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ON FINITE LINE TRANSITIVE AFFINE PLANES 
WHOSE COLLINEATION GROUPS CONTAIN NO 

BAER INVOLUTIONS 

TERRY CZERWINSKI 

1. Introduction. A finite line transitive affine plane A is a finite plane which 
admits a collineation group G acting transitively on the set of all lines of A. 
Wagner [11] has shown that A is a translation plane and Hering [9] recently 
investigated the structure of A under the assumption that G has a composition 
factor isomorphic to a given nonabelian simple group. The purpose of this 
paper is to show that if the number of points on a line of A is odd, and if G 
contains no Baer involutions, then the hypothesis of Hering's Main Theorem 
holds. In particular, the result we prove is the following: 

THEOREM 1. If A is a finite affine plane of order n, n odd, and if a collineation 
group G of A has no Baer involutions and is transitive on the lines of A, then one 
of the following holds: 

(a) A is desarguesian. 
(b) G is isomorphic to a subgroup of TL(1, p2m) where n = pm. G does not 

contain any non-trivial central collineation. 
(c) n = pm = 9. 
(d) n = pm = 27. 
Nondesarguesian planes of type (b), (c) and (d) are known to exist. That n 

is a power of a prime follows from [11]. The case where n is even is handled in 
Hering's Main Theorem if one assumes G contains no Baer involutions. TL(l,q) 
is the semi-direct product of the multiplicative group M of the field F of a 
elements and the group of automorphisms of F as they act on M. Since A is a 
translation plane, there is no loss in assuming G fixes some point P of A. 

2. Notation and previously known results. The group theoretic notation 
can be found in [6] and [8]. For groups G, 5, F, CG(S) is the centralizer of 5 in 
G. Z(F) is the center of F. Geometric results and notation can be found in [8, 
Chapter 20] and [4]. In this paper, small letters k, /, m, etc. will represent lines 
and capital letters L, M, etc. will represent points. L I m will mean point L is 
incident with line m. T will be a projective plane containing the affine plane A 
and / will be the line at infinity of TT. If G is as in § 1, G is transitive on the 
points of /. If X is any set of collinations of 7r, X will represent the action of X 
as a permutation group on the points of /. An orbit of a permutation group P 
will be a set of points on which P acts transitively. 
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A homology of ir is a collineation of ir that fixes all the points of some line k 
of v and exactly one point not on k. An involution is a collineation of order 
two. A Baer involution is an involution fixing a subplane ir' or -K such that the 
order of ir' is the square root of the order of w. A collineation a of ir is called a 
shear if there is a line k ?* I of ir such that a fixes every point of k and every 
line through k C\ I. 

Before we quote theorems from [9] we need to introduce special notation. 
®2m*(P) is defined in [10, § 3], where n = pm, n the order of ir. Let r be the 
largest prime dividing $2m*(i>)- Let J? be a Sylow r-subgroup of G, 5 the normal 
closure of R in G, L the centralizer of S in the endomorphism ring of V and F 
the Fitting subgroup of G. Here we can view G as a group of linear transforma­
tions on the 2m dimensional vector space over a field of prime order p since A 
is a translation plane. 

THEOREM 2 [9, Theorem 4.4]. 

(a) SF/F is simple. 
(b) G/S is isomorphic to a subgroup of the metacylic group TL(1, p2m). 
(c) C0(S) = Z(F) . 
(d) If Gis not solvable, then $2m*(p)\\SF/S\ and CG/L(SF/F) = 1. 

We give a slightly altered and abbreviated version of the Main Theorem 
of [9] 

THEOREM 3 [9, Main Theorem]. Suppose that one of the following conditions is 
satisfied: 

I. G contains a composition factor isomorphic to PSL(2, q), where q is a 
prime power and q ^ 4. 

II. G contains a composition factor isomorphic to the alternating group of 
degree i, where i ^ 5. 

III . G contains a nontrivial shear. 
IV. 2\\pm - 1. 
V. G is solvable. 

Then we have one of the following cases: 
(a) A is desarguesian. 
(b) G is isomorphic to a subgroup of TL(1, p2m). G does not contain any non-

trivial central collineation of A. 
(c) pm = 9. 
(d) pm = 27. 

V is actually not in Hering's Main Theorem, but V implies (b) is proved in [5]" 
The proof of Theorem 1 of this paper follows fairly easily from the Main 
Theorem of [9] and Theorem 1 of [2] and Theorem 1 of [3]. These latter two 
theorems we give here combined and in simplified form, taking advantage of 
the fact that II (and A) is a translation plane. 

