DIVISIBLE S-SYSTEMS AND R-MODULES

by VICTORIA GOULD

(Received 2nd May 1985)

1. Introduction

Throughout this paper S will denote a given monoid and R a given ring with unity. A set A is a right S-system if there is a map $\phi: A \times S \rightarrow A$ satisfying

$$\phi(a,1)=a$$

and

$$\phi(a, st) = \phi(\phi(a, s), t)$$

for any element a of A and any elements s, t of S. For $\phi(a, s)$ we write as and we refer to right S-systems simply as S-systems. One has the obvious definitions of an Ssubsystem, an S-homomorphism and a congruence on an S-system. The reader is presumed to be familiar with the basic definitions concerning right R-modules over R. As with S-systems we will refer to right R-modules just as R-modules.

A number of papers have been published which classify monoids by properties of their S-systems, for example [3], [4], [6]. Many of the properties considered are inspired by the corresponding work in ring theory. In a previous paper [5] the author introduced a new concept of a coflat S-system, the definition used being a non-additive analogue of that of a coflat module, as in Proposition 1.3 of [2]. Proposition 3.3 and Corollary 3.4 of [5] together give a characterisation of a coflat S-system in terms of the existence of solutions of certain consistent equations. This suggests it might be of interest to study the connections between coflat and divisible S-systems.

It is easy to characterise monoids over which all S-systems are divisible. This we do in Section 2. We then give a detailed construction of a divisible S-system \overline{A} containing any given S-system A. This construction enables us to classify those monoids for which all divisible S-systems are coflat. In an ensuing paper we generalise this method in order to characterise monoids over which all coflat S-systems are weakly f-injective and monoids over which all weakly f-injective S-systems are weakly injective.

The connections between injectivity and divisibility properties of R-modules have been well-researched (for example, [8]). In the last section we classify those rings R for which the notions of a divisible R-module and a weakly p-injective R-module coincide, using similar methods to those of Section 2.

The relevant definitions for S-systems may be found in Section 2 and for R-modules in Section 3.

I would like to thank Dr J. B. Fountain for several particularly helpful suggestions with regard to this work.

2. Divisible S-systems

As stated in the introduction, S will denote a fixed monoid. We remind the reader that an element s in S is left (right) cancellable if sa = sb(as = bs), for any elements a, b of S, gives that a=b. Then an S-system A is said to be torsion free if, given any elements a, b of A and any right cancellable element s of S, as = bs implies a=b. If A = As for any left cancellable element s of S, then A is divisible.

An S-system A is weakly (f-, p-) injective if, given any diagram of the form

where I is a (finitely generated, principal) ideal of S, $i:I \rightarrow S$ is the inclusion mapping and $\theta:I \rightarrow A$ is an S-homomorphism, then there exists an S-homomorphism $\psi:S \rightarrow A$ such that

commutes.

We now give the definition of a coflat S-system, proposed in [5].

An S-system A is coflat if, given any elements a of A and s of S with $a \notin As$, there exist elements h, k in S such that sh = sk but $ah \neq ak$.

Proposition 2.1. The following conditions are equivalent for an S-system A:

- (i) A is coflat,
- (ii) A is weakly p-injective,
- (iii) if the equation a = xs, where $a \in A$ and $s \in S$ is soluble in some S-system B containing A, then it has a solution in A.

This result follows from Proposition 3.3 and Corollary 3.5 of [5].

Let A be an S-system, $a \in A$ and $s \in S$, where s is left cancellable. It is immediate from Lemma 3.2 of [5] that the equation a = xs has a solution in some S-system B containing A. Hence, if A is coflat, then a = bs for some $b \in A$ and it follows that A = As. Thus we have proved **Proposition 2.2.** If A is a coflat S-system then A is divisible.

The next result is equally straightforward. Before stating it we recall that an element s of S is left (right) invertible if there exists an element s' of S such that s's = 1 (ss' = 1).

Proposition 2.3. The following conditions are equivalent for the monoid S.

(i) all right S-systems are divisible,

(ii) all right ideals of S are divisible

(iii) S is divisible (as an S-system),

(iv) left cancellable elements of S are left invertible.

Proof. $(i) \Rightarrow (ii) \Rightarrow (iii)$. Clear.

 $(iii) \Rightarrow (iv)$. Let $s \in S$ be left cancellable. Then as S is a divisible S-system there exists an element s' of S with 1 = s's. Thus s is left invertible.

 $(iv) \Rightarrow (i)$. Let a be an element of an S-system A and let s be a left cancellable element of S. From (iv) there is an element s' of S with 1 = s's. Then

$$a = a1 = a(s's) = (as')s.$$

Hence A = As and A is divisible.

