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Abstract

Westwick's convexity theorem on the numerical range is generalized in the context of compact connected
Lie groups.
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1. Introduction

The celebrated Toeplitz-Hausdorff theorem [21, 13] asserts that the numerical range

of an n x n complex matrix A,

W(A) :={x*Ax :x e C, ||*|| = 1}

is a compact convex set in C. Toeplitz [21] proved that W(A) has a convex outer

boundary and Hausdorff [13] showed that the intersection of every line with W{A)

is connected or empty. It is remarkable for it states that the image of the unit sphere

in C (a hollow object) is a compact convex set in C under the nonlinear map,

x i-> x*Ax. Since then various generalizations have been considered ranging from
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finite dimensional linear and multilinear maps [17] to operators on normed spaces [8].
The volume of literature on the subject has been growing rapidly in the last decades
[12]. Halmos introduced the ^-numerical range of A: Wk{A) = (Xlt=i x*Axt :
x\, ..., xk are orthonormal vectors in €"}, k = 1 , . . . , n. He conjectured and Berger
[7] proved that Wk(A) is always convex. Then Westwick [22] considered the c-
numerical range of A, where c € C":

WC(A) := | 22, cix*Axi : xu ..., xn are orthonormal vectors in C | .
I <=i j

It can be formulated as WC(A) := [tiCUAU* : U € U(n)}. Here U(n) denotes
the unitary group and C is normal with eigenvalues c € C . Notice that WC(A) =
{trCUAU* : [U] € U(n)/A(n)}, where A(«) c U(n) is the subgroup of diagonal
matrices and U H-» [U] is the natural projection from U(n) onto the homogenous
space f/(«)/A(n). Westwick proved that WC(A) is always convex for real c, that is,
C is Hermitian (this is known as Westwick's convexity theorem) but fails to be convex
for complex c. The main idea of Westwick's proof is the application of Morse theory
on U(n)/A(n). Poon [18] was the first to give an elementary proof to Westwick's
result. The result was later rediscovered by Ginsburg [6, page 8].

If A = A i+i A 2 is the Hermitian decomposition of A, then Wc (A) may be identified
as the subset of OS2,

(1) WC(AU A2) := {(tiCUAlU*,tiCUA2U*) : U e U(n)}.

Westwick considered the map fB : U(n)/A(n) -+ K defined by [U] H->- tr CUB U*,
where B is a given Hermitian matrix. If the level surface fgl(a) is connected (or
empty) in £/(n)/A(n)foranya € K, then convexity follows by Hausdorff's argument.
He examined the critical points of the function fB and evaluated the Hessians at those
points, assuming that B and C are both regular, that is, the Hermitian matrices B
and C have distinct eigenvalues. The critical points have even indices. Then by the
handlebody decomposition theorem, the level surface/^1 (a) is connected. Westwick
also affirmed that the connectedness is valid even for nonregular B and C. But Ra'is
[19] pointed out that this is not obvious.

It is well known that U(n) is a compact connected Lie group whose Lie algebra
u(n) is the set of skew Hermitian matrices. Notice that tr CUB U* = tr B UCU* =
-ti(iB)U(iC)U* and thus (1) can be written as WC(AUA2) = {(trA,L, trA2L) :
L e O(C)}, where O(C) := {UCU* : U € £/(«)} is the adjoint orbit of C in
u(n) which is identified with the set of Hermitian matrices. Moreover, O(C) and
U(n)/A(n) can be identified. So the following consideration of Ra'is [19] is natural:
Let G be a compact Lie group with Lie algebra g which is equipped with a G-
invariant inner product (•, •), that is, (Ad(g)X, Ad(g)Y) = (X, Y), X,Y e 0, g e G.
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For X\, X2, Y € g, the K-numerical range of (X\, X2) is defined to be the following
subset of R2:

(2) Wr(Xlt X2) :={«X,, Ad(g) Y), (X2, Ad(g) Y)) : g e G}.

