ON FINITE LINE TRANSITIVE AFFINE PLANES WHOSE COLLINEATION GROUPS CONTAIN NO BAER INVOLUTIONS

TERRY CZERWINSKI

1. Introduction. A finite line transitive affine plane A is a finite plane which admits a collineation group G acting transitively on the set of all lines of A. Wagner [11] has shown that A is a translation plane and Hering [9] recently investigated the structure of A under the assumption that G has a composition factor isomorphic to a given nonabelian simple group. The purpose of this paper is to show that if the number of points on a line of A is odd, and if G contains no Baer involutions, then the hypothesis of Hering's Main Theorem holds. In particular, the result we prove is the following:

THEOREM 1. If A is a finite affine plane of order n, n odd, and if a collineation group G of A has no Baer involutions and is transitive on the lines of A, then one of the following holds:

(a) A is desarguesian.

(b) G is isomorphic to a subgroup of $\Gamma L(1, p^{2m})$ where $n = p^m$. G does not contain any non-trivial central collineation.

(c) $n = p^m = 9$.

(d) $n = p^m = 27$.

Nondesarguesian planes of type (b), (c) and (d) are known to exist. That n is a power of a prime follows from [11]. The case where n is even is handled in Hering's Main Theorem if one assumes G contains no Baer involutions. $\Gamma L(1, q)$ is the semi-direct product of the multiplicative group M of the field F of q elements and the group of automorphisms of F as they act on M. Since A is a translation plane, there is no loss in assuming G fixes some point P of A.

2. Notation and previously known results. The group theoretic notation can be found in [6] and [8]. For groups $G, S, F, C_G(S)$ is the centralizer of S in G. Z(F) is the center of F. Geometric results and notation can be found in [8, Chapter 20] and [4]. In this paper, small letters k, l, m, etc. will represent lines and capital letters L, M, etc. will represent points. L I m will mean point L is incident with line $m. \pi$ will be a projective plane containing the affine plane A and l will be the line at infinity of π . If G is as in § 1, G is transitive on the points of l. If X is any set of collinations of π, \overline{X} will represent the action of X as a permutation group on the points of l. An orbit of a permutation group P will be a set of points on which P acts transitively.

Received April 10, 1973 and in revised forms, October 25, 1974, and January 6, 1975.

A homology of π is a collineation of π that fixes all the points of some line k of π and exactly one point not on k. An involution is a collineation of order two. A Baer involution is an involution fixing a subplane π' or π such that the order of π' is the square root of the order of π . A collineation α of π is called a shear if there is a line $k \neq l$ of π such that α fixes every point of k and every line through $k \cap l$.

Before we quote theorems from [9] we need to introduce special notation. $\Phi_{2m}^*(p)$ is defined in [10, § 3], where $n = p^m$, *n* the order of π . Let *r* be the largest prime dividing $\Phi_{2m}^*(p)$. Let *R* be a Sylow *r*-subgroup of *G*, *S* the normal closure of *R* in *G*, *L* the centralizer of *S* in the endomorphism ring of *V* and *F* the Fitting subgroup of *G*. Here we can view *G* as a group of linear transformations on the 2m dimensional vector space over a field of prime order *p* since *A* is a translation plane.

THEOREM 2 [9, Theorem 4.4].

- (a) SF/F is simple.
- (b) G/S is isomorphic to a subgroup of the metacylic group $\Gamma L(1, p^{2m})$.
- (c) $C_G(S) = Z(F)$.
- (d) If G is not solvable, then $\Phi_{2m}^*(p)||SF/S|$ and $C_{G/L}(SF/F) = 1$.

We give a slightly altered and abbreviated version of the Main Theorem of [9]

THEOREM 3 [9, Main Theorem]. Suppose that one of the following conditions is satisfied:

- I. G contains a composition factor isomorphic to PSL(2, q), where q is a prime power and $q \ge 4$.
- II. G contains a composition factor isomorphic to the alternating group of degree i, where $i \ge 5$.
- III. G contains a nontrivial shear.
- IV. $2||p^m 1.$
- V. G is solvable.

Then we have one of the following cases:

(a) A is desarguesian.

(b) G is isomorphic to a subgroup of $\Gamma L(1, p^{2m})$. G does not contain any non-trivial central collineation of A.

- (c) $p^m = 9$.
- (d) $p^m = 27$.