In Theorem 2.2 of [6] Knauer and Petrich show that all right S-systems are torsion free if and only if all right cancellable elements are right invertible. Hence

Corollary 2.4. All right S-systems are divisible if and only if all left S-systems are torsion free.

For an S-system A and a subset H of $A \times A$ we denote by $\rho(H)$ the congruence generated by H, that is, the smallest congruence v over A such that $H \subseteq v$.

Lemma 2.5. [10]. The ordered pair (a, b) is in $\rho(H)$ if and only if a = b or there exists a natural number n and a sequence

$$a = c_1 t_1, d_1 t_1 = c_2 t_2, \dots, d_{n-1} t_{n-1} = c_n t_n, d_n t_n = b,$$

where t_1, \ldots, t_n are elements of S and for each $i \in \{1, \ldots, n\}$ either (c_i, d_i) or (d_i, c_i) is in H.

A sequence as in Lemma 2.5 will be referred to as a $\rho(H)$ -sequence of length *n*. For any congruence ρ on *A*, the set of congruence classes of ρ can be made into an *S*system, with the obvious action of *S*. We write A/ρ to denote this *S*-system and $[a]_{\rho}$, or simply [a] where ρ is understood, for the ρ -class of an element *a* of *A*.

We say that an element s of the monoid S is almost regular if there exist elements $r, r_1, \ldots, r_m, s_1, \ldots, s_m$ of S and left cancellable elements c_1, \ldots, c_m of S such that

$$(AR) \ s = srs_1, \ c_i s_i = r_i s_{i+1}, \ (i = 1, \dots, m-1), \ c_m s_m = r_m s_i$$

If $s \in S$ in regular, then taking m=1, $s_1=s$, $c_1=r_1=1$ and r=s' for some inverse s' of s it is clear that s is an almost regular element. However, we note that non-regular elements may be almost regular. For example, a left cancellable element s of a monoid need not be regular but putting m=1, $r=s_1=r_1=1$ and $c_1=s$ one sees that s is almost regular.

If all elements of S are almost regular, then we say that S is an *almost regular* monoid.

We make immediate use of the above ideas in the next proposition, which classifies those monoids for which the notions of a divisible S-system and a coflat S-system coincide.

We point out that in view of the remarks above, all regular monoids and all left cancellative monoids have this property.

Proposition 2.6. All divisible S-systems over the monoid S are coflat if and only if S is almost regular.

Proof. Assume that S is an almost regular monoid. Let A be a divisible S-system and $\theta:sS \rightarrow A$ be an S-homomorphism from a principal right ideal sS of S to A. By hypothesis s is an almost regular element and so there exist elements $r, r_1, \ldots, r_m, s_1, \ldots, s_m$ of S and left cancellable elements c_1, \ldots, c_m of S satisfying (AR). Then

$$\theta(s) = \theta(srs_1) = \theta(sr)s_1$$

and as A is divisible, $\theta(sr) = a_1c_1$ for some element a_1 of A. Hence

$$\theta(s) = (a_1c_1)s_1 = a_1(c_1s_1) = a_1(r_1s_2) = (a_1r_1)s_2.$$

Again by the divisibility of A there is an element a_2 in A such that $a_1r_1 = a_2c_2$. This gives

$$\theta(s) = (a_2c_2)s_2 = a_2(c_2s_2) = a_2(r_2s_3) = (a_2r_2)s_3.$$

Continuing in this manner we obtain

$$\theta(s) = a_m(c_m s_m) = a_m(r_m s) = (a_m r_m)s.$$

Hence θ is given by left multiplication with an element of A; it is easy to see from this that A must be weakly p-injective. Thus A is coflat by Proposition 2.1.

To prove the converse we begin by detailing a construction of a divisible S-system \overline{A} containing an arbitrary given S-system A.

First we let C be the set of left cancellable elements of S and define Σ_0, F_0, K_0 and A_1 as follows:

$$\Sigma_0 = C \times A_1$$

 F_0 is the free S-system on the set $\{x_{\sigma}: \sigma \in \Sigma_0\}$, that is is $F_0 = \bigcup_{\sigma \in \Sigma_0} x_{\sigma}S$,

$$K_0 = \{ (x_\sigma c, a) : \sigma = (c, a) \in \Sigma_0 \},\$$
$$A_1 = (A \cup F_0) / \rho(K_0).$$

https://doi.org/10.1017/S0013091500028261 Published online by Cambridge University Press

190

Suppose now that $a_1, a_2 \in A$ and $[a_1] = [a_2]$ in A_1 . Thus $a_1 = a_2$ or a_1 and a_2 are connected via a $\rho(K_0)$ -sequence, which it is easy to see must be of even length. If

$$a_1 = b_1 t_1, \quad d_1 t_1 = b_2 t_2 \quad d_2 t_2 = a_2$$

is a $\rho(K_0)$ -sequence, then $b_1 \in A$ and $d_1 = x_{\sigma}c$ for some $\sigma = (c, b_1) \in \Sigma_0$. Thus $b_2 = x_{\sigma}c$ and $d_2 = b_1$. From $d_1t_1 = b_2t_2$ it follows that $ct_1 = ct_2$ and so $t_1 = t_2$ as c is left cancellable. Hence

$$a_1 = b_1 t_1 = b_1 t_2 = d_2 t_2 = a_2.$$

We now choose $n \in \mathbb{N}$, n > 0 and make the induction assumption that if m_1, m_2 are elements of A connected by a $\rho(K_0)$ -sequence of (necessarily even) length less than 2n, then $m_1 = m_2$.

