ON FINITE LINE TRANSITIVE AFFINE PLANES WHOSE COLLINEATION GROUPS CONTAIN NO BAER INVOLUTIONS

TERRY CZERWINSKI

1. Introduction. A finite line transitive affine plane A is a finite plane which admits a collineation group G acting transitively on the set of all lines of A. Wagner [11] has shown that A is a translation plane and Hering [9] recently investigated the structure of A under the assumption that G has a composition factor isomorphic to a given nonabelian simple group. The purpose of this paper is to show that if the number of points on a line of A is odd, and if G contains no Baer involutions, then the hypothesis of Hering's Main Theorem holds. In particular, the result we prove is the following:

Theorem 1. If A is a finite affine plane of order n, n odd, and if a collineation group G of A has no Baer involutions and is transitive on the lines of A, then one of the following holds:
(a) A is desarguesian.
(b) G is isomorphic to a subgroup of $\Gamma L\left(1, p^{2 m}\right)$ where $n=p^{m}$. G does not contain any non-trivial central collineation.
(c) $n=p^{m}=9$.
(d) $n=p^{m}=27$.

Nondesarguesian planes of type (b), (c) and (d) are known to exist. That n is a power of a prime follows from [11]. The case where n is even is handled in Hering's Main Theorem if one assumes G contains no Baer involutions. $\Gamma L(1, q)$ is the semi-direct product of the multiplicative group M of the field F of q elements and the group of automorphisms of F as they act on M. Since A is a translation plane, there is no loss in assuming G fixes some point P of A.
2. Notation and previously known results. The group theoretic notation can be found in [6] and [8]. For groups $G, S, F, C_{G}(S)$ is the centralizer of S in G. $Z(F)$ is the center of F. Geometric results and notation can be found in [8, Chapter 20] and [4]. In this paper, small letters k, l, m, etc. will represent lines and capital letters L, M, etc. will represent points. $L I m$ will mean point L is incident with line $m . \pi$ will be a projective plane containing the affine plane A and l will be the line at infinity of π. If G is as in $\S 1, G$ is transitive on the points of l. If X is any set of collinations of π, \bar{X} will represent the action of X as a permutation group on the points of l. An orbit of a permutation group P will be a set of points on which P acts transitively.

Received April 10, 1973 and in revised forms, October 25, 1974, and January 6, 1975.

A homology of π is a collineation of π that fixes all the points of some line k of π and exactly one point not on k. An involution is a collineation of order two. A Baer involution is an involution fixing a subplane π^{\prime} or π such that the order of π^{\prime} is the square root of the order of π. A collineation α of π is called a shear if there is a line $k \neq l$ of π such that α fixes every point of k and every line through $k \cap l$.

Before we quote theorems from [9] we need to introduce special notation. $\Phi_{2 m}{ }^{*}(p)$ is defined in [10, §3], where $n=p^{m}, n$ the order of π. Let r be the largest prime dividing $\Phi_{2 m}{ }^{*}(p)$. Let R be a Sylow r-subgroup of G, S the normal closure of R in G, L the centralizer of S in the endomorphism ring of V and F the Fitting subgroup of G. Here we can view G as a group of linear transformations on the $2 m$ dimensional vector space over a field of prime order p since A is a translation plane.

Theorem 2 [9, Theorem 4.4].
(a) $S F / F$ is simple.
(b) G / S is isomorphic to a subgroup of the metacylic group $\Gamma L\left(1, p^{2 m}\right)$.
(c) $C_{G}(S)=Z(F)$.
(d) If G is not solvable, then $\Phi_{2 m}{ }^{*}(p)| | S F / S \mid$ and $C_{G / L}(S F / F)=1$.

We give a slightly altered and abbreviated version of the Main Theorem of [9]

Theorem 3 [9, Main Theorem]. Suppose that one of the following conditions is satisfied:
I. G contains a composition factor isomorphic to $\operatorname{PSL}(2, q)$, where q is a prime power and $q \geqq 4$.
II. G contains a composition factor isomorphic to the alternating group of degree i, where $i \geqq 5$.
III. G contains a nontrivial shear.
IV. $2 \| p^{m}-1$.
V. G is solvable.

Then we have one of the following cases:
(a) A is desarguesian.
(b) G is isomorphic to a subgroup of $\Gamma L\left(1, p^{2 m}\right)$. G does not contain any nontrivial central collineation of A.
(c) $p^{m}=9$.
(d) $p^{m}=27$.

