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ON FINITE LINE TRANSITIVE AFFINE PLANES
WHOSE COLLINEATION GROUPS CONTAIN NO
BAER INVOLUTIONS

TERRY CZERWINSKI

1. Introduction. A finite line transitive affine plane 4 is a finite plane which
admits a collineation group G acting transitively on the set of all lines of 4.
Wagner [11] has shown that 4 is a translation plane and Hering [9] recently
investigated the structure of 4 under the assumption that G has a composition
factor isomorphic to a given nonabelian simple group. The purpose of this
paper is to show that if the number of points on a line of 4 is odd, and if G
contains no Baer involutions, then the hypothesis of Hering’s Main Theorem
holds. In particular, the result we prove is the following:

TuEOREM 1. If A 15 a finite affine plane of order n, n odd, and if a collineation
group G of A has no Baer involutions and is transitive on the lines of A, then one
of the following holds:

(a) A s desarguesian.

(b) G 1is isomorphic to a subgroup of TL(1, p*™) where n = p™. G does not
contain any non-trivial central collineation.

(c)m=p"=09.

(d) n = p™ = 27.

Nondesarguesian planes of type (b), (c) and (d) are known to exist. That »
is a power of a prime follows from [11]. The case where #» is even is handled in
Hering's Main Theorem if one assumes G contains no Baer involutions. TL(1, q)
is the semi-direct product of the multiplicative group M of the field F of ¢
elements and the group of automorphisms of F as they act on M. Since 4 is a
translation plane, there is no loss in assuming G fixes some point P of A.

2. Notation and previously known results. The group theoretic notation
can be found in [6] and [8]. For groups G, S, F, C¢(S) is the centralizer of S in
G. Z(F) is the center of F. Geometric results and notation can be found in [8,
Chapter 20] and [4]. In this paper, small letters &, /, m, etc. will represent lines
and capital letters L, M, etc. will represent points. L I m will mean point L is
incident with line m. = will be a projective plane containing the affine plane 4
and / will be the line at infinity of . If G is as in § 1, G is transitive on the
points of I. If X is any set of collinations of =, X will represent the action of X
as a permutation group on the points of /. An orbit of a permutation group P
will be a set of points on which P acts transitively.
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A homology of = is a collineation of 7 that fixes all the points of some line %
of = and exactly one point not on k. An involution is a collineation of order
two. A Baer involution is an involution fixing a subplane =’ or 7 such that the
order of 7’ is the square root of the order of =. A collineation « of = is called a
shear if there is a line & # [ of 7 such that « fixes every point of k and every
line through & M 1.

Before we quote theorems from [9] we need to introduce special notation.
o, *(p) is defined in [10, § 3], where n = p™, n the order of =. Let r be the
largest prime dividing ®2,*(p). Let R be a Sylow 7-subgroup of G, S the normal
closure of R in G, L the centralizer of S in the endomorphism ring of ¥ and F
the Fitting subgroup of G. Here we can view G as a group of linear transforma-
tions on the 2m dimensional vector space over a field of prime order p since 4
is a translation plane.

TaeOREM 2 [9, Theorem 4.4].

(a) SF/F is simple.

(b) G/S 1s isomorphic to a subgroup of the metacylic group TL(1, p*™).
(c) Co(S) = Z(F).

(d) If G s not solvable, then ®s,* (p)||SF/S| and Cq,,(SF/F) = 1.

We give a slightly altered and abbreviated version of the Main Theorem
of [9]

TaeorEM 3 [9, Main Theorem]. Suppose that one of the following conditions s
satisfied:
1. G contains a composition factor isomorphic to PSL(2, q), where q is a
prime power and ¢ = 4.
II. G contains a composition factor isomorphic to the alternating group of
degree ©, where 1 = 5.
II1. G contains a nontrivial shear.
IV. 2|]p™ — 1.
V. G 1s solvable.
Then we have one of the following cases:
(a) A is desarguesian.
(b) G is tsomorphic to a subgroup of TL(1, p*™). G does not contain any non-
trivial central collineation of A.
(c) p™ = 9.
(d) pm™ = 27.

V is actually not in Hering’s Main Theorem, but V implies (b) is proved in [5]
The proof of Theorem 1 of this paper follows fairly easily from the Main
Theorem of [9] and Theorem 1 of [2] and Theorem 1 of [3]. These latter two
theorems we give here combined and in simplified form, taking advantage of
the fact that II (and A) is a translation plane.