Suppose that

$$a_1 = b_1 t_1, \quad d_1 t_1 = b_2 t_2, \dots, d_{2n} t_{2n} = a_2$$

is a $\rho(K_0)$ -sequence connecting a_1 and a_2 . As above, $a_1 = d_2 t_2$ and so

$$a_1 = b_3 t_3, \quad d_3 t_3 = b_4 t_4, \dots, d_{2n} t_{2n} = a_2$$

is a $\rho(K_0)$ -sequence of length 2(n=1) connecting a_1 and a_2 , thus $a_1 = a_2$ by the induction assumption. Hence A is embedded in A_1 and we may identify the element a of A with the element [a] of A_1 .

In a similar manner one constructs a sequence $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$ using $\Sigma_1, \Sigma_2, ..., F_1, F_2, ...$ and $K_1, K_2, ...$ where Σ_i, F_i and K_i are defined using A_i in the same way that Σ_0, F_0 and K_0 are defined in terms of A. Although $\Sigma_0 \subseteq \Sigma_1 \subseteq ...$ at each stage we choose a basis for F_i which is disjoint from the bases used for $F_0, F_1, ..., F_{i-1}$. For ease of notation we make the convention that for $n \in \mathbb{N}$ the $\rho(K_n)$ -class of an element a of $A_n \cup F_n$ will be denoted by $[a]_n$.

Now put $\bar{A} = \bigcup_{i \in \mathbb{N}} A_i$, where A_0 is identified with A. We claim that \bar{A} is divisible.

Let $\bar{a} \in \bar{A}$ and $c \in C$. Then $\bar{a} \in A_n$ for some $n \in \mathbb{N}$ and so $\sigma = (c, \bar{a}) \in \Sigma_n$ and $(y_\sigma c, \bar{a}) \in K_n$, where $\{y_\sigma : \sigma \in \Sigma_n\}$ is the basis for F_n . In A_{n+1} ,

$$\bar{a} = [\bar{a}]_n = [y_\sigma c]_n = [y_\sigma]_n c.$$

Now $[y_{\sigma}]_n$ is an element of A_{n+1} and hence of \overline{A} . Thus \overline{A} is a divisible S-system containing A.

We now assume that all divisible S-systems are coflat. Let s be an element of S. We wish to show that s is almost regular.

The S-system \overline{sS} is divisible and hence is coflat by assumption. Thus the inclusion mapping $\iota:sS \rightarrow \overline{sS}$ can be extended to an S-homomorphism $\psi:S \rightarrow \overline{sS}$. This gives that

$$s = \iota(s) = \psi(s) = \psi(1)s$$

Now $\psi(1) \in (sS)_n$ for some $n \in \mathbb{N}$. If n=0 then s is a regular element, hence s is almost regular. Thus we may assume that $n \ge 1$.

From the construction of $(sS)_n$, $\psi(1)$ is either of the form $\psi(1) = [z_v r_n]_{n-1}$ where $v = (c_n, a_{n-1}), v \in \Sigma_{n-1}, r_n \in S$ and $\{z_v: v \in \Sigma_{n-1}\}$ is the basis of F_{n-1} , or the form $\psi(1) = [m_{n-1}]_{n-1}$ where $m_{n-1} \in (sS)_{n-1}$. In this latter case we note that $\tau = (1, m_{n-1}) \in \Sigma_{n-1}$ and so $\psi(1) = [x_\tau]_{n-1}$, hence we may assume that $\psi(1)$ is of the first form.

Thus $[s]_{n-1} = [z_{\sigma}r_ns]_{n-1}$ for some $\sigma = (c_n, a_{n-1}) \in \Sigma_{n-1}$ and $r_n \in S$. As $s \neq z_{\sigma}r_ns$ there is a $\rho(K_{n-1})$ -sequence

$$z_{\sigma}r_{n}s = b_{1}t_{1}, \quad d_{1}t_{1} = b_{2}t_{2}, \dots, d_{p}t_{p} = s$$

connecting $z_{\sigma}r_ns$ and s in $(sS)_{n-1} \cup F_{n-1}$. Hence $b_1 = z_{\sigma}c_n$ and so $r_ns = c_nt_1$. Further, $d_1 = a_{n-1}$ and as $a_{n-1}t_1$, s are both in $(sS)_{n-1}$ and any two $\rho(K_{n-1})$ -related elements in $(sS)_{n-1}$ are equal in $(sS)_{n-1}$, it follows that $a_{n-1}t_1 = s$.

