CONVEXITY OF GENERALIZED NUMERICAL RANGE ASSOCIATED WITH A COMPACT LIE GROUP

TIN-YAU TAM

Dedicated to Professor Y. H. Au-Yeung

(Received 5 March 1999; revised 16 January 2001)

Communicated by A. H. Dooley

Abstract

Westwick's convexity theorem on the numerical range is generalized in the context of compact connected Lie groups.

2000 Mathematics subject classification: primary 15A60, 22E99. Keywords and phrases: Numerical range, convexity, compact connected Lie group, co-adjoint orbit.

1. Introduction

The celebrated Toeplitz-Hausdorff theorem [21, 13] asserts that the numerical range of an $n \times n$ complex matrix A,

$$W(A) := \{x^*Ax : x \in \mathbb{C}^n, ||x|| = 1\}$$

is a compact convex set in \mathbb{C} . Toeplitz [21] proved that W(A) has a convex outer boundary and Hausdorff [13] showed that the intersection of every line with W(A)is connected or empty. It is remarkable for it states that the image of the unit sphere in \mathbb{C}^n (a hollow object) is a compact convex set in \mathbb{C} under the nonlinear map, $x \mapsto x^*Ax$. Since then various generalizations have been considered ranging from

The author thanks Professor R. Westwick for providing the manuscript [19] shortly after they met in the Second Mini-Matrix Conference held in Hong Kong, December 1993. Thanks are given to Professor S. Cheung and Jennifer Rude for translating [19] and Professor M. Liao for helpful discussion. © 2002 Australian Mathematical Society 0263-6115/2002 \$A2.00 + 0.00

Tin-Yau Tam

finite dimensional linear and multilinear maps [17] to operators on normed spaces [8]. The volume of literature on the subject has been growing rapidly in the last decades [12]. Halmos introduced the k-numerical range of A: $W_k(A) = \{\sum_{i=1}^k x_i^* A x_i : x_1, \ldots, x_k \text{ are orthonormal vectors in } \mathbb{C}^n\}, k = 1, \ldots, n$. He conjectured and Berger [7] proved that $W_k(A)$ is always convex. Then Westwick [22] considered the c-numerical range of A, where $c \in \mathbb{C}^n$:

$$W_c(A) := \left\{ \sum_{i=1}^n c_i x_i^* A x_i : x_1, \dots, x_n \text{ are orthonormal vectors in } \mathbb{C}^n \right\}$$

It can be formulated as $W_C(A) := \{ tr CUA U^* : U \in U(n) \}$. Here U(n) denotes the unitary group and C is normal with eigenvalues $c \in \mathbb{C}^n$. Notice that $W_C(A) = \{ tr CUA U^* : [U] \in U(n)/\Delta(n) \}$, where $\Delta(n) \subset U(n)$ is the subgroup of diagonal matrices and $U \mapsto [U]$ is the natural projection from U(n) onto the homogenous space $U(n)/\Delta(n)$. Westwick proved that $W_C(A)$ is always convex for real c, that is, C is Hermitian (this is known as Westwick's convexity theorem) but fails to be convex for complex c. The main idea of Westwick's proof is the application of Morse theory on $U(n)/\Delta(n)$. Poon [18] was the first to give an elementary proof to Westwick's result. The result was later rediscovered by Ginsburg [6, page 8].

If $A = A_1 + iA_2$ is the Hermitian decomposition of A, then $W_C(A)$ may be identified as the subset of \mathbb{R}^2 ,

(1)
$$W_C(A_1, A_2) := \{ (\operatorname{tr} CUA_1 U^*, \operatorname{tr} CUA_2 U^*) : U \in U(n) \}.$$

Westwick considered the map $f_B : U(n)/\Delta(n) \to \mathbb{R}$ defined by $[U] \mapsto \text{tr } CUBU^*$, where B is a given Hermitian matrix. If the level surface $f_B^{-1}(a)$ is connected (or empty) in $U(n)/\Delta(n)$ for any $a \in \mathbb{R}$, then convexity follows by Hausdorff's argument. He examined the critical points of the function f_B and evaluated the Hessians at those points, assuming that B and C are both regular, that is, the Hermitian matrices B and C have distinct eigenvalues. The critical points have even indices. Then by the handlebody decomposition theorem, the level surface $f_B^{-1}(a)$ is connected. Westwick also affirmed that the connectedness is valid even for nonregular B and C. But Raïs [19] pointed out that this is not obvious.

