C*(Ay) is
acyclic. O

We are ready to prove the main result of this section.
THEOREM 6.17. The canonical natural transformation 1d — D¢ o Do given on an
object F* of D’(A¢ — mod) by
F* — RHom, (RHom, (F*, Do), Do)
ar (fr>fla))

is an isomorphism of functors.

Proof. Let 6 € ®. Then Aj, is an indecomposable projective Ap-module and
every indecomposable projective is of this form. Since every object of D’(4¢ — mod)
is isomorphic to a bounded complex of modules which are finite direct sums of
indecomposable projectives we may assume that F* = Aj,).

By Remark 6.15 and Proposition 6.16 we have

RHom , (RHom , (45, Do), Do) = RHom , (Hom , (4[4, we)[1], we[n])
=~ RHomAq, (CO[U]’7 (JJQ)
= Hom , (opsy, ®,)

= A[a]. O

6.4. GLOBAL DUALITY

Here we show that the duality functor commutes in the appropriate sense with the
functor of global sections over complete fans.

THEOREM 6.18. Suppose that ® is complete. Then, the natural transformation of
functors D’(Ag — mod)®® — D?(A4 — mod)

RI(®; Dg(e)) — RHom4(RT(D; o), @)
given on an object F* of Df(Aq;) by the composition

RI(®; Do(F*)) = RHom,, (F*, Do)
— RHomy(RT(®; F*), RT(®; Dy))

& RHom4(RI'(®; F*), )

is an isomorphism.
Proof. Follows from Propositions 3.5 and 6.2, and Lemma 6.3. O
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6.5. RELATIVE DUALITY

Here we show that the duality functor commutes in the appropriate sense with direct
image under subdivision.

THEOREM 6.19. Suppose that n: ¥ — ® is a subdivision. The canonical natural
transformation of functors D"(Ay)® — D’(Ag)

Rn,RHom 4 (e, Dy) — RHom , (R7.(e), Rm,Dy)

is an isomorphism.

Proof. Since the issue is local (on @) we may assume that ® = [¢]. By induction on
dimension we may assume that the statement holds on every cone of do. It remains to
show that the statement holds on stalks at . We begin with a calculation of
respective stalks.

If F* is in D’(Ay), then

(Rm,RHom ,, (F*, Dy)), = RI'([¢]; Rn,RHom 4, (F*, Dy))
= RI'(Y; RHom 4 (F*, Dy))
= RHomAw (F‘, D\y)
=~ RHom4(C*(F*), )

and
(RHomAM (Rn.(F*), R, Dy)), = RI'([s]; RHomA[g] (R7, . F*,Rm, D))
= RHOII’IA[U] (RTE*F‘, RTE*D\}I)
=~ RHom, (1 'Rn,F*, Dy)
=~ RHom (C*(n'Rn.F*), w)
Under these identifications the map in question corresponds to the map
RHom 4(C*(F*), w) - RHom(C*(n~'Rn,F*), »)
induced by the adjunction map n~'Rn,F* — F*. Thus, it is sufficient to show that the
map C*(n~'Rn,F*) — C*(F*) (induced by the adjunction map) is an isomorphism.
By induction we may assume that the statement holds on 0¥ = n~!(d0), i.e. that
the map
C((n ' RIF*)pp) = C((F*)pp)
is an isomorphism. Therefore it is sufficient to show that the map

C*(n 'R, F*),) — C*(F2),

where Z = n~!({g}), is an isomorphism as well.
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The stalks of the sheaf n~'Rn, F* are given by
(n'RrF®), = (R F*),
=~ RI'([7n(7)]; R F*®)
= RI(z~ ' ([n(0)]); F*).
In particular, the sheaf (z~'Rn,F*), is the extension by zero of the constant sheaf
with stalk RI'(Y; F*) on Z.
For any constant sheaf Wy the short exact sequence of complexes
00— C*(Woy) > C*(Wy) = C*(Wz) = 0

shows that the cellular complex C*(W ) is isomorphic (up to reindexing and shift) to
a cellular chain complex with coefficients in W of the pair (D, 0D), where D is a ball
(of dimension dim¥ — 1 =dimo — 1) so that the natural map W[dim¢ — n] —
C*(Wz) is a quasi-isomorphism. Therefore, it is sufficient to show that the composi-
tion

RI(¥; F*)[dimo —n] — C*((n'Rn,F*),) — C*(F)
is an isomorphism.