V is actually not in Hering's Main Theorem, but V implies (b) is proved in [5]. The proof of Theorem 1 of this paper follows fairly easily from the Main Theorem of [9] and Theorem 1 of [2] and Theorem 1 of [3]. These latter two theorems we give here combined and in simplified form, taking advantage of the fact that Π (and A) is a translation plane.

Theorem 4. Let G be a collineation group of the translation plane II. Assume
G fixes the line at infinity l of Π and a point $P \nmid l$ of Π. If G contains no Baer involutions then either G is solvable or G contains subgroups M and N such that $G \triangleright M \triangleright N, G / M$ and N are solvable and such that M / N is isomorphic to one of the following:
(a) $\operatorname{PSL}(2, q), q$ a power of an odd prime;
(b) A_{7} the alternating group of seven letters;
(c) $L_{1} \times L_{2}$ where L_{1} is isomorphic to a group of type (a) or (b);
(d) A_{5} the alternating group of five letters;
(e) $P S_{p^{4}}(q), q$ a power of an odd prime.

Proof. See [1] for a discussion of $P S_{p^{4}}(q)$. A symplectic geometry consists of a vector space V and a non-singular bilinear form f defined on V such that $f(x, x)=0$ for all X in $V . S p(4, q)$ is the group of all linear transformations T on V such that $f(T(X), T(Y))=f(X, Y)$ for all $X, Y \in V P S_{p^{4}}(q)$ is the quotient group of $S p(4, q)$ over its center. To prove the theorem we need the following Lemma.

Lemma. Let S be a 2-group acting on a finite projective plane Π of odd order n, and fixing a point P on a line l of $\Pi, P \nmid l$. Assume for each point Q and for each line k of Π there is at most one involutory homology in S with center Q and axis k. Then one of the following holds:
(a) S contains at most three involutory homologies.
(b) There is a subgroup T of S, with $[S: T]=2, S>T$ where T fixes points L and M on l, and an involutory homology α of S such that $L \alpha=M, M \alpha=L$ and $S=\alpha, T . T$ contains at most three involutory homologies.
(c) There is a normal subgroup T of S with $[S: T]=2$, such that T contains at most one involutory homology, and $s=\langle T, \alpha\rangle, \alpha$ an involutory homology acting as an odd permutation on l; i.e., $2 \| n-1$.

Proof. Assume S fixes a point L of l. Since l has $n+1$ points and n is odd, S must fix two points L and M on l. Let α be an involutory homology in S. Then α fixes the points P, L and $M . P \nmid l$ so one of these points is the center of α and the remaining two lie on the axis of α. From the hypothesis of the lemma we see S contains at most three involutory homologies. Thus (a) holds.

We can now assume S fixes no point of l; i.e., S has no orbits of length one on l. Hence every orbit of S on l has length a power of two. Assume one orbit of S on l has length two and consists of the points L and M. Let T be the subgroup of S fixing L and M. Then $[S: T]=2$ and $S \triangleright T . T$ contains at most three involutory homologies by the argument of the previous paragraph. Because of (a), we can assume there is an involutory homology α in S such that $\alpha \in S-T$. $S \triangleright T$ and $\alpha \notin T$ so α must interchange L and M. Hence (b) follows.

We can now assume every orbit of S on l has length divisible by four. Thus $4 \mid n+1$ and $2|\mid n-1$. Because of (a) we can assume there is an involutory homology α acting nontrivially on l. α fixes exactly two points of l and α acts as an odd permutation on the remaining $n-1$ points of l since $2 \| n-1$. If we
let T be the subgroup of even permutations in S, (c) follows and the lemma is proved.

The hypothesis of the lemma is contained in the theorems of [2] and [3]. (a) is also the hypothesis of Theorem 1 of [3] and (b) is the hypothesis of Theorem 1 of [2]. (c) is just III of Theorem 3 of this paper and thus Theorem 4 is proved.

We will also need the following well known theorem.
Theorem 5 [4, 3.2.18, p. 145]. If Π is a projective plane of order n, and Π^{\prime} is a proper subplane of Π of order m, then one of the following holds:
(a) $m^{2}=n$;
(b) $m^{2}+m \leqq n$.
3. The proof of Theorem 1. It should be obvious from Theorems 3 and 4 that we need only show that G does not have a composition factor isomorphic to $P S_{p^{4}}(q), q=u^{v}$ for some prime u.