It is well known that U(n) is a compact connected Lie group whose Lie algebra u(n) is the set of skew Hermitian matrices. Notice that tr $CUBU^* = \text{tr } BUCU^* =$ $-\text{tr}(iB)U(iC)U^*$ and thus (1) can be written as $W_C(A_1, A_2) = \{(\text{tr } A_1L, \text{tr } A_2L) :$ $L \in O(C)\}$, where $O(C) := \{UCU^* : U \in U(n)\}$ is the adjoint orbit of C in u(n) which is identified with the set of Hermitian matrices. Moreover, O(C) and $U(n)/\Delta(n)$ can be identified. So the following consideration of Raïs [19] is natural: Let G be a compact Lie group with Lie algebra g which is equipped with a Ginvariant inner product $\langle \cdot, \cdot \rangle$, that is, $\langle Ad(g)X, Ad(g)Y \rangle = \langle X, Y \rangle, X, Y \in g, g \in G$. For $X_1, X_2, Y \in \mathfrak{g}$, the Y-numerical range of (X_1, X_2) is defined to be the following subset of \mathbb{R}^2 :

(2)
$$W_Y(X_1, X_2) := \{ (\langle X_1, \operatorname{Ad}(g) Y \rangle, \langle X_2, \operatorname{Ad}(g) Y \rangle) : g \in G \}.$$

Note that (2) can be rewritten as

(3)
$$W_Y(X_1, X_2) = \{(\langle X_1, L \rangle, \langle X_2, L \rangle) : L \in O(Y)\},\$$

where $O(Y) := {Ad(g) Y : g \in G}$ is the adjoint orbit of Y in g. If $G(Y) := {g \in G : Ad(g) Y = Y}$ denotes the centralizer of $Y \in g$ in G, then

$$W_Y(X_1, X_2) = \{(\langle X_1, \operatorname{Ad}(g) Y \rangle, \langle X_2, \operatorname{Ad}(g) Y \rangle) : [g] \in G/G(Y)\},\$$

where $g \mapsto [g]$ is the natural projection from G onto G/G(Y). Indeed, O(Y) and G/G(Y) can be identified.

We will use the fact that $O(Y) \cap t$ is a nonempty finite set, where $Y \in g$ and t is the Lie algebra of a maximal torus T of G when G is compact and connected [16].

In Section 2, we will prove the convexity of $W_Y(X_1, X_2)$ via Atiyah's lemma on compact connected symplectic manifolds and the Kirillov-Kostant-Souriau symplectic structure of the co-adjoint orbits of a Lie group. The statements for classical groups, namely, SO(n), SU(n) and Sp(n) are explicitly worked out. Convexity fails to be true when G = O(2n) but remains valid when G = O(2n + 1). It demonstrates that the connectedness is necessary. In Section 3, we suggest an approach for the convexity via Bott-Samelson-Raïs' result, without symplectic technique.

2. Convexity of the generalized numerical ranges

We now identify \mathfrak{g}^* with \mathfrak{g} via the isomorphism $\varphi : X \mapsto \langle X, \cdot \rangle, X \in \mathfrak{g}$, that is, $z(X) = \langle X, \varphi^{-1}(z) \rangle, z \in \mathfrak{g}^*$, and \mathfrak{g}^* has an induced inner product $\langle \cdot, \cdot \rangle$ (abuse of notation) such that $\langle x, y \rangle := \langle \varphi^{-1}(x), \varphi^{-1}(y) \rangle, x, y \in \mathfrak{g}$. Notice that

(4)
$$\varphi(\operatorname{Ad}(g)Y) = \langle \operatorname{Ad}(g)Y, \cdot \rangle = \varphi(Y, \operatorname{Ad}(g^{-1})(\cdot)) = \operatorname{Ad}^*(g)(\varphi(Y)).$$