It follows from Proposition 3.6 that there is a natural isomorphism
C*(F3) 2 RI'(Y; F))ldimo — n]. The map RI(W; F*) — RI'(W; F) induced after
the above identification is the natural map induced by the restriction map
F* — F5. It is a natural isomorphism because

(1) the restriction map induces an isomorphism I'(‘Y; F*) — I'(¥; F3), and
(2) if F* is a complex of flabby sheaves then so is F7. O

COROLLARY 6.20. Suppose that n:¥ — © is a subdivision. The natural transfor-
mation of functors DX(Ay)” — D%(Ae) Rr, o Dy — Dg o Rr, given on an object F*
of D*(Aw) by the composition

R7,Dy(F°*) = Rn,RHom , (F*, Dy)
— RHom , (Rn,F*, Rn,Dy)

I? RHom , (R7,F*, Do) = Do(Rm, F*)
is an isomorphism.

Using Corollary 6.20 we will establish (Corollary 6.27) the analog of the Poincaré
duality for the direct image of the indecomposable object Ly.

6. POINCARE DUALITY

THEOREM 6.21. Suppose that M € D Ag). Then,
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(1) HDg(M) =0 for i # 0, we put Do(M) =ger H'Do(M);
(2) the sheaf Do(M) is flabby.

(3) the Agp-module Dg(M) is, in fact, a Ap-module;

(4) the Agp-module Do(M) is locally free.

Proof. Since the issue is local we may assume that ® = [¢]. By induction on
dimension we may assume that the statement holds on do.

Applying Dg(e) to the exact sequence 0 - My, > M — M, — 0 we obtain the
exact triangle

Do(M;g) = Do(M) — Do(Mas) — Da(Ms)[1]. (6.1)
The isomorphisms
De(M;) = RHom ; (M, Do)
< RHom (45, RHom,;, (M, Do)) = RT () Do (M)

lead to the identification of the exact triangle (6.1) with the canonical exact triangle
RI ;) Dop(M) — Dg(M) — Rjj ' Dap(M) — RT (5 Da(M)[1],

where j: 0o < [g] is the inclusion (of an open subset).

By inductive assumption j~'Dg(M) =2 Dg,(j~' M) satisfies the conclusions of the
theorem. In particular, it is a flabby sheaf. Therefore, R'j,j~'Dg(M) = 0 for i # 0
and j,j~' Dg(M) is flabby. Consequently, Dg(My,) is (isomorphic to) a flabby sheaf.

Next we examine Dg(M,), which is supported on {¢}. Thus, it is concentrated in
degree zero if and only if R['(®; Dg(M,)) is. By Proposition 6.2

RI(®; Dg(M,)) = RHom4(C* (M), »)
~ RHom(M,[d(c) — n], w)
=~ Ext’; O(M,, w)

(because M, is a free module over Aqg ). This calculation shows that De(M,) is (iso-
morphic to) the skyscraper sheaf Ext'jfd(”)(./\/l(,,w)a, in particular it is flabby and
locally free over Agp.

So far we have shown that both Dg(M,) and Dg(My,) are complexes concentra-
ted in degree zero. Hence, so is Dg(M). This proves the first claim.

It follows that the exact triangle (6.1) is equivalent to the short exact sequence of

sheaves
0 = De(M;s) = Do(M) = Do(Mps) — 0.

(where we have written D for H°D). Since Dg(M,) and Dg(M ) are flabby, so is
Dg(M). This proves the second claim.

By inductive assumption, for t € dg, the stalk Dg(M), is a free Ag.-module.
It remains to show that the same hold with T = ¢. Since ® = [¢], the stalk at o is
given by
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Da(M), 2 RI(®; Do(M))
~ RHom 4(C*(M), m)
= RHOH’IA(F[(;}M[d(O') - }’l], 60)
= EXt’:;d(J)(r{rf}Mv CO) )

(using Proposition 6.2, Lemma 3.9, and Corollary 4.8) and the latter is a free Ag -
module. O

COROLLARY 6.22. The duality functor induces an anti-involution of the category

Di(Agp).
Proof. Since D is an anti-involution of D%(4¢p — mod) and it preserves M(Ag) the
corollary follows. [

COROLLARY 6.23. Suppose that ¢ is a cone in ®. The minimal sheaf L3 (k) on @
based at o (see Definition 5.1) satisfies Do(Lg(k)) =2 LG (—k — 2d(0)) (noncanonically).
In particular, Dep(Lo) = Lo.