Note that (2) can be rewritten as

(3) Wy(Xu X2) = { « * , , L ) , (X2, L ) ) : L e

where O(Y) := {Ad(g) Y : g e G] is the adjoint orbit of Y in g. If G(Y) := {g € G :
Ad(g) K = K) denotes the centralizer of Y e Q in G, then

I W , , X2) = { « * „ Ad(*)r), (X2, Ad(«)y» : [g] € G/G(Y)},

where g H* [g] is the natural projection from G onto G/G(Y). Indeed, O(Y) and
G/G(Y) can be identified.

We will use the fact that O(Y) n t is a nonempty finite set, where K e g and t is
the Lie algebra of a maximal torus T of G when G is compact and connected [16].

In Section 2, we will prove the convexity of Wy(Xu X2) via Atiyah's lemma on
compact connected symplectic manifolds and the Kirillov-Kostant-Souriau symplectic
structure of the co-adjoint orbits of a Lie group. The statements for classical groups,
namely, SO(n), SU(n) and Sp(n) are explicitly worked out. Convexity fails to be true
when G = O(2n) but remains valid when G = O(2n + 1). It demonstrates that the
connectedness is necessary. In Section 3, we suggest an approach for the convexity
via Bott-Samelson-Rais' result, without symplectic technique.

2. Convexity of the generalized numerical ranges

We now identify g* with g via the isomorphism <p : X \-* (X, •}, X € g, that
is, z(X) = (X, <p~x(z)), z € g*, and g* has an induced inner product (•, •) (abuse of
notation) such that (x, y) := (<p~l(x), <p~l(y)),x, y e g. Notice that

(4) <p(Ad(g)Y) = (Ad(g)Y, •) = <p(Y, AdCg-'H-)) = Ad*(g)(<p(Y)).

Here the co-adjoint representation Ad* : G —> Aut(g*) of G in g* is defined by g \->
Ad*(g) such that Ad*(g)(;y) Y = y (Ad(g- ') Y), where y e$*,Y eg. The differential
of Ad* yields the co-adjoint representation of g on g*, namely, ad* : g —»• End(g*)
such that

X,Yed,

Similarly as in (3), given a compact Lie group G, we define

Wy(xux2):= {((*„£}, (x2i*» : I € Oy),
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where Oy := [kd*(g)y : g € G] is the co-adjoint orbit of y e g*. From (4)
ip(O(Y))= OvW. Thus

( 5 ) Wy(xl,x2)=W<

= W(<p-\xl)),i((p-l(x2))) : e e Oy).

If Gy := {g € G : Ad*(g)y = y] denotes the stabilizer of y € g*, whose Lie algebra
is Qy = {X e g : ad*(X)(y) = 0} = {X € g : y([K, X]) = 0, for all Y e g}, then we
have

Wy(xux2) = {((x,, Ad*(g)y>, (x2, Ad*(*)y» : [j] e G/G,},

where g i-*- [g] is the natural projection from G onto G/ G r The tangent space of the
co-adjoint orbit Oy and g/g>, can be identified.

Atiyah [1, Lemma 1.3] obtained the following result (also see [10, 11, 15]).

LEMMA 2.1. Let M be a compact connected symplectic manifold and f : M -> R
a smooth function whose Hamiltonian vector field generates a torus action. Then for
any a € R, the level surface f~l(a) is connected (or empty).

A symplectic manifold M is a differentiable manifold of even dimension with an
exterior differential 2-form co satisfying (1) dco = 0, that is, co is closed, and (2) co
is of maximal rank. A real-valued smooth function f on M defines a Hamiltonian
vector field £/ which corresponds to the 1-form df using the duality defined by co,
that is, i($f)o) + df = 0 [14, page 232].