Here the co-adjoint representation $\operatorname{Ad}^* : G \to \operatorname{Aut}(\mathfrak{g}^*)$ of G in \mathfrak{g}^* is defined by $g \mapsto \operatorname{Ad}^*(g)$ such that $\operatorname{Ad}^*(g)(y)Y = y(\operatorname{Ad}(g^{-1})Y)$, where $y \in \mathfrak{g}^*$, $Y \in \mathfrak{g}$. The differential of Ad^* yields the co-adjoint representation of \mathfrak{g} on \mathfrak{g}^* , namely, $\operatorname{ad}^* : \mathfrak{g} \to \operatorname{End}(\mathfrak{g}^*)$ such that

$$\operatorname{ad}^*(X)y(Y) = -y(\operatorname{ad}(X)Y) = y([Y, X]), \quad X, Y \in \mathfrak{g}, \quad y \in \mathfrak{g}^*.$$

Similarly as in (3), given a compact Lie group G, we define

$$W_{y}(x_{1}, x_{2}) := \{(\langle x_{1}, \ell \rangle, \langle x_{2}, \ell \rangle) : \ell \in O_{y}\},\$$

Tin-Yau Tam

where $O_y := \{ \mathrm{Ad}^*(g)y : g \in G \}$ is the co-adjoint orbit of $y \in \mathfrak{g}^*$. From (4) $\varphi(O(Y)) = O_{\varphi(y)}$. Thus

(5)
$$W_{y}(x_{1}, x_{2}) = W_{\varphi^{-1}(y)}(\varphi^{-1}(x_{1}), \varphi^{-1}(x_{2}))$$
$$= \{(\ell(\varphi^{-1}(x_{1})), \ell(\varphi^{-1}(x_{2}))) : \ell \in O_{y}\}$$

If $G_y := \{g \in G : \operatorname{Ad}^*(g)y = y\}$ denotes the stabilizer of $y \in \mathfrak{g}^*$, whose Lie algebra is $\mathfrak{g}_y = \{X \in \mathfrak{g} : \operatorname{ad}^*(X)(y) = 0\} = \{X \in \mathfrak{g} : y([Y, X]) = 0, \text{ for all } Y \in \mathfrak{g}\}$, then we have

$$W_{y}(x_{1}, x_{2}) = \{ (\langle x_{1}, \operatorname{Ad}^{*}(g)y \rangle, \langle x_{2}, \operatorname{Ad}^{*}(g)y \rangle) : [g] \in G/G_{y} \},\$$

where $g \mapsto [g]$ is the natural projection from G onto G/G_y . The tangent space of the co-adjoint orbit O_y and g/g_y can be identified.

Atiyah [1, Lemma 1.3] obtained the following result (also see [10, 11, 15]).

LEMMA 2.1. Let M be a compact connected symplectic manifold and $f : M \to \mathbb{R}$ a smooth function whose Hamiltonian vector field generates a torus action. Then for any $a \in \mathbb{R}$, the level surface $f^{-1}(a)$ is connected (or empty).

A symplectic manifold M is a differentiable manifold of even dimension with an exterior differential 2-form ω satisfying (1) $d\omega = 0$, that is, ω is closed, and (2) ω is of maximal rank. A real-valued smooth function f on M defines a Hamiltonian vector field ξ_f which corresponds to the 1-form df using the duality defined by ω , that is, $\iota(\xi_f)\omega + df = 0$ [14, page 232].

LEMMA 2.2. Let G be a compact Lie group. If X_1, X_2 and Y are in $\mathfrak{g}, x_1, x_2, y \in \mathfrak{g}^*$, then

(1) $W_Y(X_1, X_2) = W_{Ad(g_1)Y}(Ad(g_2)X_1, Ad(g_2)X_2)$ for any $g_1, g_2 \in G$. Hence if G is connected and t is the Lie algebra of a maximal torus T of G, then Y and one of the X's can be taken as elements of t;

(2) $W_{y}(x_{1}, x_{2}) = W_{Ad^{*}(g_{1})y}(Ad(g_{2})x_{1}, Ad(g_{2})x_{2})$ for any $g_{1}, g_{2} \in G$;

(3) rotating $W_Y(X_1, X_2)$ ($W_y(x_1, x_2)$) by an angle θ yields $W_Y(X'_1, X'_2)$ ($W_y(x'_1, x'_2)$) where $(X'_1, X'_2) = (X_1 \cos \theta - X_2 \sin \theta, X_1 \sin \theta + X_2 \cos \theta)$ and $(x'_1, x'_2) = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta)$.