THEOREM 4. Let G be a collineation group of the translation plane II. Assume 
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G fixes the line at infinity I of U and a point P <f I of U. If G contains no Baer 
involutions then either G is solvable or G contains subgroups M and N such that 
G > M > N, G/M and N are solvable and such that M/N is isomorphic to one 
of the following: 

(a) PSL(2, q), q a power of an odd prime; 
(b) A-j the alternating group of seven letters; 
(c) Li X 1/2 where Lt is isomorphic to a group of type (a) or (b); 
(d) A 5 the alternating group of five letters; 
(e) PSp4(q), q a power of an odd prime. 

Proof. See [1] for a discussion of PSpi(q). A symplectic geometry consists of 
a vector space V and a non-singular bilinear form / denned on V such that 
f(x, x) = 0 for all X in V. S/>(4, Q.) IS the g r o u P of all linear transformations T 
on V such that f(T(X), T{Y)) = f(X, Y) for all X, Y G V PSp*(q) is the 
quotient group of 5^(4, q) over its center. To prove the theorem we need the 
following Lemma. 

LEMMA. Let S be a 2-group acting on a finite projective plane II of odd order n, 
and fixing a point P on a line I of II, P \ I. Assume for each point Q and for each 
line k of II there is at most one involutory homology in S with center Q and axis k. 
Then one of the following holds: 

(a) 5 contains at most three involutory homologies. 
(b) There is a subgroup T of S, with [S:T] = 2, 5 > T where T fixes points L 

and M on /, and an involutory homology a of S such that La = M, Ma = L and 
S = a y T. T contains at most three involutory homologies. 

(c) There is a normal subgroup T of S with [S:T] = 2, such that T contains 
at most one involutory homology, and s = {T,a),a an involutory homology acting 
as an odd permutation on I; i.e., 2\\n — 1. 

Proof. Assume S fixes a point L of /. Since / has n + 1 points and n is odd, 
S must fix two points L and M on /. Let a be an involutory homology in S. 
Then a fixes the points P , L and M. P \ / so one of these points is the center 
of a and the remaining two lie on the axis of a. From the hypothesis of the 
lemma we see S contains at most three involutory homologies. Thus (a) holds. 

We can now assume .S fixes no point of /; i.e., 5 has no orbits of length one 
on /. Hence every orbit of 5 on / has length a power of two. Assume one orbit of 
S on I has length two and consists of the points L and M. Let T be the subgroup 
of 5 fixing L and M. Then [S:T] = 2 and S > T. T contains at most three 
involutory homologies by the argument of the previous paragraph. Because of 
(a), we can assume there is an involutory homology a in S such that a Ç S — T. 
S > T and a d T so a must interchange L and M. Hence (b) follows. 

We can now assume every orbit of S on / has length divisible by four. Thus 
4:\n + 1 and 2\\n — 1. Because of (a) we can assume there is an involutory 
homology a acting nontrivially on /. a fixes exactly two points of / and a acts 
as an odd permutation on the remaining n — 1 points of / since 2\\n — 1. If we 
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let T be the subgroup of even permutations in 5, (c) follows and the lemma 
is proved. 

The hypothesis of the lemma is contained in the theorems of [2] and [3]. 
(a) is also the hypothesis of Theorem 1 of [3] and (b) is the hypothesis of 
Theorem 1 of [2]. (c) is just III of Theorem 3 of this paper and thus Theorem 4 
is proved. 

We will also need the following well known theorem. 

THEOREM 5 [4, 3.2.18, p. 145]. If II is a projective plane of order n, and II' 
is a proper subplane of U of order m, then one of the following holds: 

(a) m2 = n; 
(b) m2 + m S n. 

3. The proof of Theorem 1. It should be obvious from Theorems 3 and 4 
that we need only show that G does not have a composition factor isomorphic 
to PSpi(q), a = uv for some prime u. 

Let S and F be as in Theorem 2. As pointed out in some remarks after 
Theorem 4.4 in [9], S H F is isomorphic to a subgroup of the Schur multiplier 
of SF/F. We can assume SF/F^PSp*(q) and hence by [7], \S C\ F\ S 2. 
We are assuming G fixes some point P of II. II is a translation plane of odd 
order and hence there is a unique involutory homology of II with center F 
and axis /, / the line at infinity of II. We can, without loss, assume a Ç 5 so 
that S/ (a ) = PSpi(q). We easily have S/ (a) = 5, S the permutation group 
representing the action of 5 on the points of /. 

