Atomic Resolution Study of W-Doped VO₂ Nanowires

Hasti Asayesh-Ardakani¹,², Anmin Nie¹,², Peter M. Marley³, Yihan Zhu⁴, Patrick J. Phillips², Sujay Singh⁵, Farzad Mashayek⁶, Ganapathy Sambandamurthy², Ke-bin Low⁷, Robert F. Klie², Sarbajit Banerjee³, Gregory M. Odegard¹ and Reza Shahbazian-Yassar¹,²,⁶

¹Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49933-1295, USA
²Department of Physics, University of Illinois at Chicago, Chicago, IL60607-7059, USA
³Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA
⁴Advanced Membranes and Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
⁵Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA
⁶Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL60607-7059, USA
⁷Research Resource Center, University of Illinois at Chicago, IL60607-7059, USA

Metal-Insulator Transition (MIT) in VO₂ has attracted attention of many theorists and experimentalists for more than fifty years since the discovery of the phenomena by Morin [1]. The distinctive aspects of this phenomena are structural phase transition, sharp resistivity and optical transparency changes by several order of magnitudes at ~ 340 K [2]. These distinctive properties have inspired many applications such as thermo/electrochromics, Mott transistors, memristors, thermal actuators, gas sensors, strain sensors and temperature sensors. Recent efforts focus on controlling of phase transition and domain structures in finite size VO₂, which results in different material properties and play a critical role in device applications.

In this work, we have focused on the effect of tungsten (W) dopant in MIT of individual single-crystalline VO₂ nanowires by use of aberration corrected scanning transition electron microscopy. The high-resolution Z-contrast imaging of individual single-crystalline WₓV₁₋ₓO₂ nanowires indicates W dopant atoms in the structure as shown in Figure 1a. The strain map analysis of high-resolution images reveals the effect of dopants in MIT of VO₂ (Figure 1b-c). The dopants create anisotropic stress and structural distortions into the VO₂ structure. This stress facilitates the phase transition form monoclinic structure to tetragonal structure. We also verified the experimental observation by Density Functional Theory (DFT) calculations.
References:


Figure 1. (a) Atomic resolution HAADF image of W_{x}V_{1-x}O_{2} nanowires. Insets correspond to the FFT of (a) which indicates that (a) has been acquired along the [301] zone axis of the monoclinic structure. The spots with higher intensity imply the existence of W in each column as compared to other spots. (b-c) strain maps relate along to and perpendicular to (113) lattice planes.