Either n=1 and so $a_{n-1}=sr$ for some $r \in S$, or n>1. In the latter case we obtain as above $a_{n-2} \in (sS)_{n-2}$, t_2 , $r_{n-1} \in S$ and $c_{n-1} \in C$ such that $r_{n-1}t_1 = c_{n-1}t_2$, $a_{n-2}t_2 = s$. Clearly we may continue in this manner to obtain $s = a_0t_n$ where $a_0 \in sS$ and $t_n \in S$. Thus $s = srt_n$ for some $r \in S$. Then by putting $t_1 = s_n$, $t_2 = s_{n-1}, \ldots, t_n = s_1$ we see that s is almost regular.

Corollary 2.7[7]. All S-systems of the monoid S are coflat if and only if S is regular.

Proof. If S is regular then as noted above, S is almost regular and so all divisible S-systems are coflat. Let s be a left cancellable element of S. Then s = ss's for some $s' \in S$, hence 1 = s's and s is left invertible. Proposition 2.3 gives that all S-systems are divisible, hence all S-systems are coflat.

Conversely, assume that all S-systems are coflat. By Proposition 2.2, all S-systems are divisible and so by Proposition 2.3, left cancellable elements are left invertible.

Let $s \in S$. Since all divisible S-systems are coflat, s is almost regular. Let $r, r_1, \ldots, r_m, s_1, \ldots, s_m$ be elements of S and let c_1, \ldots, c_m be left cancellable elements of S satisfying (AR). For $i \in \{1, \ldots, m\}$ choose $c'_i \in S$ with $c'_i c_i = 1$. Then $s_m = c'_m c_m s_m = c'_m r_m s$ and for $i \in \{1, \ldots, m-1\} s_i = c'_i r_i s_{i+1}$. Now

$$s = srs_1 = src'_1r_1s_2 = \cdots = src'_1r_1c'_2r_2\ldots c'_{m-1}r_{m-1}c'_mr_mS$$

and so s is regular.

3. Divisible *R*-modules

The definition of a weakly (f, p) injective R-module corresponds directly to that of a weakly (f, p) injective S-system. However, the notion of coflatness in R-modules coincides with that of weak f-injectivity [2] and not with weak p-injectivity as in the semigroup case. Further, every weakly-injective R-module is injective [1], whereas this is not true for S-systems. Finally, an R-module M is divisible if M = Mr for every non zero-divisor r of R.

The relations between the above properties of *R*-modules have been extensively investigated. In [8], Ming considers rings for which the properties of divisibility, weak *p*-injectivity and injectivity coincide. The proof of Proposition 2.6, in particular the construction of a divisible S-system \overline{A} containing any given S-system A, suggests that a

similar method might be used to obtain an elementary characterisation of rings over which all divisible R-modules are weakly p-injective. Such a characterisation is obtained in Proposition 3.3.

First we have the straightforward analogues of Propositions 2.2 and 2.3.

Proposition 3.1[8]. If M is a weakly p-injective R-module then M is divisible.

Proposition 3.2. The following conditions are equivalent for a ring R.

- (i) all right R-modules are divisible,
- (ii) all right ideals of R are divisible,
- (iii) R is divisible (as a right R-module),
- (iv) non-zero-divisors in R are left invertible.

A ring R is Von Neumann regular if the multiplicative semigroup of R is regular. We shall refer to Von Neumann regular rings simply as regular rings.

We now state the analogue of Proposition 2.6.

Proposition 3.3 The following conditions are equivalent for a ring R with set of non-zero-divisors C:

(i) all divisible R-modules are weakly p-injective,

(ii) for any element r of R there exist a positive integer n and n finite sets

$$\{s_{i1},\ldots,s_{i,p(i)}\} \qquad (1 \leq i \leq n)$$

of elements of R and n finite sets

 $\{c_{i1},\ldots,c_{i,p(i)}\} \qquad (1 \le i \le n)$

of elements of C such that if $I_j = Rs_{j1} + \cdots + Rs_{j, p(j)}$ (j = 1, ..., n) and $I_{n+1} = Rr$, then

- (a) $r \in rI_1$,
- (b) $c_{ik}s_{ik} \in I_{j+1}$ $(j=1,\ldots,n; k=1,\ldots,p(j)).$

Before giving the proof we make some comments on this result. If r is a regular element of R, then putting n=1, p(1)=1, $s_{11}=r$, $c_{11}=1$, one sees that r satisfies conditions (ii) above. As in the semigroup case, a non-regular element may satisfy (ii). For if $c \in C$, then taking n=1, p(1)=1, $s_{11}=1$, $c_{11}=c$ we have that c satisfies (ii). Thus all non zero-divisors satisfy (ii).