PROOF. (1) and (2). For any $g_1, g_2 \in G$,

$$\langle \operatorname{Ad}(g_2)X, \operatorname{Ad}(g)\operatorname{Ad}(g_1)Y \rangle = \langle X, \operatorname{Ad}(g_2^{-1}gg_1)Y \rangle.$$

As g runs through the group G, so does $g_2^{-1}gg_1$. Statement (3) follows from direct computation.

THEOREM 2.3. Let G be a compact connected Lie group. For $x_1, x_2, y \in \mathfrak{g}^*$ and $Y \in \mathfrak{g}, W_y(x_1, x_2)$ is a compact convex set in \mathbb{R}^2 . Thus for $X_1, X_2, Y \in \mathfrak{g}, W_Y(X_1, X_2)$ is a compact convex set.

PROOF. For any Lie group G, the co-adjoint orbit $\Omega := O_y$ has a natural symplectic structure, known as the Kirillov-Kostant-Souriau structure [14, pages 230–234]. Let $T_z\Omega$ be the tangent space of Ω at the point $z \in \Omega$. The symplectic form is given by $\omega_z(\alpha, \beta) = z([A, B]), \alpha, \beta \in T_z\Omega, z \in \Omega$, and α and β are corresponding to the elements A and $B \in \mathfrak{g}$, respectively (under the identification $T_z\Omega$ with $\mathfrak{g}/\mathfrak{g}_z$), that is, $\beta = \mathrm{ad}^*(B)(z) = d/dt|_{t=0} \mathrm{Ad}^*(e^{-tB})z$.

In view of (5), it is sufficient to consider the smooth function $f : \Omega \to \mathbb{R}$ defined by f(z) = z(X), where $z \in \Omega$ for any given $X \in \mathfrak{g}$, that is, f is the restriction on Ω of the linear functional of \mathfrak{g}^* corresponding to $X \in \mathfrak{g}$, and show that $f^{-1}(a)$ is connected (or empty) for any $a \in \mathbb{R}$. This implies that the intersection of $W_y(x_1, x_2)$ with every vertical (horizontal as well) straight line is connected (or empty). By Lemma 2.2 (3), the intersection of $W_y(x_1, x_2)$ with every straight line is connected (or empty). Now

$$df_{z}(\beta) = \frac{d}{dt} \bigg|_{t=0} f\left(\operatorname{Ad}^{*}(e^{-tB})z\right) = \frac{d}{dt} \bigg|_{t=0} \operatorname{Ad}^{*}(e^{-tB})z(X)$$
$$= \frac{d}{dt} \bigg|_{t=0} z\left(\operatorname{Ad}(e^{tB})X\right) = z\left([B, X]\right).$$

So $\iota(\xi_f)\omega + df = 0$ means that $\omega_z(\xi_f(z), \beta) + df_z(\beta) = 0$ for all $\beta \in T\Omega$ and $z \in \Omega$. It amounts to z([Z, B]) + z([B, X]) = 0 for all $B \in \mathfrak{g}$ and $z \in \Omega$, where $Z \in \mathfrak{g}$ corresponds to $\xi_f(z)$. So z([X - Z, B]) = 0 for all $B \in \mathfrak{g}$, that is, $Z = X \mod \mathfrak{g}_z$. In other words, the corresponding Hamiltonian vector field associated with f is just the natural action of X on Ω . If G is compact connected, so is Ω . If, in addition, X is in t, the Lie algebra of a torus $T \subset G$, then the conditions of Lemma 2.1 are satisfied [1, page 2]. By Lemma 2.2 (a), the level set, $f^{-1}(a)$ is connected (or empty) for any $a \in \mathbb{R}$.

We now work out the explicit statements for some classical groups, namely, the unitary group, the special unitary group, the orthogonal group O(2n + 1), the special orthogonal group SO(n) and the symplectic group Sp(n). The symplectic group $Sp(n) \subset U(2n)$ consists of

$$\begin{bmatrix} A & -\overline{B} \\ B & \overline{A} \end{bmatrix} \in U(2n).$$

COROLLARY 2.4. (1) (Westwick [22]) Let G = U(n) or SU(n). The C-numerical range $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 U C U^*, \operatorname{tr} A_2 U C U^*) : U \in G\}$ is convex, where A_1, A_2 and C are Hermitian matrices.

(2) The set $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 O C O^T, \operatorname{tr} A_2 O C O^T) : O \in SO(n)\}$ is convex, where A_1, A_2 , and C are real skew symmetric matrices.