There is clearly more than one involution in 5 and hence there exists an in­
volutory homology a with center L, say, on / and axis MP, Mil. Let GM be 
the stabilizer of M in G. If à is not normal in GM there exists a conjugate p of a 
with axis MP. H = (<r, p ) is a Frobenius group. All the elements of H (a, p) 
fix MP pointwise. If f is in the Frobenius kernel of H then r is a nontrivial 
elation with axis MP. r acts as a shear on A and hence Theorem 1 follows from 
Theorem 3. 

From now on we can assume GM > (ë),ê fixes only the two points L and M 
of/ so GM — GLM' Also SM — SLM- Assume »S has k orbits on q. G t> S and 
G is transitive on /. If g G G and g sends one orbit 0\ of 5 onto a second orbit 02 , 
then à' — g1 dg fixes the same number of points on 0 2 as <x does on 0\. However, 
from the structure of S = PSpi (q) we know à and df are conjugate in 5; hence à 
fixes the same number of points on 0 2 as it does on 0\. Clearly then, since G is 
transitive on the orbits of 5, à fixes the same number of points on each of the 
k orbits of S. Since <r fixes exactly two points of /, k ^ 2. 

q = uv, where u is a prime. Let p Ç C~s (<r) with |p| = u. u ^ 2 by Theorem 4, 
so p fixes L and M. We now proceed to determine exactly how many points 
p fixes on /. The number of such points is either the number of cosets SLMx 
in S such that SLMx~p = SLMx or double this number if 5 has two orbits on /. 
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Denote a preimage of x 6 S in 5^(4 , g) by x. In the usual 4 X 4 matr ix 
representat ion of 5^(4 , q) over a field of order g we can assume 

* = [~o /] and^ = [o / ] • 
where A, 0, I are 2 X 2 matrices with A = | 1 1 | , 0 the zero matr ix and 
I the 2 X 2 ident i ty matr ix. Let 

f € Sp(4:, q), |f| = 2 and fpr = 

Since w is a translat ion plane there are exactly two involutions fixing L and M 
(recall we are excluding Baer involutions from being in G) and acting non-
trivially on /, namely a and or . The image of T in S has order two so T ^ SLM* 
I t follows then since the image of f in PSp*(q) centralizes the image of a in 
PSPi(q), f centralizesd. |f| = 2 and r (? 5 L M so f interchanges L and AT. Let r 
be a preimage of f in S. Then from the action of f on /, we get T~1<JT = era. T h u s 
it is clear t h a t 5 == S/>(4, <z) a s opposed to the only al ternat ive, S = Tx (a ), 
T ^ PSAg)- r £ SLM so N = Ns((a, a)) = <r, C5(cr)> and [ i V : ^ M ] = 2. 
Since 5 ^ 5/>(4, q), \CsM\ = q2(z2 ~ I )2- Cs(<r) mus t fix L and M so SLM = 
Cs(cr). |5p(4 , g) | = g4(g4 - 1)(?2 - l )_so [S:SLM] = [5^(4, g):C5(<r)] = 
g2(g2 + 1). This , along with the fact t ha t 5 has a t most two orbits on /, implies 
pn + 1 is either q2(q2 + 1) or 2q2(q2 + 1). 

If SLMX is a coset in SLMCs(p), then clearly SLM X p = SLMx. The number 
of dist inct r ight cosets of SLM in SLMCs(p) is 

[C f l(p):C f l(p) H S L J , ] = [C5(p):C f l(p) H Cfl(cr)]. 

By direct computa t ion with the matr ix representation of Sp (4, q) one can 
show |C f l(p) | = 2q*(q2 - 1 ) and |C s (p) H C5(cr)| = 2g2(g2 - 1). T h u s p 
fixes a t least 2qA(q2 — l ) /2g 2 (g 2 — 1) = q2 points of /. r $ SLM so p fixes g2 of 
the cosets in SLMTCS{P)- From the original definition of r we find p fixes g2 of 
the cosets of SLMTCS(P)- T h u s p fixes a t least 2g2 points. 

We now show t h a t p fixes a subplane 7T7 of II. If not, p can fix only the points 
L and P of L P . Since \p\ = u} and g = wp, w|^w — 1 since p acts as a semi-
regular permuta t ion on the points of LP excluding L and P . Bu t we have seen 
above t ha t g2|£w + 1 so u\pn + 1. This gives u\(pn + 1) - (pn - 1) so u = 2, 
contradict ing Theorem 4(e) . 

T h e order of -K' is a t least 2g2 — 1 since p fixes a t least 2g2 points of /. By 
Theorem 5, either (2g2 - l ) 2 = pn + 1 or (2g2 - l ) 2 + 2g2 - 1 ^ pn + 1. 
Both of these conditions are easily seen to be impossible since we have seen 
pn + 1 is either q2(q2 + 1) or 2g2(g2 + 1). 
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