We now prove the propostion.

 $(ii) \Rightarrow (i)$. Let *M* be a divisible *R*-module and let $\theta: rR \rightarrow M$ be an *R*-homomorphism from a principal right ideal *rR* of *R* to *M*. By assumption there exist $n \in \mathbb{N}$ and finite sets of elements

$$\{s_{i1},\ldots,s_{i,p(i)}\}$$
 $(1 \le i \le n), \{c_{i1},\ldots,c_{i,p(i)}\}$ $(1 \le i \le n),$

of R, C respectively, satisfying the conditions of (ii).

В

We have $r \in rI_1 = Rs_{11} + \cdots + Rs_{1,p(1)}$ and so there are elements $r_1, \ldots, r_{p(1)}$ of R such that $r = rr_1s_{11} + \cdots + rr_{p(1)}s_{1,p(1)}$. Since M is divisible, for any $k \in \{1, \ldots, p(1)\}$ there is an element $m_{1,k}$ in M such that $\theta(rr_k) = m_{1,k}c_{1,k}$. Thus

$$\theta(r) = \theta(rr_1)s_{11} + \dots + \theta(rr_{p(1)})s_{1,p(1)}$$
$$= \sum_{k=1}^{p(1)} m_{1,k}c_{1,k}s_{1,k}.$$

Now $I_2 = Rs_{21} + \dots + Rs_{2,p(2)}$ so using (b) there are elements $u_{k,l}$ of $R, k \in \{1, \dots, p(1)\}$, $l \in \{1, \dots, p(2)\}$ such that for $k \in \{1, \dots, p(1)\}$,

$$c_{1,k}s_{1,k} = u_{k,1}s_{21} + \cdots + u_{k,p(2)}s_{2,p(2)}$$

Then

$$\theta(r) = \sum_{k=1}^{p(1)} m_{1,k} \sum_{l=1}^{p(2)} u_{k,l} s_{2,l}$$
$$= \sum_{k=1}^{p(1)} \sum_{l=1}^{p(2)} m_{1,k} u_{k,l} s_{2,l}$$
$$= \sum_{l=1}^{p(2)} v_{2,l} s_{2,l}$$

for some $v_{21}, ..., v_{2, p(2)} \in M$.

Again using the divisibility of M, there are elements $m_{21}, \ldots, m_{2, p(2)}$ of M such that $v_{2,l} = m_{2,l}c_{2,l}$ for $l \in \{1, \ldots, p(2)\}$. Then

$$\theta(r) = \sum_{l=1}^{p(2)} m_{2,l} c_{2,l} s_{2,l} = \sum_{l=1}^{p(2)} m_{2,l} \sum_{k=1}^{p(3)} w_{l,k} s_{3,k}$$

for some elements $w_{l,k}$ of $R, l \in \{1, ..., p(2)\}$, $k \in \{1, ..., p(3)\}$. It follows that there are elements $z_{31}, ..., z_{3, p(3)}$ of M with

$$\theta(r) = \sum_{k=1}^{p(3)} z_{3,k} s_{3,k}.$$

Clearly we may continue in this way to obtain

$$\theta(r) = \sum_{k=1}^{p(n)} x_{n,k} s_{n,k}$$

for some $x_{n,1}, \ldots, x_{n,p(n)} \in M$. Then there are elements $m_{n,1}, \ldots, m_{n,p(n)}$ of M with $x_{n,k} = m_{n,k}c_{n,k}, k \in \{1, \ldots, p(n)\}$. This gives that

$$\theta(r) = \sum_{k=1}^{p(n)} m_{n,k} c_{n,k} s_{n,k}.$$

But for $k \in \{1, \dots, p(n)\}$, $c_{n,k}s_{n,k} = t_k r$ for some $t_k \in R$. Hence

$$\theta(r) = \sum_{k=1}^{p(n)} m_{n,k} t_k r = \left(\sum_{k=1}^{p(n)} m_{n,k} t_k\right) r.$$

Thus θ is given by left multiplication with an element of M. It is then easy to see that θ can be extended to an R-homomorphism $\psi: R \to M$. Since rR and θ were chosen arbitrarily it follows that M is weakly p-injective.

 $(i) \Rightarrow (ii)$. We parallel the proof of Proposition 2.6 by constructing a divisible *R*-module \overline{M} containing an arbitrary given *R*-module *M*.