V is actually not in Hering's Main Theorem, but V implies (b) is proved in [5]. The proof of Theorem 1 of this paper follows fairly easily from the Main Theorem of [9] and Theorem 1 of [2] and Theorem 1 of [3]. These latter two theorems we give here combined and in simplified form, taking advantage of the fact that II (and A) is a translation plane.

THEOREM 4. Let G be a collineation group of the translation plane Π . Assume

226

AFFINE PLANES

G fixes the line at infinity l of Π and a point $P \nmid l$ of Π . If G contains no Baer involutions then either G is solvable or G contains subgroups M and N such that $G \triangleright M \triangleright N$, G/M and N are solvable and such that M/N is isomorphic to one of the following:

- (a) PSL(2, q), q a power of an odd prime;
- (b) A_7 the alternating group of seven letters;
- (c) $L_1 \times L_2$ where L_i is isomorphic to a group of type (a) or (b);
- (d) A_5 the alternating group of five letters;
- (e) $PS_{p^4}(q)$, q a power of an odd prime.

Proof. See [1] for a discussion of $PS_{p^4}(q)$. A symplectic geometry consists of a vector space V and a non-singular bilinear form f defined on V such that f(x, x) = 0 for all X in V. Sp(4, q) is the group of all linear transformations T on V such that f(T(X), T(Y)) = f(X, Y) for all $X, Y \in V PS_{p^4}(q)$ is the quotient group of Sp(4, q) over its center. To prove the theorem we need the following Lemma.

LEMMA. Let S be a 2-group acting on a finite projective plane Π of odd order n, and fixing a point P on a line l of Π , $P \nmid l$. Assume for each point Q and for each line k of Π there is at most one involutory homology in S with center Q and axis k. Then one of the following holds:

(a) S contains at most three involutory homologies.

(b) There is a subgroup T of S, with [S:T] = 2, S > T where T fixes points L and M on l, and an involutory homology α of S such that $L\alpha = M$, $M\alpha = L$ and $S = \alpha$, T. T contains at most three involutory homologies.

(c) There is a normal subgroup T of S with [S:T] = 2, such that T contains at most one involutory homology, and $s = \langle T, \alpha \rangle$, α an involutory homology acting as an odd permutation on l; i.e., 2||n - 1.

Proof. Assume S fixes a point L of l. Since l has n + 1 points and n is odd, S must fix two points L and M on l. Let α be an involutory homology in S. Then α fixes the points P, L and M. P $\not\prec$ l so one of these points is the center of α and the remaining two lie on the axis of α . From the hypothesis of the lemma we see S contains at most three involutory homologies. Thus (a) holds.

We can now assume S fixes no point of l; i.e., S has no orbits of length one on l. Hence every orbit of S on l has length a power of two. Assume one orbit of S on l has length two and consists of the points L and M. Let T be the subgroup of S fixing L and M. Then [S:T] = 2 and $S \triangleright T$. T contains at most three involutory homologies by the argument of the previous paragraph. Because of (a), we can assume there is an involutory homology α in S such that $\alpha \in S - T$. $S \triangleright T$ and $\alpha \notin T$ so α must interchange L and M. Hence (b) follows.

We can now assume every orbit of S on l has length divisible by four. Thus 4|n + 1 and 2||n - 1. Because of (a) we can assume there is an involutory homology α acting nontrivially on l. α fixes exactly two points of l and α acts as an odd permutation on the remaining n - 1 points of l since 2||n - 1. If we

TERRY CZERWINSKI

let T be the subgroup of even permutations in S, (c) follows and the lemma is proved.

The hypothesis of the lemma is contained in the theorems of [2] and [3]. (a) is also the hypothesis of Theorem 1 of [3] and (b) is the hypothesis of Theorem 1 of [2]. (c) is just III of Theorem 3 of this paper and thus Theorem 4 is proved.

We will also need the following well known theorem.

THEOREM 5 [4, 3.2.18, p. 145]. If Π is a projective plane of order n, and Π' is a proper subplane of Π of order m, then one of the following holds:

(a) $m^2 = n;$ (b) $m^2 + m \leq n.$

3. The proof of Theorem 1. It should be obvious from Theorems 3 and 4 that we need only show that G does not have a composition factor isomorphic to $PS_{p^4}(q)$, $q = u^v$ for some prime u.