L E M M A 2 . 2 . L e t G b e a c o m p a c t L i e g r o u p . IfX \,X2 a n d Y a r e i n $ , X i , x 2 , y € g*,
t h e n

(1) WyiXu X2) = WMigl)Y(Ad(g2)Xu Ad(g2)X2)forany gug2 € G. Hence if G
is connected and t is the Lie algebra of a maximal torus T of G, then Y and one of
the X's can be taken as elements oft;

(2) Wy(xux2) = WM'igl)y(Ad(g2)xu Ad(g2)x2) for any gu g2 € G;
(3) rotating WY(XU X2) (Wy(xux2)) by an angle 9 yields WY(X\, X'2) (W,(x[,x'2))

where (X\, X'2) = (X, cos0-X2sin6>, X lsin0+X2 cos 0) and (x[,x'2) = (
jc2sin#, xisinO + x2cos9).

PROOF. (1) and (2). For any #,, g2 e G,

, Ad(g)Ad(gi)Y) = {X,Ad(g-lggl)Y).

As g runs through the group G, so does g2
lgg\. Statement (3) follows from direct

computation. •
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THEOREM 2.3. Let G be a compact connected Lie group. For x\, x2, y e Q* and
Y e 0, Wy(x{,x2) is a compact convex set in R2. ThusforXx, X2, Y e g, WY(X,, X2)
is a compact convex set.

PROOF. For any Lie group G, the co-adjoint orbit £2 := Oy has a natural symplectic
structure, known as the Kirillov-Kostant-Souriau structure [14, pages 230-234]. Let
TZQ be the tangent space of £2 at the point z e £2. The symplectic form is given by
coz(a, P) — z([A, B]), a, p e Tz£2, z e £2, and a and P are corresponding to the
elements A and Beg, respectively (under the identification 7Z£2 with g/gz), that is,
P = ad*(S)(z) = d/dt\l=0 Ad*(e-'B)z.

In view of (5), it is sufficient to consider the smooth function / : £2 -» R defined
by / (z) — z(X), where z € £2 for any given X e g, that is, / is the restriction on £2 of
the linear functional of 0* corresponding t o X e g , and show that f~l(a) is connected
(or empty) for any a 6 R. This implies that the intersection of Wy{xux2) with every
vertical (horizontal as well) straight line is connected (or empty). By Lemma 2.2 (3),
the intersection of Wy(x,,x2) with every straight line is connected (or empty). Now

d Ad*(e-B)z(X)
1=0

^ z(Ad(e'B)X) = z([B, X]).

Soi(l;f)co + df = 0 means that a)z(l-f(z),P) + dfz(P) = 0forall£ e T£2andz e £2.
It amounts to z([Z, B]) + z([B, X]) — 0 for all B e g and z e £2, where Z 6 0
corrresponds to £/(z). So z([X — Z, B]) = 0 for all Beg, that is, Z = X mod0z.
In other words, the corresponding Hamiltonian vector field associated with / is just
the natural action of X on £2. If G is compact connected, so is £2. If, in addition, X is
in t, the Lie algebra of a torus T C G, then the conditions of Lemma 2.1 are satisfied
[1, page 2]. By Lemma 2.2 (a), the level set, / " ' ( a ) is connected (or empty) for any
a € R. •

We now work out the explicit statements for some classical groups, namely, the
unitary group, the special unitary group, the orthogonal group O(2n + 1), the special
orthogonal group SO(n) and the symplectic group Sp(n). The symplectic group
Sp(n) C £/(2«) consists of

dt

A -B
B A

e U(2n).

COROLLARY 2.4. (1) (Westwick [22]) Let G = U(n) orSU(n). The C-numerical
range WC(AUA2) = {{itA\UCU*,trA2UCW) : U e G] is convex, where AUA2

and C are Hermitian matrices.
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(2) The set WC(AUA2) = {(tiAlOCOT,trA2OCOT) : O e SO(n)} is convex,
where A\, A2, and C are real skew symmetric matrices.
(3) The set WC{AU A2) = [(trAlOCOT,trA2OCOT) : <9 e 0(2n + l)} is convex

and is equal to {(tr Ax OCOT, \xA2OCOT) : O € S0(2n + 1)}, where A,, A2, and
C are real skew symmetric matrices.
(4) The set WC(AUA2) = {(trAlUCU*,tiA2UCU*) : U € Sp(n)} is convex,

where AuA2,Ce sp(n).