Let $\Sigma_0 = C \times M$ and let $X_0 = \{x_\sigma : \sigma \in \Sigma_0\}$ be a set in one-one correspondence with Σ_0 . Let F_0 be the free *R*-module on X_0 and put $G_0 = M \oplus F_0$. Now let H_0 be the *R*-submodule of G_0 generated by K_0 where

$$K_0 = \{x_\sigma c - m: \sigma = (c, m) \in \Sigma_0\}.$$

Finally, put $M_1 = G_0/H_0$.

We claim that M is embedded in M_1 . Suppose that $m_1, m_2 \in M$ and $m_1 + H_0 = m_2 + H_0$. Thus $m_1 - m_2 \in H_0$ and so either $m_1 = m_2$ or $m_1 - m_2$ can be expressed as

$$m_1 - m_2 = \sum_{i=1}^n (x_{\sigma_i} c_i - a_i) r_i$$

where $\sigma_i = (c_i, a_i) \in \Sigma_0, r_i \in \mathbb{R} \setminus \{0\}, 1 \leq i \leq n$. Hence

$$m_1 - m_2 = \sum_{i=1}^n x_{\sigma_i} c_i r_i - \sum_{i=1}^n a_i r_i$$

and as c_1, \ldots, c_n are cancellable, $c_i r_i \neq 0$ for $i \in \{1, \ldots, n\}$. Clearly this is impossible. Thus $m_1 = m_2$ and $\phi: M \to M_1$ defined by $\phi(m) = m + H_0$ is an embedding of M into M_1 . We will identify the element m of M with its image $\phi(m)$ in M_1 and consider M as an R-submodule of M_1 .

In a similar manner one constructs a sequence $M_1 \subseteq M_2 \subseteq ...$ using $\Sigma_1, \Sigma_2, ..., F_1, F_2, ..., G_1, G_2, ..., K_1, K_2, ...$ and $H_1, H_2, ...$ where Σ_i, F_i, G_i, K_i and H_i are defined using M_i in the same way that Σ_0, F_0, G_0, K_0 and H_0 are defined in terms of M. Although $\Sigma_0 \subseteq \Sigma_1...$, at each stage we choose for the basis of F_i a set of symbols $\{y_{\sigma}: \sigma \in \Sigma_i\}$ not occurring in $G_0, ..., G_{i-1}$.

We put $\overline{M} = \bigcup_{i=0}^{\infty} M_i$ where $M_0 = M$. Then \overline{M} is an *R*-module containing *M*, further we claim that \overline{M} is divisible. For let $c \in C$ and $\overline{m} \in \overline{M}$. Then $\overline{m} \in M_n$ for some $n \in \mathbb{N}$ and so $\sigma = (c, \overline{m}) \in \Sigma_n$. Thus $y_{\sigma}c - \overline{m} \in K_n$ where $\{y_{\sigma}: \sigma \in \Sigma_n\}$ is used in the construction of G_n . Now in M_{n+1} we are identifying \overline{m} with its image $\overline{m} + H_n$ and so

$$\bar{m} + H_n = \bar{m} + y_\sigma c - \bar{m} + H_n$$
$$= y_\sigma c + H_n = (y_\sigma + H_n)c.$$

As $y_{\sigma} + H_n \in M_{n+1}$ and $M_{n+1} \subseteq \overline{M}$, we have shown that \overline{M} is divisible.

Now let R be a ring with all divisible R-modules weakly p-injective. Let $r \in R$ and form the divisible R-module \overline{rR} containing rR as above. By assumption \overline{rR} is weakly p-injective and so there exists an R-homomorphism $\psi: R \to \overline{rR}$ such that

commutes, where $\iota: rR \to R$ and $\kappa: rR \to \overline{rR}$ are the inclusion mappings. Thus

$$r = \kappa(r) = \psi \iota(r) = \psi(r) = \psi(1)r.$$

By the construction of \overline{rR} , either $\psi(1) \in rR$ or $\psi(1) \in (rR)_n$ for some $n \in \mathbb{N} \setminus \{0\}$. In the former case it is clear that r is a regular element and so (ii) holds for r.

Suppose then that $\psi(1) \in (rR)_n$ where n > 0. We note that we may assume that $r \neq 0$, since 0 is a regular element of R. From the construction of $(rR)_n, \psi(1) = g_{n-1} + H_{n-1}$ for some $g_{n-1} \in G_{n-1}$. Now in $(rR)_n$ we identify r with its image $r + H_{n-1}$ and so

$$r + H_{n-1} = (g_{n-1} + H_{n-1})r = g_{n-1}r + H_{n-1}$$

giving that $g_{n-1}r - r \in H_{n-1}$.