Let S and F be as in Theorem 2. As pointed out in some remarks after Theorem 4.4 in [9], $S \cap F$ is isomorphic to a subgroup of the Schur multiplier of SF/F. We can assume $SF/F \cong PS_{p^4}(q)$ and hence by [7], $|S \cap F| \leq 2$. We are assuming G fixes some point P of Π . Π is a translation plane of odd order and hence there is a unique involutory homology of Π with center P and axis l, l the line at infinity of Π . We can, without loss, assume $\alpha \in S$ so that $S/\langle \alpha \rangle \cong PS_{p^4}(q)$. We easily have $S/\langle \alpha \rangle = \overline{S}$, \overline{S} the permutation group representing the action of S on the points of l.

There is clearly more than one involution in S and hence there exists an involutory homology σ with center L, say, on l and axis MP, MIl. Let \bar{G}_M be the stabilizer of M in \bar{G} . If $\bar{\sigma}$ is not normal in \bar{G}_M there exists a conjugate $\bar{\rho}$ of σ with axis MP. $\bar{H} = \langle \bar{\sigma}, \bar{\rho} \rangle$ is a Frobenius group. All the elements of $H \langle \sigma, \rho \rangle$ fix MP pointwise. If $\bar{\tau}$ is in the Frobenius kernel of H then τ is a nontrivial elation with axis MP. τ acts as a shear on A and hence Theorem 1 follows from Theorem 3.

From now on we can assume $\bar{G}_M \triangleright \langle \bar{\sigma} \rangle$, $\bar{\sigma}$ fixes only the two points L and Mof l so $\bar{G}_M = \bar{G}_{LM}$. Also $\bar{S}_M = \bar{S}_{LM}$. Assume \bar{S} has k orbits on q. $G \triangleright S$ and \bar{G} is transitive on l. If $g \in G$ and \bar{g} sends one orbit O_1 of \bar{S} onto a second orbit O_2 , then $\bar{\sigma}' = \bar{g}^1 \bar{\sigma} g$ fixes the same number of points on O_2 as $\bar{\sigma}$ does on O_1 . However, from the structure of $\bar{S} = PS_{p^4}(q)$ we know $\bar{\sigma}$ and $\bar{\sigma}'$ are conjugate in \bar{S} ; hence $\bar{\sigma}$ fixes the same number of points on O_2 as it does on O_1 . Clearly then, since G is transitive on the orbits of \bar{S} , $\bar{\sigma}$ fixes the same number of points on each of the k orbits of \bar{S} . Since $\bar{\sigma}$ fixes exactly two points of $l, k \leq 2$.

 $q = u^{v}$, where *u* is a prime. Let $\bar{\rho} \in C_{\bar{S}}(\bar{\sigma})$ with $|\bar{\rho}| = u$. $u \neq 2$ by Theorem 4, so $\bar{\rho}$ fixes *L* and *M*. We now proceed to determine exactly how many points ρ fixes on *l*. The number of such points is either the number of cosets $\bar{S}_{LM}\bar{x}$ in \bar{S} such that $\bar{S}_{LM}\bar{x}\rho = \bar{S}_{LM}\bar{x}$ or double this number if *S* has two orbits on *l*.

228

Denote a preimage of $\bar{x} \in \bar{S}$ in Sp(4, q) by \tilde{x} . In the usual 4×4 matrix representation of Sp(4, q) over a field of order q we can assume

$$\tilde{\sigma} = \begin{bmatrix} -I & 0 \\ 0 & I \end{bmatrix}$$
 and $\tilde{\rho} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix}$,

where A, 0, I are 2×2 matrices with $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, 0 the zero matrix and I the 2×2 identity matrix. Let

$$ilde{ au} \in Sp(4,q), \, | ilde{ au}| = 2 \quad ext{and} \quad ilde{ au} ilde{ au} ilde{ au} = \begin{bmatrix} I & 0 \\ 0 & A \end{bmatrix}.$$