PROOF. (l)Noticethat WC{A\, A 2) is the reflection of the convex set WiC(iAu iA2)
about the line x = y on the xy plane. When G = SU(n), the Lie algebra is the set of
traceless skew Hermitian matrices. Then for any U e SU(n),

1
(tr A, UCU*, tiA2UCU*) = (tr A, UCU*, tr A2UCW) + -(tr Ctr A,, tr Ctr A2),

n

where C = C—(tr C/n)I and A i and A2 are similarly defined. They are traceless skew
Hermitian matrices. So Wc(Ai,A2) is just a translation of the convex set W^A,, A2)-

(2) and (4) are obvious.
(3) The orthogonal group 0{k) = SO(k)UDSO(k) has two connected components

SO(k) and DSO(k) = [DO : O e SOOfc)},"where D is the diagonal matrix with
diag(l , . . . , 1,-1). So we have WC(AUA2) = {(tr AiOCO7", tr A2OCOT) : Oe
O(k)} = Wl U W2, where

Wi :={(trA1OCOr,trA2OCO7") : O e SO(k)}

and

W2 :={(trA1OCOr,trA2OCOr) : O e DSO(k)}

= {(trAlOC'OT, tiA2OC'OT) : O e SO(k)\

are convex by (2) with C = DTCD.
WhenA; = 2n + l, Wx = W2 since [OCOT : O e 5O(2« + l)} = [OCOT : O €

DSO(2n + 1)}. Hence Wc(A,, A2) is convex. •

We remark that (2) and (3) are valid for general real C since WC(AUA2) =
W(.(A i, A2), where C = (C — CT)/2. We also remark that the connectedness of G in
Theorem 2.3 is necessary when we consider O(2n). Let

-c

Then Wc(Ai, A2) = {±c(ai, a2)} which is not convex if c ^ 0 and ax and a2 are not
both zero, because W\ = [c(a{, a2)} and W2 = {-c(ai, a2)}- The argument extends
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to In. Consider

=[-«, : ] • - • £ »]• M I *]••-[-1 »]•
Recall that Wc(Ai, A2) = W| U W2 and denote by ̂  (^2) the convex hull of

the elements ( ic^d), . . . , ±c9(n)), 9 e Sn and for even (odd) number of negative
signs. By a result in [20], W} (W2) is the set of -2 ( £,. ««?.-, £ , b&)> w h e r e £ =
(£i, . . . , £„) are in ^ tf?2)- So the set Wt (W2) is the convex hull of the points
(^ifliCoji), £,• ±£i£0(i))> where 0 e 5n and for even (odd) number of negative
signs. Now if we choose a's, b's and c's positive and set them in decreasing order,
respectively, then ( £ \ a^i, £ , &,c,) 6 Wi but not in W2.

The statement of Theorem 2.3 is best possible in the sense that WY(X{,..., Xp)
may fail to be true if p > 3. Indeed, when G = U(n) and Y = diag(l, 0 , . . . , 0),
WY(Xi,..., Xp) fails to be convex [3] for some choice of X's when p > 3 or n = 2
while p = 3. But it is convex when p = 3 and n > 2 (also see [4]).

3. Remarks

Since the map G - • 0& defined by g h+ (X, Ad(g)r) (or 0(K) - • K defined by
L i-+ (X, L)) is clearly continuous, WY(XU X2) is compact in K2 if G is a compact
Lie group, where X's and y are in g. The following result deals with the continuity
of the map I"]3 0 -*• #(IR2X where ^(K2) is the set of compact sets in IR2, equipped
with Hausdorff topology, such that (X{, X2, Y) H->- WY(XI, X2). We will then discuss
a possible approach to Theorem 2.3.

PROPOSITION 3.1. Let G be a compact Lie group and let^(R2) be the set of compact
subsets ofR2 equipped with Hausdorff metric. Let || • || be the norm induced by the
G-invariant inner product on Q. Let ||| • ||| be the norm of\\ 0 induced by the norm of
0, that is, |||(Z,, Z2, Z3)||| = max1=1,2,3 ||Z,||.