Proof. By Corollary 6.22 the dual of an indecomposable object is indecompo-
sable. In addition, Supp(ID(£g(k))) € Supp(Ly(k)) = Star(e). It follows from the
proof of Theorem 6.21 that Dg (L5 (k)), = Ext" ““(Ap.o(k), ©) = Ap o(—k — 2d(0)).
Thus, the corollary follows from Proposition 5.2 and Theorem 5.3. OJ

COROLLARY 6.24. Let ® be a complete fan. Then there exists a non-canonical
isomorphism of A-modules T'(®; L) = Hom4(I'(®; Lo), ®), ie. the free A-module
['(®; Lo) is self-dual.

Proof. By Theorem 4.7 and Corollary 6.22 the natural isomorphism of
Theorem 6.18

RI'(®; Dgp(Lep)) =2 RHom(RI'(®; Lg), ®)
reduces to

[(®; D(Lo)) = Hom(I'(®; Lo), ).

A choice of an isomorphism of D¢(Ly) and L provides an isomorphism
of A-modules

[(®; Lo) = Homy(I'(D; Lo), ®).
Consider the one-dimensional (graded) vector space w. It has degree 2n. O
COROLLARY 6.25. Let @ be a complete fan. Then, there exists an isomorphism of
graded vector spaces IH(®) = Homg (/H(D), @).

Proof. Immediate from the previous corollary. O

COROLLARY 6.26. Let ® be a complete fan. Then,
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(1) iy (D) = iy (D) for all j;
(2) ihj(®) = 0 unless j is even and j € [0, 2n];
(3)  ihg(D) = ihp(D) = 1.

Proof. Immediate from the previous corollary and Lemma 5.9. O

COROLLARY 6.27. Suppose ® is a fan and n: ¥ — ® is a morphism induced by
subdivision. Let

TE*‘C‘}’ =D D Va,k ®£g)(k) (62)
oe® ke

be a decomposition of w, Ly into a direct sum of indecomposable objects of M(Ag) (see
Theorem 5.3 and Remark 5.5) with Vi, finite-dimensional vector spaces. Then,
dim Va,k = dim V0,7k72cl(0)-

Proof. Applying Dg to both sides of (6.2) and, using Corollary 6.23, we obtain

Do(m L) & & Vi @ LG(—k — 2d(0)) (6.3)
oed ke,

By Corollaries 6.20 and 6.23 there is an isomorphism Dg(7,Ly) = 7, Ly. The claim
is now established by matching the multiplicities in (6.2) and (6.3). O

6.7. DUALITY A LA BOREL-MOORE

We conclude with a brief account of duality patterned after Borel-Moore duality for
sheaves on locally compact spaces. Informally speaking, the Borel-Moore dual of a
sheaf F is defined as the ‘pointwise’ linear dual of the co-sheaf I'.(F) of ‘compactly
supported’ sections of F.

6.7.1. Co-sheaves

Suppose that C is a category. While a C-valued sheaf on a fan @ is a functor ®°° — C,
a (C-valued) co-sheaf is a functor ® — C.

Assume that C is Abelian. Then, so is the category of co-sheaves.

Suppose that Wisin C and ¢ is a cone. Let Wsar(s) denote the co-sheaf, obtained
by extending by zero the constant co-sheaf with value W on Star(o). Every co-sheaf
is a quotient of a direct sum of co-sheaves of this form.

If W is projective then so is Wsiare). If C has enough projectives, then so does the
category of C-valued co-sheaves.

6.7.2. Homology of co-sheaves

Recall that, for a sheaf F on @ its space of global sections, defined as T'(®; F) = lim F,
is a left exact functor of F. *”°
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DEFINITION 6.28. For a co-sheaf V:® — C we define its space of global co-

sections as the direct limit liin F.
D

LEMMA 6.29. The functor of global co-sections is right exact.
Assume from now on that the category C has enough projectives.