THEOREM 4. Let G be a collineation group of the translation plane 1. Assume
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G fixes the line at infinity | of 1l and a point P t | of 1. If G contains no Baer
involutions then either G is solvable or G contains subgroups M and N such that
GD> M> N,G/M and N are solvable and such that M/N 1is isomorphic to one
of the following:

(a) PSL(2, q), q a power of an odd prime;

(b) A7 the alternating group of seven letters;

(c) L1 X L, where L, is isomorphic to a group of type (a) or (b);

(d) A5 the alternating group of five letters;

(e) PS,4(q), q a power of an odd prime.

Proof. See [1] for a discussion of PS,:(g). A symplectic geometry consists of
a vector space V and a non-singular bilinear form f defined on V such that
f(x,x) = 0forall X in V. Sp(4, q) is the group of all linear transformations 7°
on V such that f(T'(X), T(Y)) = f(X, V) for all X, ¥V € V PS,:(q) is the
quotient group of Sp(4, ¢q) over its center. To prove the theorem we need the
following Lemma.

LEMMA. Let S be a 2-group acting on a finite projective plane 11 of odd order n,
and fixing a point P on a line l of I, P ¥ 1. Assume for each point Q and for each
line k of I there is at most one involutory homology in S with center Q and axis k.
Then one of the following holds:

(a) S contains at most three involutory homologies.

(b) There is a subgroup T of S, with [S:T] = 2, S > T where T fixes points L
and M on I, and an involutory homology o of S such that Lo = M, Ma = L and
S = a, T. T contains at most three involutory homologies.

(c) There is a normal subgroup T of S with [S:T] = 2, such that T contains
at most one involutory homology, and s = (T, a ), a an involutory homology acting
as an odd permutation on l; i.e., 2||n — 1.

Proof. Assume S fixes a point L of /. Since [ has n + 1 points and # is odd,
S must fix two points L and M on /. Let « be an involutory homology in S.
Then « fixes the points P, L and M. P £t [ so one of these points is the center
of a and the remaining two lie on the axis of a. From the hypothesis of the
lemma we see S contains at most three involutory homologies. Thus (a) holds.

We can now assume .S fixes no point of /; i.e., S has no orbits of length one
on /. Hence every orbit of S on [ has length a power of two. Assume one orbit of
S on / has length two and consists of the points L and M. Let T be the subgroup
of S fixing L and M. Then [S:T] = 2and S > 7. T contains at most three
involutory homologies by the argument of the previous paragraph. Because of
(a), we can assume there is an involutory homology « in .S such thata € S — T
S D> T'anda ¢ T soa must interchange L and M. Hence (b) follows.

We can now assume every orbit of S on / has length divisible by four. Thus
4/n 4+ 1 and 2||n — 1. Because of (a) we can assume there is an involutory
homology a acting nontrivially on /. « fixes exactly two points of / and «a acts
as an odd permutation on the remaining # — 1 points of / since 2||n — 1. If we
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let T be the subgroup of even permutations in S, (c) follows and the lemma
is proved.

The hypothesis of the lemma is contained in the theorems of [2] and [3].
(a) is also the hypothesis of Theorem 1 of [3] and (b) is the hypothesis of
Theorem 1 of [2]. (c) is just III of Theorem 3 of this paper and thus Theorem 4
is proved.

We will also need the following well known theorem.

THEOREM 5 [4, 3.2.18, p. 145]. If 11 is a projective plane of order n, and T’
is ¢ proper subplane of 11 of order m, then one of the following holds:

(a) m* = n;

(b)y m* 4+ m < n.

3. The proof of Theorem 1. It should be obvious from Theorems 3 and 4
that we need only show that G does not have a composition factor isomorphic
to PS,:(q), ¢ = u® for some prime u.

Let S and F be as in Theorem 2. As pointed out in some remarks after
Theorem 4.4 in [9], S M F is isomorphic to a subgroup of the Schur multiplier
of SF/F. We can assume SF/F = PS,:(¢) and hence by [7], [SMN F| = 2.
We are assuming G fixes some point P of II. II is a translation plane of odd
order and hence there is a unique involutory homology of IT with center P
and axis /, [ the line at infinity of II. We can, without loss, assume a € .S so
that S/ (@) = PS,:(q). We easily have S/{a) = S, S the permutation group
representing the action of .S on the points of /.

There is clearly more than one involution in .S and hence there exists an in-
volutory homology ¢ with center L, say, on / and axis MP, MIl. Let G, be
the stabilizer of M in G. If ¢ is not normal in G,, there exists a conjugate g of ¢
with axis MP. H = {5, p) is a Frobenius group. All the elements of H (s, p)
fix MP pointwise. If 7 is in the Frobenius kernel of H then 7 is a nontrivial
elation with axis MP. r acts as a shear on 4 and hence Theorem 1 follows from
Theorem 3.