Since π is a translation plane there are exactly two involutions fixing L and M (recall we are excluding Baer involutions from being in G) and acting nontrivially on l, namely σ and $\alpha \tilde{\tau}$. The image of τ in S has order two so $\tilde{\tau} \notin \bar{S}_{LM}$. It follows then since the image of $\tilde{\tau}$ in $PS_{p^4}(q)$ centralizes the image of σ in $PS_{p^4}(q)$, $\tilde{\tau}$ centralizes $\tilde{\sigma}$. $|\tilde{\tau}| = 2$ and $\tilde{\tau} \notin \bar{S}_{LM}$ so $\tilde{\tau}$ interchanges L and M. Let τ be a preimage of $\tilde{\tau}$ in S. Then from the action of $\tilde{\tau}$ on l, we get $\tau^{-1}\sigma\tau = \sigma\alpha$. Thus it is clear that $S \cong Sp(4, q)$ as opposed to the only alternative, $S = Tx \langle \alpha \rangle$, $T \cong PS_{p^4}(q)$. $\tau \notin S_{LM}$ so $N = N_S(\langle \alpha, \sigma \rangle) = \langle \tau, C_S(\sigma) \rangle$ and $[N:S_{LM}] = 2$. Since $S \cong Sp(4, q)$, $|C_S(\sigma)| = q^2(q^2 - 1)^2$. $C_S(\sigma)$ must fix L and M so $S_{LM} = C_S(\sigma)$. $|Sp(4, q)| = q^4(q^4 - 1)(q^2 - 1)$ so $[\bar{S}:\bar{S}_{LM}] = [Sp(4, q):C_S(\sigma)] = q^2(q^2 + 1)$. This, along with the fact that \bar{S} has at most two orbits on l, implies $p^n + 1$ is either $q^2(q^2 + 1)$ or $2q^2(q^2 + 1)$.

If $S_{LM}X$ is a coset in $S_{LM}C_S(\rho)$, then clearly $S_{LM} \times \rho = S_{LM}x$. The number of distinct right cosets of S_{LM} in $S_{LM}C_S(\rho)$ is

$$[C_{S}(\rho):C_{S}(\rho) \cap S_{LM}] = [C_{S}(\rho):C_{S}(\rho) \cap C_{S}(\sigma)].$$

By direct computation with the matrix representation of Sp(4, q) one can show $|C_S(\rho)| = 2q^4(q^2 - 1)$ and $|C_S(\rho) \cap C_S(\sigma)| = 2q^2(q^2 - 1)$. Thus ρ fixes at least $2q^4(q^2 - 1)/2q^2(q^2 - 1) = q^2$ points of $l. \tau \notin S_{LM}$ so ρ fixes q^2 of the cosets in $S_{LM}\tau C_S(\rho)$. From the original definition of τ we find ρ fixes q^2 of the cosets of $S_{LM}\tau C_S(\rho)$. Thus ρ fixes at least $2q^2$ points.

We now show that ρ fixes a subplane π' of Π . If not, ρ can fix only the points L and P of LP. Since $|\rho| = u$, and $q = u^v$, $n|p^n - 1$ since ρ acts as a semiregular permutation on the points of LP excluding L and P. But we have seen above that $q^2|p^n + 1$ so $u|p^n + 1$. This gives $u|(p^n + 1) - (p^n - 1)$ so u = 2, contradicting Theorem 4(e).

The order of π' is at least $2q^2 - 1$ since ρ fixes at least $2q^2$ points of l. By Theorem 5, either $(2q^2 - 1)^2 = p^n + 1$ or $(2q^2 - 1)^2 + 2q^2 - 1 \leq p^n + 1$. Both of these conditions are easily seen to be impossible since we have seen $p^n + 1$ is either $q^2(q^2 + 1)$ or $2q^2(q^2 + 1)$.

References

1. E. Artin, Geometric algebra (Interscience Publishers, Inc., New York 1961).

TERRY CAERWINSKI

- 2. T. Czerwinski, On collineation groups that fix a line of a finite projective plane (Submitted for publication).
- 3. ——— Collineation groups of finite projective planes whose Sylow 2-subgroups contain at most three involutions, Math. Z. 138 (1974), 161–170.
- 4. P. Dembowski, Finite geometries (Springer-Verlag, New York, 1968).
- 5. D. Foulser, Solvable flag transitive affine groups, Math. Z. 86 (1964), 191-204.
- 6. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
- 7. R. Greiss, Schur multipliers of the known finite simple groups, Ph.D. thesis, University of Chicago, 1972.
- 8. M. Hall, The theory of groups, (Macmillan, New York, 1959).
- 9. C. Hering, On finite line transitive affine planes (to appear).
- 10. —— On transitive linear groups (to appear).
- 11. A. Wagner, On finite affine line transitive planes, Math. Z. 87 (1965), 1-11.

University of Illinois at Chicago Circle, Chicago, Illinois