DEFINITION 6.30. For a co-sheaf V on ® we define the ith homology of (® with
coefficients in) V as the ith left derived functor of global co-sections: H{(®; V) =4er
H'LLmV.

D

6.7.3. Co-sheaf of Sections with Compact Support

Suppose that @ is a fan in a vector space of dimension #. Fix an orientation of each
cone ¢ in O.
For a sheaf F on ® and ¢ € O let

I (F)y = det C*(Fla))- (6.4)

This is a complex which is concentrated in degrees [n — d(0),n]. For © < ¢ we have
the obvious inclusion of complexes I'.(F), — I'.(F),. This makes the assignment

T(F): o> TP), (6.5)

a complex of co-sheaves.

DEFINITION 6.31. The complex of co-sheaves I'.(F') defined by (6.5) and (6.4) is
called the co-sheaf of compactly supported sections (of F).

Clearly, I'.(F) is functorial in F. The functor I'.(e) is exact, thus it extends trivially
to the derived category of sheaves on ®.

LEMMA 6.32. The functors (with values in the category of complexes) lim I .(e) and
[0}

C*(e) are isomorphic. o
Proof. Straightforward consequence of the definitions. O

COROLLARY 6.33. The natural map

LlmT (s) — limT(e)
D D

is a quasiisomorphism.
Proof. Follows from Lemma 6.32 and the exactness of C*(e)[n]. O

COROLLARY 6.34. Assume that the fan ® is complete. Then, the functors
LlimT ' (e) and RI'(®; o) are naturally isomorphic.
4]
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Proof. Follows from Proposition 3.5, Lemma 6.32 and Corollary 6.33. O

6.7.4. Borel-Moore Duality

Note that, if V is a co-sheaf on ® with values in C and T: C”” — D is a functor, then
ToV is a D-valued sheaf on ® which we denote T(V).

Note also that, for a Ag-module F, the co-sheaf I'.(F) takes values in the category
of complexes of A-modules.

DEFINITION 6.35. The functor Dg":D?(4g —mod)” — Di(Aep — mod)” is
defined by

DEM(F*): 6+ Hom4(T'(F*),,I°)

where I* is an injective resolution of w, i.e.
DEM(F*) = Hom 4(T.(F*), I*) = RHom 4(T.(F*), w).

It is clear that the functor D(’f)M is essentially independent of the choice of the injec-
tive resolution /°.

As we will see (Proposition 6.38 below) the functors D¢ and ng;M essentially coin-
cide. In the course of the proof we will need the following flabby resolution of the
dualizing object.

For a cone g € ® let i, : {o} — ® denote the inclusion. Consider w as a sheaf on
the point ¢. Then, the Agp-module i, is a constant sheaf on Star(c) with stalk .
If 7 <o then there is a natural surjection of sheaves ry: i@ — iww. Let
K™ =4er D do)=j lox®- As usual, the maps r,, with the sign &1 define the differential
in the complex K*

0> K"> K" ... 5K - 0.

The natural map w, — i@ = K™" gives rise to the morphism Dy — K°.

LEMMA 6.36. The complex K® is a flabby resolution of Dg.

Proof. The sheaves K' are direct sums of flabby sheaves, therefore flabby. It
remains to show that, for 0 # ¢ € ® the complex of stalks K;" — K" — ... — K?
is acyclic. Now, the above complex is isomorphic to the complex Homg(C*(Rj4), w),
and C*(Rpy) is acyclic by Lemma 3.7. O

Remark 6.37. Note that Hom 4, (F, iy.) = Hom 4(F,, ) for any Agp-module F.
Hence, for any Ag-module F, there is a natural isomorphism of complexes

Hom}, (F, K*) = Hom%(C*(F), w). (6.6)

PROPOSITION 6.38. The functors D¢ and DgM are naturally isomorphic.
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Proof. Since the category Ap — mod has enough projectives it is sufficient to give,
for each projective P, an isomorphism DgM (P) = D¢(P) natural in P.