(3) The set $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 O C O^T, \operatorname{tr} A_2 O C O^T) : O \in O(2n+1)\}$ is convex and is equal to $\{(\operatorname{tr} A_1 O C O^T, \operatorname{tr} A_2 O C O^T) : O \in SO(2n+1)\}$, where A_1, A_2 , and C are real skew symmetric matrices.

(4) The set $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 U C U^*, \operatorname{tr} A_2 U C U^*) : U \in Sp(n)\}$ is convex, where $A_1, A_2, C \in \mathfrak{sp}(n)$.

PROOF. (1) Notice that $W_C(A_1, A_2)$ is the reflection of the convex set $W_{iC}(iA_1, iA_2)$ about the line x = y on the xy plane. When G = SU(n), the Lie algebra is the set of traceless skew Hermitian matrices. Then for any $U \in SU(n)$,

$$(\operatorname{tr} A_1 U C U^*, \operatorname{tr} A_2 U C U^*) = (\operatorname{tr} \hat{A}_1 U \hat{C} U^*, \operatorname{tr} \hat{A}_2 U \hat{C} U^*) + \frac{1}{n} (\operatorname{tr} C \operatorname{tr} A_1, \operatorname{tr} C \operatorname{tr} A_2),$$

where $\hat{C} = C - (\operatorname{tr} C/n)I$ and \hat{A}_1 and \hat{A}_2 are similarly defined. They are traceless skew Hermitian matrices. So $W_C(A_1, A_2)$ is just a translation of the convex set $W_{\hat{C}}(\hat{A}_1, \hat{A}_2)$.

(2) and (4) are obvious.

(3) The orthogonal group $O(k) = SO(k) \cup DSO(k)$ has two connected components SO(k) and $DSO(k) = \{DO : O \in SO(k)\}$, where D is the diagonal matrix with diag(1, ..., 1, -1). So we have $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 O C O^T, \operatorname{tr} A_2 O C O^T) : O \in O(k)\} = W_1 \cup W_2$, where

$$W_1 := \left\{ (\operatorname{tr} A_1 O C O^T, \operatorname{tr} A_2 O C O^T) : O \in SO(k) \right\}$$

and

$$W_2 := \left\{ (\operatorname{tr} A_1 O C O^T, \operatorname{tr} A_2 O C O^T) : O \in DSO(k) \right\}$$
$$= \left\{ (\operatorname{tr} A_1 O C' O^T, \operatorname{tr} A_2 O C' O^T) : O \in SO(k) \right\}$$

are convex by (2) with $C' = D^T C D$.

When k = 2n + 1, $W_1 = W_2$ since $\{OCO^T : O \in SO(2n + 1)\} = \{OC'O^T : O \in DSO(2n + 1)\}$. Hence $W_C(A_1, A_2)$ is convex.

We remark that (2) and (3) are valid for general real C since $W_C(A_1, A_2) = W_{\hat{C}}(A_1, A_2)$, where $\hat{C} = (C - C^T)/2$. We also remark that the connectedness of G in Theorem 2.3 is necessary when we consider O(2n). Let

$$C = \begin{bmatrix} 0 & c \\ -c & 0 \end{bmatrix}, \qquad A_1 = \begin{bmatrix} 0 & a_1 \\ -a_1 & 0 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 0 & a_2 \\ -a_2 & 0 \end{bmatrix}.$$

Then $W_C(A_1, A_2) = \{\pm c(a_1, a_2)\}$ which is not convex if $c \neq 0$ and a_1 and a_2 are not both zero, because $W_1 = \{c(a_1, a_2)\}$ and $W_2 = \{-c(a_1, a_2)\}$. The argument extends

to 2n. Consider

$$C = \begin{bmatrix} 0 & c_1 \\ -c_1 & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & c_n \\ -c_n & 0 \end{bmatrix},$$
$$A_1 = \begin{bmatrix} 0 & a_1 \\ -a_1 & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & a_n \\ -a_n & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & b_1 \\ -b_1 & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & b_n \\ -b_n & 0 \end{bmatrix}.$$