Suppose that $\{z_{\sigma}: \sigma \in \Sigma_{n-1}\}$ is the basis of F_{n-1} used in the construction of G_{n-1} . Then

$$g_{n-1} = m_{n-1} + \sum_{i=1}^{f(n)} z_{\sigma_i} r_i$$

for some $f(n) \in \mathbb{N}$, $m_{n-1} \in (rR)_{n-1}$, $r_1, \ldots, r_{f(n)} \in R$ and distinct $\sigma_1, \ldots, \sigma_{f(n)} \in \Sigma_{n-1}$. However, if $\sigma = (1, m_{n-1})$ then

$$g_{n-1} + H_{n-1} = g_{n-1} + z_{\sigma} - m_{n-1} + H_{n-1}$$
$$= z_{\sigma} + \sum_{i=1}^{f(n)} z_{\sigma_i} r_i + H_{n-1}.$$

Thus we may assume that g_{n-1} has the form

$$g_{n-1} = \sum_{i=1}^{f(n)} z_{\sigma_i} r_i$$

for some $f(n) \in \mathbb{N}, r_1, \ldots, r_n \in \mathbb{R}$ and distinct $\sigma_1, \ldots, \sigma_{f(n)} \in \Sigma_{n-1}$.

We have $g_{n-1}r - r \in H_{n-1}$ and H_{n-1} is generated by K_{n-1} , hence

$$g_{n-1}r - r = \sum_{k=1}^{p(n)} (z_{\nu_k} c_{n,k} - \bar{m}_{n-1,k}) s_{n,k}$$
(1)

for some $p(n) \in \mathbb{N}$, $s_{n,k} \in R$ and distinct $v_k = (c_{n,k}, \overline{m}_{n-1,k}) \in \Sigma_{n-1}$, $k \in \{1, \dots, p(n)\}$. Thus

$$\sum_{i=1}^{f(n)} z_{\sigma_i} r_i r - r = \sum_{k=1}^{p(n)} z_{\nu_k} c_{n,k} S_{n,k} - \sum_{k=1}^{p(n)} \bar{m}_{n-1,k} S_{n,k}.$$

Now $G_{n-1} = (rR)_{n-1} \oplus F_{n-1}$ so that

$$r = \sum_{k=1}^{p(n)} \bar{m}_{n-1,k} s_{n,k}$$

and

$$\sum_{i=1}^{f(n)} z_{\sigma_i} r_i r = \sum_{k=1}^{p(n)} z_{\nu_k} c_{n,k} s_{n,k}.$$

As $r \neq 0$, $s_{n,k} \neq 0$ for some $k \in \{1, ..., p(n)\}$ and so from considering the form of (1) we may assume that $s_{n,k} \neq 0$ for all $k \in \{1, ..., p(n)\}$. Hence $c_{n,k}s_{n,k} \neq 0$ for all $k \in \{1, ..., p(n)\}$. This gives that f(n) = p(n) and for $k \in \{1, ..., p(n)\}$ we have that $c_{n,k}s_{n,k} \in I_{n+1}$ where $I_{n+1} = Rr$.

If n=1 then there exist $a_1, \ldots, a_{p(1)} \in R$ with $\overline{m}_{n-1,k} = ra_k$ for $k \in \{1, \ldots, p(1)\}$. Then

$$r = r \sum_{k=1}^{p(1)} a_k s_{1,k}$$

so that $r \in rI_1$ where $I_1 = Rs_{11} + \cdots + Rs_{1, p(1)}$ and r satisfies (ii).

Otherwise, n > 1 and

$$r+H_{n-2}=\sum_{k=1}^{p(n)}m_{n-1,k}s_{n,k}+H_{n-2},$$

where $m_{n-1,k} + H_{n-2} = \bar{m}_{n-1,k}$, $k \in \{1, \dots, p(n)\}$. Thus

$$\sum_{k=1}^{p(n)} m_{n-1,k} s_{n,k} - r \in H_{n-2}.$$

For $k \in \{1, \ldots, p(n)\}$, $m_{n-1,k} \in G_{n-2}$ and as above we may assume that

$$m_{n-1,k} = \sum_{i=1}^{h(k)} y_{\rho_{k,i}} r_{k,i}$$

where $h(k) \in \mathbb{N}$, $\rho_{k,i} \in \Sigma_{n-2}$, $r_{k,i} \in R$, $i \in \{1, \dots, h(k)\}$ and $\{y_{\rho}: \rho \in \Sigma_{n-2}\}$ is the basis of F_{n-2}

used in the construction of G_{n-2} . Further, we may express $\sum_{k=1}^{p(n)} m_{n-1,k} s_{n,k} - r$ as

$$\sum_{k=1}^{p(n)} m_{n-1,k} s_{n,k} - r = \sum_{j=1}^{p(n-1)} (y_{\mu_j} c_{n-1,j} - \bar{m}_{n-2,j}) s_{n-1,j}$$