Suppose that P is a projective Ag-module. Then, for every ¢ € @, I'.(P), is a com-
plex of projective A-modules, therefore the map

Hom(I'e(P),, ) — Hom(T'o(P),, 1°)

is a quasiisomorphism compatible with restriction maps. Thus, DJY(P) =
Hom4(T'.(P),w). From Remark 6.37 one has the isomorphism(s)

HOI’IlA(Fc(P)G, (0) = HOH’IA(C.(P[U]), CL))
= HomAm(P[0]7 K:l)
= Hom, (P, K}),

compatible with restriction maps. Thus ]Dg;M (P) = Hom, (P, K%) = Dg(P) (since P
is projective). O

Remark 6.39. Perhaps the main motivation for the Borel-Moore version of the
duality functor is that global duality for a sheaf F on a complete fan @
(Theorem 6.18) follows very naturally from Corollary 6.34 and general properties of
derived functors of limits:

RI(®; DgY(F)) = Rlim R Hom 4(I'(F), w)

oP

= RHomyu(LIimT'.(F), )
()

~ R Hom4(R[(®; F), o)

7. Toward Hard Lefschetz and the Combinatorial Invariance

Throughout this section ® will denote a complete fan in a vector space V of dimen-
sion 7.

7.1. AMPLENESS IN THE CONTEXT OF FANS

Consider the short exact sequence of sheaves 0 — Qg — V* — G — 0, where V*
denotes the constant sheaf and QCIDJ = Span(o)*. Since constant sheaves have trivial
higher cohomology and QCID is supported on ®,_;, the long exact sequence in
cohomology reduces, in low degrees, to the short exact sequence of vector spaces
0— V* - I'(®,G) — H(D; chp) — 0. The space I'(®@; G) consists of continuous,
cone-wise linear functions on ©.

For any object M of M(Ag), the elements of I'(®; G) act naturally on the free gra-
ded A-module I'(®; M) by endomorphisms of degree two. Clearly, the induced
action on the graded vector space I'(®; M) factors through H'(®; be).

DEFINITION 7.1. An element / of H'(®; Q)) is called ample iff it admits a lifting
[ € T'(®; G) which is strictly convex.
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7.2. HARD LEFSCHETZ FOR COMPLETE FANS

The statement of Conjecture 7.2 (below) is the analog of the Hard Lefschetz Theo-
rem in the present context. Recall that £ denotes the indecomposable object of
Wi(Ag) which is based at the origin and satisfies Lo, = R.

For a graded vector space W we will denote by W the subspace of homogeneous
elements of degree i.

CONJECTURE 7.2 (Hard Lefschetz Conjecture). An ample [ € H'(®; Q(ID) induces
a Lefschetz operator on the graded vector space /H(®), i.e. for every i the map
I: IH(®)"™ — [H(®)"* is an isomorphism.

For a rational fan @ this conjecture follows immediately from results in [BL],
ch.15. The above conjecture has the following standard corollary.

COROLLARY 7.3. Assume the Hard Lefschetz Conjecture. Then for an ample I the
map 1 : IH(®)? — IH(®)™"? is injective for i < n— 1 and surjective for i =n— 1. In
particular ihy(®) < ihy(®) < -+ < ihopp)(P).

7.3. THE GLOBAL-LOCAL FORMULA

Suppose that ¢ is a cone of dimension d(6) =d+ 1 > 2 in V. Let W = Span(s) C V.
Choose a linear isomorphism

wW=~RYx R (7.1)

so that the ray (0, R*) lies in the interior of ¢. Let p: W — R denote the projection.

Let do denote the image of do under p. Then, o is a complete fan in R? and
do is the graph of a continuous piecewise linear function /:RY — R which is
strictly convex with respect to the fan do. In particular / € H'(do; Qé—g) is an
ample class.

Note that Ay = Apa[/]. Let my C Ay and 11y C Apa denote the maximal ideals, so
that m; = my[].

The Ajps-module structure on the minimal sheaf L5, is obtained by extension of
scalars: Ljps] = Ajoe] ® A L. Thus, the intersection cohomology IH(Do) is an R[]]-
module. We have

IH(00)/1 - IH(J0) = T(95; Lipe)/ M1 T(00; Lige) = Lig).e = IP(0),

where IP(0) is defined in 5.11.