Recall that $W_C(A_1, A_2) = W_1 \cup W_2$ and denote by \mathscr{C}_1 (\mathscr{C}_2) the convex hull of the elements $(\pm c_{\theta(1)}, \ldots, \pm c_{\theta(n)}), \theta \in S_n$ and for even (odd) number of negative signs. By a result in [20], W_1 (W_2) is the set of $-2(\sum_i a_i\xi_i, \sum_i b_i\xi_i)$, where $\xi =$ (ξ_1, \ldots, ξ_n) are in \mathscr{C}_1 (\mathscr{C}_2). So the set W_1 (W_2) is the convex hull of the points $(\sum_i \pm a_i c_{\theta(i)}, \sum_i \pm b_i c_{\theta(i)})$, where $\theta \in S_n$ and for even (odd) number of negative signs. Now if we choose a's, b's and c's positive and set them in decreasing order, respectively, then $(\sum_i a_i c_i, \sum_i b_i c_i) \in W_1$ but not in W_2 .

The statement of Theorem 2.3 is best possible in the sense that $W_Y(X_1, \ldots, X_p)$ may fail to be true if $p \ge 3$. Indeed, when G = U(n) and $Y = \text{diag}(1, 0, \ldots, 0)$, $W_Y(X_1, \ldots, X_p)$ fails to be convex [3] for some choice of X's when $p \ge 3$ or n = 2 while p = 3. But it is convex when p = 3 and n > 2 (also see [4]).

3. Remarks

Since the map $G \to \mathbb{R}$ defined by $g \mapsto \langle X, \operatorname{Ad}(g)Y \rangle$ (or $O(Y) \to \mathbb{R}$ defined by $L \mapsto \langle X, L \rangle$) is clearly continuous, $W_Y(X_1, X_2)$ is compact in \mathbb{R}^2 if G is a compact Lie group, where X's and Y are in g. The following result deals with the continuity of the map $\prod^3 \mathfrak{g} \to \mathscr{C}(\mathbb{R}^2)$, where $\mathscr{C}(\mathbb{R}^2)$ is the set of compact sets in \mathbb{R}^2 , equipped with Hausdorff topology, such that $(X_1, X_2, Y) \mapsto W_Y(X_1, X_2)$. We will then discuss a possible approach to Theorem 2.3.

PROPOSITION 3.1. Let G be a compact Lie group and let $\mathscr{C}(\mathbb{R}^2)$ be the set of compact subsets of \mathbb{R}^2 equipped with Hausdorff metric. Let $\|\cdot\|$ be the norm induced by the G-invariant inner product on g. Let $\|\cdot\|$ be the norm of $\prod^3 \mathfrak{g}$ induced by the norm of \mathfrak{g} , that is, $\||(Z_1, Z_2, Z_3)\|| = \max_{i=1,2,3} \|Z_i\|$.

(1) The function $\mathscr{W}: \prod^3 \mathfrak{g} \to \mathscr{C}(\mathbb{R}^2)$ defined by $\mathscr{W}(X_1, X_2, Y) = W_Y(X_1, X_2)$ is continuous.

(2) If $Y \in \mathfrak{g}$, then the function $\mathscr{W}_Y : \prod^2 \mathfrak{g} \to \mathscr{C}(\mathbb{R}^2)$ defined by $\mathscr{W}_Y(X_1, X_2) = W_Y(X_1, X_2)$ is uniformly continuous.

(3) Similar results are true for $W_y(x_1, x_2)$.

PROOF. (1) Recall the Hausdorff metric for $\mathscr{C}(\mathbb{R}^2)$: write $M + (\epsilon) = \{z + \alpha : z \in M, \|\alpha\|_2 < \epsilon\}$ for each $M \in \mathscr{C}(\mathbb{R}^2)$ and $\epsilon > 0$, where $\|\cdot\|_2$ denotes the Euclidean

63

norm on \mathbb{R}^2 . If $M, N \in \mathscr{C}(\mathbb{R}^2)$, then the Hausdorff metric d(M, N) is defined to be the infimum of all positive numbers ϵ such that both $M \subset N + (\epsilon)$ and $N \subset M + (\epsilon)$ hold. Now by the triangle inequality and the Cauchy-Schwarz inequality,

$$\| (\langle X_{1}, \operatorname{Ad}(g) Y \rangle, \langle X_{2}, \operatorname{Ad}(g) Y \rangle) - (\langle X_{1}', \operatorname{Ad}(g) Y' \rangle, \langle X_{2}', \operatorname{Ad}(g) Y' \rangle) \|_{2}$$