From now on we can assume G, > (¢ ), ¢ fixes only the two points L and M
of 1so Gy = Gra. Also Sy = S;,. Assume S has k orbits on ¢. G > S and
Gis transitive on . If g € G and § sends one orbit O; of S onto asecond orbit Oy,
thené = g!' g fixes the same number of points on O; as & does on O,. However,
from the structure of S = PS,:(q) we know & and ¢’ are conjugate in S; hence &
fixes the same number of points on O, as it does on O;. Clearly then, since G is
transitive on the orbits of S, & fixes the samenumber of points on each of the
k orbits of S. Since ¢ fixes exactly two points of [, & < 2.

¢ = u®, where u is a prime. Let 5 € C35(¢) with || = #. u ¢ 2 by Theorem 4,
so p fixes L and M. We now proceed to determine exactly how many points
p fixes on [. The number of such points is either the number of cosets Sy &
in S such that S;xp = Spu% or double this number if .S has two orbits on 1.
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Denote a preimage of £ € S in Sp(4, ¢) by %. In the usual 4 X 4 matrix
representation of Sp(4, ¢) over a field of order ¢ we can assume

_ [-I o0 4540
=1 o 1| ¥™PT1o 1|

where 4, 0, I are 2 X 2 matrices with 4 = I:i ?:I , 0 the zero matrix and
I the 2 X 2 identity matrix. Let

F€Sp4,9), |7 =2 and 757 = I:(I) /(1)] .

Since 7 is a translation plane there are exactly two involutions fixing L and M
(recall we are excluding Baer involutions from being in G) and acting non-
trivially on /, namely ¢ and a7. The image of 7 in .S has order two so 7 ¢ Spy.
It follows then since the image of 7 in PS,«(g) centralizes the image of ¢ in
PS,:(q), 7 centralizes é. [f| = 2 and 7 ¢ S,j so 7 interchanges L and M. Let =
be a preimage of 7 in .S. Then from the action of 7 on [, we get Yo7 = ga. Thus
it is clear that S = Sp(4, ¢) as opposed to the only alternative, S = Tx (a),
T = PS,u(q). 7 ¢ Sese so N = Ns({a, a)) = (1, Cs(c)) and [N:Spx] = 2.
Since S = Sp(4, ¢), |Cs(a)| = ¢*(¢> — 1)2. Cs(s) must fix L and M so Sy =
Cs(o). [Sp(4, @) = ¢*(¢* — D)(g* — 1) so [S:Spa] = [Sp(4, 0):Cs(0)] =
g%(g* 4+ 1). This, along with the fact that .S has at most two orbits on /, implies
p" + 1 is either ¢%2(g* 4+ 1) or 2¢%(¢* + 1).

If S, X is a coset in S;,5,Cs(p), then clearly Sp,r X p = Spux. The number
of distinct right cosets of Sz, in Sy, Cs(p) is

[Cs(p):Cs(p) M Spa] = [Cs(p):Cs(p) M Cs(a)].

By direct computation with the matrix representation of Sp(4, ¢) one can
show |Cs(p)| = 2¢*(¢> —1) and |Cs(p) M Cs(s)| = 2¢2(¢> — 1). Thus p
fixes at least 2¢*(q* — 1)/2¢?(¢> — 1) = q¢? points of I. 7 € Sy, so p fixes ¢ of
the cosets in S;,7Cs(p). From the original definition of 7 we find p fixes ¢* of
the cosets of Sy, 7Cs(p). Thus p fixes at least 2¢? points.

We now show that p fixes a subplane #’ of II. If not, p can fix only the points
L and P of LP. Since |p| = u, and ¢ = u’, n|p" — 1 since p acts as a semi-
regular permutation on the points of LP excluding L and P. But we have seen
above that ¢?|p" + 1 so u|p" + 1. This gives u|(p" + 1) — (p" — 1) sou = 2,
contradicting Theorem 4(e).

The order of #’ is at least 2g2 — 1 since p fixes at least 2¢% points of /. By
Theorem 5, either (2¢*2 — 1)2 =p"4+ 1 or (2¢2 — 1)2+2¢> —1 =< p* + 1.
Both of these conditions are easily seen to be impossible since we have seen
p" + 1 is either ¢*(¢2 + 1) or 2¢2(¢*> + 1).
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