The Hard Lefschetz Conjecture (for o) implies that / is a Lefschetz operator on
IH(d0). Thus IP(c) is isomorphic to the /-primitive part of /H(J). In particular, the
Poincaré polynomial i#(0c) depends only on ¢ and not on a particular choice of the
isomorphism (7.1).

Let us summarize our discussion in the following corollary.
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COROLLARY 7.4. Let 0 CV be a cone of dimension d+1 = 2. Choose an iso-
morphism Span(e) ~ RY x R as in (7.1), so that the image 9o of do under the pro-
Jjection to R? is a complete fan in RY. Then, the Hard Lefschetz Conjecture implies that

(1) The Poincaré polymonial ih(dc) is independent of the choices made.
(2) The polynomial ip(c) (see Definition 5.11) is given by

iD: — Zhl(%) - ihj—za (%)v fOV 0 <J< da
ip)(0) = { 0 otherwise.

)

DEFINITION 7.5. For a cone ¢ in V we define the polynomial ii(o) by

o, if d(o) < 1,
ih(e) = { ih(@a),  if d(c) = 2.

Remark 7.6. Corollary 7.4 implies that ii(c) is well defined and

.o~ [ihfo) —ihjs(o) for0<j<d
ipj(o) = { 0 otherwise

We call the last equation the global-local formula. Note also that if cones ¢ and ¢’ are
linearly isomorphic, then ip(c) = ip(¢”’) and ih(o) = ih(d’).

7.4. THE LOCAL-GLOBAL FORMULA

In this section we express the Poincaré polynomial i(®) of a complete fan ® in terms
of the local Poincaré polynomials ip(c) for ¢ € ®. The argument is standard and is
independent of any conjectures.

PROPOSITION 7.7. For a complete fan ® in R" we have the following relation
between Poincaré polynomials in the variable q:

i®)(g) =Y (¢* — 1) "™ ip(o)(q).

oed

Proof. The quasi-isomorphism (Proposition 3.5) I'(®; Ly) — C*(Lep) induces the
quasi-isomorphism T'(®; Lo) ® R — C*(Le) ® R and the equality of the graded
Euler characteristics

HIT(@; Lo) @5 R) = 7(C*(Lo) @ R).
Since I'(®; L) is free over A4, the canonical map
[(®; Lo) @ R — T(®; Lo) @4 R = TH(D)

is a quasi-isomorphism and y(I'(®; Lo) ®Y R) = ih(D).
Since C*(Ly)) is a complex of finitely generated A-modules and A4 has finite Tor-
dimension it follows that

H(C (Lo) ®] R) = D (=1)1(C'(La) ® R).
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Since C'(Lg) is isomorphic to Py, y—,_; Lo.s the above formulas imply the equality

ih(®) =Y (=)' (Lo, @ R).
aed
By definition of Lo, the stalk Lo, is a free module over Ag, of graded rank ip(o).
The standard calculation with the Koszul complex shows that Ag ®Y IR is represen-
ted by the complex (with trivial differential) @, /\'c*. It follows that

X(‘Cfb,(i ®/JZ R) = (1 — qz)n*dimoip(o_)

and

l/’l(q)) — Z(_l)nfdima(l _ qz)nfdimaip(o,) — Z(q2 _ l)nfdimal-p(a). 0

oed oed

7.5. SUMMARY

Assuming the Hard Lefschetz Conjecture for complete fans we have associated two
polynomials ip(c) and ih(c) to any cone ¢ C V. The odd coefficients of these polyno-
mials vanish and the following relations hold (here d + 1 = d(0)):

(1) ip(o) = ih(o) = 1,

ihj(o) — ihj_», (o) for 0 <j < d,
0, otherwise,

@)%@={
) ih(o)q) = 3, (¢* = D" ip()(g).

Indeed, the first two relations are contained in Definition 7.5 and the third one fol-
lows from Proposition 7.7 applied to the complete fan dg as in Corollary 7.4.

As an immediate consequence of the above relations we obtain (by induction on
the dimension d(¢)) that the polynomials ip(c) and ii(o) are combinatorial invariants
of o, i.e. they depend only on the face lattice of o.