Let S and F be as in Theorem 2. As pointed out in some remarks after Theorem 4.4 in [9], $S \cap F$ is isomorphic to a subgroup of the Schur multiplier of $S F / F$. We can assume $S F / F \cong P S_{p^{4}}(q)$ and hence by $[7],|S \cap F| \leqq 2$. We are assuming G fixes some point P of Π. Π is a translation plane of odd order and hence there is a unique involutory homology of Π with center P and axis l, l the line at infinity of Π. We can, without loss, assume $\alpha \in S$ so that $S /\langle\alpha\rangle \cong P S_{p^{4}}(q)$. We easily have $S /\langle\alpha\rangle=\bar{S}, \bar{S}$ the permutation group representing the action of S on the points of l.

There is clearly more than one involution in S and hence there exists an involutory homology σ with center L, say, on l and axis $M P, M I l$. Let \bar{G}_{M} be the stabilizer of M in \bar{G}. If $\bar{\sigma}$ is not normal in \bar{G}_{M} there exists a conjugate $\bar{\rho}$ of σ with axis $M P . \bar{H}=\langle\bar{\sigma}, \bar{\rho}\rangle$ is a Frobenius group. All the elements of $H\langle\sigma, \rho\rangle$ fix $M P$ pointwise. If $\bar{\tau}$ is in the Frobenius kernel of H then τ is a nontrivial elation with axis MP. τ acts as a shear on A and hence Theorem 1 follows from Theorem 3.

From now on we can assume $\bar{G}_{M} \triangleright\langle\bar{\sigma}\rangle, \bar{\sigma}$ fixes only the two points L and M of l so $\bar{G}_{M}=\bar{G}_{L M}$. Also $\bar{S}_{M}=\bar{S}_{L M}$. Assume \bar{S} has k orbits on $q . G \triangleright S$ and \bar{G} is transitive on l. If $g \in G$ and \bar{g} sends one orbit O_{1} of \bar{S} onto a second orbit O_{2}, then $\bar{\sigma}^{\prime}=\bar{g}^{1} \bar{\sigma} g$ fixes the same number of points on O_{2} as $\bar{\sigma}$ does on O_{1}. However, from the structure of $\bar{S}=P S_{p^{4}}(q)$ we know $\bar{\sigma}$ and $\bar{\sigma}^{\prime}$ are conjugate in \bar{S}; hence $\bar{\sigma}$ fixes the same number of points on O_{2} as it does on O_{1}. Clearly then, since G is transitive on the orbits of $\bar{S}, \bar{\sigma}$ fixes the same number of points on each of the k orbits of \bar{S}. Since $\bar{\sigma}$ fixes exactly two points of $l, k \leqq 2$.
$q=u^{v}$, where u is a prime. Let $\bar{\rho} \in C_{\bar{s}}(\bar{\sigma})$ with $|\bar{\rho}|=u . u \neq 2$ by Theorem 4 , so $\bar{\rho}$ fixes L and M. We now proceed to determine exactly how many points ρ fixes on l. The number of such points is either the number of cosets $\bar{S}_{L M} \bar{x}$ in \bar{S} such that $\bar{S}_{L M} \overline{x \rho}=\bar{S}_{L M} \bar{x}$ or double this number if S has two orbits on l.

Denote a preimage of $\bar{x} \in \bar{S}$ in $S p(4, q)$ by \tilde{x}. In the usual 4×4 matrix representation of $S p(4, q)$ over a field of order q we can assume

$$
\tilde{\sigma}=\left[\begin{array}{rr}
-I & 0 \\
0 & I
\end{array}\right] \quad \text { and } \tilde{\rho}=\left[\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right],
$$

where $A, 0, I$ are 2×2 matrices with $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], 0$ the zero matrix and I the 2×2 identity matrix. Let

$$
\tilde{\tau} \in S p(4, q),|\tilde{\tau}|=2 \quad \text { and } \quad \tilde{\tau} \tilde{\rho} \tilde{\tau}=\left[\begin{array}{cc}
I & 0 \\
0 & A
\end{array}\right] .
$$