$$= \| (\langle X_{1} - X_{1}', \operatorname{Ad}(g) Y \rangle, \langle X_{2} - X_{2}', \operatorname{Ad}(g) Y \rangle) + (\langle X_{1}', \operatorname{Ad}(g) (Y - Y') \rangle, \langle X_{2}', \operatorname{Ad}(g) (Y - Y') \rangle) \|_{2}$$

$$\le \| (\langle X_{1} - X_{1}', \operatorname{Ad}(g) Y \rangle, \langle X_{2} - X_{2}', \operatorname{Ad}(g) Y \rangle) \|_{2}$$

$$+ \| (\langle X_{1}', \operatorname{Ad}(g) (Y - Y') \rangle, \langle X_{2}', \operatorname{Ad}(g) (Y - Y') \rangle) \|_{2}$$

$$\le \left(\sum_{i=1}^{2} \| X_{i} - X_{i}' \|^{2} \| \operatorname{Ad}(g) Y \|^{2} \right)^{1/2} + \left(\sum_{i=1}^{2} \| X_{i}' \|^{2} \| \operatorname{Ad}(g) (Y - Y') \|^{2} \right)^{1/2}$$

$$= \left(\sum_{i=1}^{2} \| X_{i} - X_{i}' \|^{2} \right)^{1/2} \| Y \| + \left(\sum_{i=1}^{2} \| X_{i}' \|^{2} \right)^{1/2} \| Y - Y' \|.$$

So

(6)
$$d(W_{Y}(X_{1}, X_{2}), W_{Y'}(X'_{1}, X'_{2})) \leq \left(\sum_{i=1}^{2} \|X_{i} - X'_{i}\|^{2}\right)^{1/2} \|Y\| + \left(\sum_{i=1}^{2} \|X'_{i}\|^{2}\right)^{1/2} \|Y - Y'\|$$
$$\leq \sqrt{2} \max_{i=1,2} \|X_{i} - X'_{i}\| \|Y\| + \sqrt{2} \max_{i=1,2} \|X'_{i}\| \|Y - Y'\|.$$

For $\epsilon > 0$, we choose

$$0 < \delta < \min\left\{1, \frac{\epsilon}{2\sqrt{2}(\|Y\| + \max_{i=1,2} \|X_i\| + 1)}\right\}.$$

Then $\|(\langle X_1, \operatorname{Ad}(g) Y \rangle, \langle X_2, \operatorname{Ad}(g) Y \rangle) - (\langle X'_1, \operatorname{Ad}(g) Y' \rangle, \langle X'_2, \operatorname{Ad}(g) Y' \rangle)\|_2 < \epsilon$, whenever $\||(X_1, X_2, Y) - (X'_1, X'_2, Y')\|\| = \max_{i=1,2} \{\|X_i - X'_i\|, \|Y - Y'\|\} < \delta$. In other words, $d(W_Y(X_1, X_2), W_{Y'}(X'_1, X'_2)) < \epsilon$, whenever $\||(X_1, X_2, Y) - (X'_1, X'_2, Y')\|| < \delta$. (2) When Y = Y', (6) becomes

$$d(W_{Y}(X_{1}, X_{2}), W_{Y}(X_{1}', X_{2}')) \leq \sqrt{2} \max_{i=1,2} ||X_{i} - X_{i}'|| ||Y||.$$

So \mathcal{W}_{Y} is uniformly continuous.

We remark that Proposition 3.1 is true for $W_Y(X_1, \ldots, X_p)$ as well.

Without symplectic technique Raïs [19] showed that if X is a *regular* element of g, then the critical points of the function $F : O(Y) \to \mathbb{R}$ defined by $F(Z) = \langle X, Z \rangle$