Recall that in case d > 0 the polynomial i(c) is defined as i4(dc) for a complete
fan 9o of dimension d. Hence, it follows from Corollary 6.26 and Corollary 7.3 that

(1) iho(0) = 1 = ihyy(o),

(2) ihi(e) =0, unless j is even and j € [0, 2d],
(3) for all j ihy_j(0) = ihayi(o) for all j,

4) iho(o) < ihx(o) < -+ < ihyay(0).

7.6. THE i-VECTOR AND STANLEY’S CONJECTURES

Let Q C R” be a convex polytope of dimension d. In [S] Stanley defined two polyno-
mials g(Q) and /i(Q). These polynomials are defined simultaneously and recursively
for faces of Q, including the empty face @, as follows:
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(1) g@)=h©) =1,
o) — J 1Q) = hi_1(Q), for 0 </ <[d/2],
2 &(@)= {0 otherwise,
3) h(Q)(t):ZPCQ(t— 1)~ 4P=1o(P)(r), where the last summation is over all
proper faces P of Q including the empty face @. Here d(P) is the dimension
of P and d(¥) = —1.

Stanley proved (in a more general context of Eulerian posets) the ‘Poincaré dua-
lity’ for A(Q): hj = ha—; and conjectured that 0 < hy < hy < -+ < Iy

Let us show how this conjecture follows from the Hard Lefschetz Conjecture.
Namely, consider the space R" (which contains Q) as a hyperplane
(R",1) c R"™!. Let ¢ ¢ R"™! be the cone with vertex at the origin o which is
spanned by Q. Then d(¢6) = d+ 1. Nonempty faces of ¢ are in bijective correspon-
dence with faces of Q (with a shift of dimension by 1), where the origin o corre-
sponds to the empty face ¥ C Q. Assuming the Hard Lefschetz Conjecture the
polynomials ii(o) and ip(o) are defined, and, by induction on dimension, one con-
cludes that

ih(a)(q) = h(Q)(¢*),  ip(o)(q) = &(ONG).
Thus Stanley’s conjecture follows from the corresponding statement about the coef-
ficients of ih(0).

8. Kalai Conjecture (After T. Braden and R. MacPherson)

The statement of the following theorem is the ip-analog of the inequalities conjec-
tured by G. Kalai and proven, in the rational case, by T. Braden and R.D. MacPher-
son in [BM]. Our proof follows the same pattern as the one in [BM]. However, major
simplifications result from absence of rationality hypotheses and, consequently, any
ties to geometry whatsoever.

Suppose that ¢ is a cone in V and let [¢] denote as usual the corresponding ‘affine’
fan which consists of ¢ and all of it’s faces. Let t < ¢ be a face. By Proposition 5.2
Lioilg = L. Recall the graded vector spaces (Definition 5.11) IP(0) = L4,
IP(t) = L5 and the corresponding Poincaré polynomials ip(c), ip(t). Consider
the minimal sheaf L, € Wi(Ajgy). Its support is Star(r) and we put IP(Star(r)) :=
/3[’0]_0. Let ip(Star(r)) denote the corresponding Poincaré polynomial.

THEOREM 8.1. Suppose that ¢ is a cone (in V') and t is a face of 6. Then, there is an
inequality, coefficient by coefficient, of polynomials with nonnegative coefficients
ip(0) = ip(7) - ip(Star(z)) .

Proof. Let 1: Star(t) — @ denote the closed embedding. Then 1,17 Li5 € M(Ay))-
Indeed, the sheaf 17! Ly, is flabby, hence so is 1,17 L;;. Moreover, 1, is the extension
by zero, s0 1,17 L) is locally free.
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Thus by the structure Theorem 5.3 there is a direct sum decomposition
L L~ D » >« Ly ® Vp, where the multiplicities ¥, are certain graded vector
spaces. Comparing the stalks at t we find that L5, ~ ﬁﬁ,“ ® V.. Hence V., = IP(7).

On the other hand, comparing the stalks at ¢ we find
Lo = L1y, V-0 EP L, @V,
p>1
In particular

IP(0) = IP(Star()) ® IP()) & D L1, ® V.

p>1

Numerically this amounts to the inequality ip(o) = ip(t)ip(Star(7)). O
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