Since π is a translation plane there are exactly two involutions fixing L and M (recall we are excluding Baer involutions from being in G) and acting nontrivially on l, namely σ and $\alpha \tilde{\tau}$. The image of τ in S has order two so $\bar{\tau} \notin \bar{S}_{L M}$. It follows then since the image of $\tilde{\tau}$ in $P S_{p^{4}}(q)$ centralizes the image of σ in $P S_{p^{4}}(q), \bar{\tau}$ centralizes $\bar{\sigma} .|\bar{\tau}|=2$ and $\bar{\tau} \notin \bar{S}_{L M}$ so $\bar{\tau}$ interchanges L and M. Let τ be a preimage of $\bar{\tau}$ in S. Then from the action of $\bar{\tau}$ on l, we get $\tau^{-1} \sigma \tau=\sigma \alpha$. Thus it is clear that $S \cong S p(4, q)$ as opposed to the only alternative, $S=T x\langle\alpha\rangle$, $T \cong P S_{p^{4}}(q) . \tau \notin S_{L M}$ so $N=N_{S}(\langle\alpha, \sigma\rangle)=\left\langle\tau, C_{S}(\sigma)\right\rangle$ and $\left[N: S_{L M}\right]=2$. Since $S \cong S p(4, q),\left|C_{S}(\sigma)\right|=q^{2}\left(q^{2}-1\right)^{2}$. $C_{S}(\sigma)$ must fix L and M so $S_{L M}=$ $C_{S}(\sigma) .|S p(4, q)|=q^{4}\left(q^{4}-1\right)\left(q^{2}-1\right)$ so $\left[\bar{S}: \bar{S}_{L M}\right]=\left[S p(4, q): \mathrm{C}_{S}(\sigma)\right]=$ $q^{2}\left(q^{2}+1\right)$. This, along with the fact that \bar{S} has at most two orbits on l, implies $p^{n}+1$ is either $q^{2}\left(q^{2}+1\right)$ or $2 q^{2}\left(q^{2}+1\right)$.

If $S_{L M} X$ is a coset in $S_{L M} C_{S}(\rho)$, then clearly $S_{L M} \times \rho=S_{L M} x$. The number of distinct right cosets of $S_{L M}$ in $S_{L M} C_{S}(\rho)$ is

$$
\left[C_{S}(\rho): C_{S}(\rho) \cap S_{L M}\right]=\left[C_{S}(\rho): C_{S}(\rho) \cap C_{S}(\sigma)\right] .
$$

By direct computation with the matrix representation of $S p(4, q)$ one can show $\left|C_{S}(\rho)\right|=2 q^{4}\left(q^{2}-1\right)$ and $\left|C_{S}(\rho) \cap C_{S}(\sigma)\right|=2 q^{2}\left(q^{2}-1\right)$. Thus ρ fixes at least $2 q^{4}\left(q^{2}-1\right) / 2 q^{2}\left(q^{2}-1\right)=q^{2}$ points of $l . \tau \notin S_{L M}$ so ρ fixes q^{2} of the cosets in $S_{L M} \tau C_{S}(\rho)$. From the original definition of τ we find ρ fixes q^{2} of the cosets of $S_{L M} \tau C_{S}(\rho)$. Thus ρ fixes at least $2 q^{2}$ points.

We now show that ρ fixes a subplane π^{\prime} of Π. If not, ρ can fix only the points L and P of $L P$. Since $|\rho|=u$, and $q=u^{v}, n \mid p^{n}-1$ since ρ acts as a semiregular permutation on the points of $L P$ excluding L and P. But we have seen above that $q^{2} \mid p^{n}+1$ so $u \mid p^{n}+1$. This gives $u \mid\left(p^{n}+1\right)-\left(p^{n}-1\right)$ so $u=2$, contradicting Theorem 4(e).

The order of π^{\prime} is at least $2 q^{2}-1$ since ρ fixes at least $2 q^{2}$ points of l. By Theorem 5, either $\left(2 q^{2}-1\right)^{2}=p^{n}+1$ or $\left(2 q^{2}-1\right)^{2}+2 q^{2}-1 \leqq p^{n}+1$. Both of these conditions are easily seen to be impossible since we have seen $p^{n}+1$ is either $q^{2}\left(q^{2}+1\right)$ or $2 q^{2}\left(q^{2}+1\right)$.

References

1. E. Artin, Geometric algebra (Interscience Publishers, Inc., New York 1961).
2. T. Czerwinski, On collineation groups that fix a line of a finite projective plane (Submitted for publication).
3. - Collineation groups of finite projective planes whose Sylow 2-subgroups contain at most three involutions, Math. Z. 198 (1974), 161-170.
4. P. Dembowski, Finite geometries (Springer-Verlag, New York, 1968).
5. D. Foulser, Solvable flag transitive affine groups, Math. Z. 86 (1964), 191-204.
6. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
7. R. Greiss, Schur multipliers of the known finite simple groups, Ph.D. thesis, University of Chicago, 1972.
8. M. Hall, The theory of groups, (Macmillan, New York, 1959).
9. C. Hering, On finite line transitive affine planes (to appear).
10. - On transitive linear groups (to appear).
11. A. Wagner, On finite affine line transitive planes, Math. Z. 87 (1965), 1-11.

University of Illinois at Chicago Circle,
Chicago, Illinois