are all nondegenerate, that is, F is nondegenerate, and the indices of F on the critical points are always even. So the level surface $F^{-1}(a)$ is connected (or empty) for $a \in \mathbb{R}$. Indeed, Bott and Samelson [9] (see [2, page 76]) had proved a stronger result: F is nondegenerate and an index of a critical point is equal to twice the number of hyperplanes crossed by a line joining X to the critical point. But this does not yield the convexity of $W_Y(X_1, X_2)$ yet, where $X_1, X_2, Y \in \mathfrak{g}$, since X is assumed to be regular. However, if one can show that for any given $X_1, X_2 \in \mathfrak{g}$, there exist sequences of regular elements $X_1^{(n)}, X_2^{(n)} \in \mathfrak{g}$ such that $X_1^{(n)} \to X_1$ and $X_2^{(n)} \to X_2$ as $n \to \infty$ and $X_1'(n) = X_1^{(n)} \cos \theta - X_2^{(n)} \sin \theta$ and $X_2'(n) = X_1^{(n)} \sin \theta + X_2^{(n)} \cos \theta$ are both regular for all $\theta \in [0, \pi/2]$, then the convexity of $W_Y(X_1, X_2)$ follows. The reason is that by Proposition 3.1 (2), $W_Y(X_1^{(n)}, X_2^{(n)}) \to W_Y(X_1, X_2)$ with respect to Hausdorff topology. The sets $W_Y(X_1^{(n)}, X_2^{(n)})$ are convex by Lemma 2.2 (3), Bott-Samelson-Raïs' result, and the Hausdorff-Westwick argument. Since the space of compact convex subsets of \mathbb{R}^2 is closed, $W_Y(X_1, X_2)$ is convex.

References

- M. F. Atiyah, 'Convexity and commuting Hamiltonians', Bull. London Math. Soc. 308 (1982), 1-15.
- [2] M. F. Atiyah and R. Bott, 'The Yang-Mills equations over Riemann surfaces', *Philos. Trans. Roy. Soc. London Ser. A* 14 (1982), 523-615.
- [3] Y. H. Au-Yeung and Y. T. Poon, 'A remark on the convexity and positive definiteness concerning Hermitian matrices', Southeast Asian Bull. Math. 3 (1979), 85–92.
- [4] Y. H. Au-Yeung and N. K. Tsing, 'An extension of the Hausdorff-Toeplitz theorem on the numerical range', Proc. Amer. Math. Soc. 89 (1983), 215–218.
- [5] _____, 'Some theorems on the numerical range', Linear and Multilinear Algebra 15 (1984), 3-11.
- [6] M. Audin, *The topology of torus actions on symplectic manifolds*, Progress in Mathematics 93 (Birkäuser, Boston, 1991).
- [7] C. A. Berger, Normal dilations (Ph.D. Thesis, Cornell University, 1963).
- [8] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, London Math. Soc. Lecture Notes 2 (Cambridge University Press, 1971).
- [9] R. Bott and H. Samelson, 'Applications of the theory of Morse to symmetric spaces', Amer. J. Math. 80 (1958), 964–1029.
- [10] V. Guillemain and S. Sternberg, 'Convexity properties of the moment mapping', *Invent. Math.* 67 (1982), 491–513.
- [11] —, 'Convexity properties of the moment mapping II', Invent. Math. 77 (1984), 533-546.
- [12] K. E. Gustafson and D. K. M. Rao, Numerical range: the field of values of linear operators and matrices (Springer, New York, 1997).
- [13] F. Hausdorff, 'Der Wertvorrat einer Bilinearform', Math Z. 3 (1919), 314–316.
- [14] A. A. Kirillov, Elements of the theory of representations (Springer, Berlin, 1976).
- [15] F. Kirwan, 'Convexity properties of the moment mapping III', Invent. Math. 77 (1984), 547-552.
- [16] A. Knapp, *Lie groups beyond an introduction*, Progress in Mathematics 140 (Birkhäuser, Boston, 1996).

Tin-Yau Tam

- [17] C. K. Li, 'C-numerical ranges and c-numerical radii', *Linear and Multilinear Algebra* **37** (1994), 51–82.
- [18] Y. T. Poon, 'Another proof of a result of Westwick', *Linear and Multilinear Algebra* 9 (1980), 35–37.
- [19] M. Raïs, 'Remarques sur un theoreme de R. Westwick', unpublished manuscript.
- [20] T. Y. Tam, 'Kostant's convexity theorem and classical compact groups', *Linear and Multilinear Algebra* 43 (1997), 87–113.
- [21] O. Toeplitz, 'Das algebraische Analogon zu einem Satze von Fejér', Math. Z. 2 (1918), 187-197.
- [22] R. Westwick, 'A theorem on numerical range', Linear and Multilinear Algebra 2 (1975), 311–315.

Department of Mathematics 218 Parker Hall Auburn University AL 36849-5310 USA e-mail: tamtiny@auburn.edu

66