(1) The function W : Y? 0 -> ^(K2) defined by W{XX, X2, Y) = Wr(Xu X2) is
continuous.
(2) / / K e g , then the function WY : Y\2 Q -> ^(R2) ^ « e r f by WY(XUX2) =
WY(Xi, X2) is uniformly continuous.
(3) Similar results are true for Wy(x\, x2).

PROOF. (1) Recall the Hausdorff metric for <tf(R2): write M + (e) = {z + a : z e
M, \\a\\2 < e} for each M e ^(K2) and 6 > 0, where || • ||2 denotes the Euclidean
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norm on R2. If M, N e ^(R2), then the Hausdorff metric d(M, N) is defined to be
the infimum of all positive numbers e such that both M c N + (e) and J V c M | ( ( )
hold. Now by the triangle inequality and the Cauchy-Schwarz inequality,

,, Ad(g)K), (X2,Ad(g)Y)) - «X'P Ad(g)Y'), (X'2, Ad(g)Y'))\\2

= ||((X, - X',, Ad(g)K), {X2 - X'2, Ad(g)Y))

+ «X'P Ad(g)(Y - Y')), <X2, Ad(g)(Y - Y')))\\2

<U(Xl-X'l,Ad(g)Y),{X2-X'2,Ad(g)Y))\\2

\, Ad(g)(Y- y')>, (X'2, Ad(g)(Y- Y')))\\2

, - A:; |j21| Ad(5) r |j2 j + f J]i|x;ii2iiAd(g)(K- n i l 2 )

So

(6) { [ 2 )
, 2 N ' / 2 (2 X > / 2

| | , , | | | | | | +

For e > 0, we choose

f
0 < 5 < min { 1,

Then ||(<AT1, Ad{g)Y), (X2, Ad(g)Y))-((X'v Ad(g)Y'), (X'2, Ad(s)F))||2< e, when-
ever |||(X,, X2, Y) - (X\, X'2, Dill = max,=1,2{||X, - x;||, ||K - Y'\\} < S. In other
words, d(WY(Xu X2), Wr(X\, X'2))<€, whenever UK*,, X2, Y) - (X\, X'2, Y')\\\<8.

(2) When Y = Y', (6) becomes

d(WY(XU X2), Wy(X[, X'2)) < V^max \\X, - X;|||| y||.

So WY is uniformly continuous. D

We remark that Proposition 3.1 is true for WY(XU ..., Xp) as well.
Without symplectic technique Rais [19] showed that if X is a regular element of

0, then the critical points of the function F : O(Y) -+ K defined by F(Z) = (X, Z)
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are all nondegenerate, that is, F is nondegenerate, and the indices of F on the critical

points are always even. So the level surface F~l(a) is connected (or empty) for

a e K. Indeed, Bott and Samelson [9] (see [2, page 76]) had proved a stronger result:

F is nondegenerate and an index of a critical point is equal to twice the number of

hyperplanes crossed by a line joining X to the critical point. But this does not yield the

convexity of WY(X\, X2) yet, where Xlt X2, Y € g, since X is assumed to be regular.

However, if one can show that for any given Xu X2 e g, there exist sequences of

regular elements X("\ X(
2
n) € g such that X{B) ->• X, and X2

n) -+ X2 as n -> oo

and X',(n) = X\n)cos0 - X(
2
n)sinO and X'2(n) = Xjn)sin0 + X<n)cos6> are both

regular for all 0 e [0, n/2], then the convexity of Wy(Xx, X2) follows. The reason is

that by Proposition 3.1 (2), WY(X[n), X{
2

n)) - • WY(Xi, X2) with respect to Hausdorff

topology. The sets WY(X\n), X(
2

n)) are convex by Lemma 2.2 (3), Bott-Samelson-Rais'

result, and the Hausdorff-Westwick argument. Since the space of compact convex

subsets of K2 is closed, WY(Xit X2) is convex.
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