where $p(n-1) \in \mathbb{N}$, $s_{n-1,1}, \ldots, s_{n-1,p(n-1)} \in R$ and $\mu_1, \ldots, \mu_{p(n-1)}$ are distinct elements of Σ_{n-2} , where $\mu_j = (c_{n-1,j}, \bar{m}_{n-1})$, $j \in \{1, \ldots, p(n-1)\}$ and as above we may assume that $s_{n-1,j} \neq 0$ for all $j \in \{1, \ldots, p(n-1)\}$. Thus

$$\sum_{k=1}^{p(n)} \sum_{i=1}^{h(k)} y_{\rho_{k,i}} r_{k,i} s_{n,k} - r = \sum_{j=1}^{p(n-1)} y_{\mu_j} c_{n-1,j} s_{n-1,j} - \sum_{j=1}^{p(n-1)} \bar{m}_{n-2,j} s_{n-1,j}.$$

Then

$$r = \sum_{j=1}^{p(n-1)} \bar{m}_{n-2,j} s_{n-1,j}$$

Also, for any $j \in \{1, ..., p(n-1)\}$

$$c_{n-1,j}s_{n-1,j}\in I_n$$

where

$$I_n = Rs_{n,1} + \cdots + Rs_{n,p(n)}.$$

Clearly we may continue in this way to obtain

$$r = \sum_{k=1}^{p(1)} b_k s_{1,k}$$

where $b_1, \ldots, b_{p(1)} \in rR$. Then there exist $d_1, \ldots, d_{p(1)} \in R$ with $b_k = rd_k$, $k \in \{1, \ldots, p(1)\}$ so that

$$r = \sum_{k=1}^{p(1)} r d_k s_{1,k}$$

hence $r \in rI_1$ where

$$I_1 = Rs_{11} + \cdots + Rs_{1,p(1)}$$

and so (ii) holds.

Corollary 3.4[8]. If R is an integral domain then all divisible R-modules are weakly p-injective.

Corollary 3.5[9]. The ring R is regular if and only if all R-modules are weakly p-injective.

198

Proof. If R is a regular ring then it follows as in the case for monoids that all R-modules are weakly *p*-injective.

Conversely, assume that all *R*-modules are weakly *p*-injective. By Propositions 3.2 and 3.3, the non zero-divisors of *R* are left invertible are *R* satisfies condition (ii) of Proposition 3.3.

Let $r \in R$. Then there is a positive integer n and n finite sets

$$\{s_{i,1}, \dots, s_{i,p(i)}\}$$
 $(1 \le i \le n)$

of elements of R and n finite sets

$$\{c_{i,1},\ldots,c_{i,p(i)}\} \qquad (1 \leq i \leq n)$$

of non-zero-divisors of R, satisfying condition (ii). For $j \in \{1, ..., n\}$ and $k \in \{1, ..., p(j)\}$,

$$c_{j,k}s_{j,k} \in I_{j+1}$$

and as $c_{j,k}$ is left invertible, $1 = c'_{j,k}c_{j,k}$ for some $c'_{j,k} \in R$, giving

$$s_{j,k} \in c'_{j,k} I_{j+1} \subseteq I_{j+1}.$$

Hence for $j \in \{1, \ldots, n\}$,

$$I_{j} = Rs_{j,1} + \dots + Rs_{j,p(j)}$$
$$\subseteq RI_{j+1}$$
$$\subseteq I_{j+1}.$$

Thus

$$r \in rI_1 \subseteq rI_2 \subseteq \cdots \subseteq rI_{n+1} = rRr$$

giving that r is regular.

Acknowledgement. The author acknowledges the support of the Science and Engineering Council in the form of a Research Studentship.

REFERENCES

1. F. W. ANDERSON and K. R. FULLER, *Rings and categories of modules* (Graduate Text in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1974).

2. R. F. DAMIANO, Coflat rings and modules, Pacific J. Math. 81 (1979), 349-369.

3. M. P. DOROFEEVA, Hereditary and semi-hereditary monoids, Semigroup Forum 4 (1972), 301-311.

4. J. B. FOUNTAIN, Completely right injective semigroups, Proc. London Math. Soc. 27 (1974), 28-44.

5. V. A. R. GOULD, The characterisation of monoids by properties of their S-systems, Semigroup Forum 32 (1985), 251-265.

6. U. KNAUER and M. PETRICH, The characterisation of monoids by torsion-free flat, projective and free acts, Arch. Math. 36 (1981), 289-294.

7. J. K. LUEDEMAN and F. R. MCMORRIS, Semigroups for which every totally irreducible Ssystem is injective, preprint.

8. R. MING, On injective and p-injective modules, Riv. Mat. Univ. Parma 7 (1981), 187-197.

9. R. MING, On (von Neumann) regular rings, Proc. Edinburgh Math. Soc. 19 (1974), 89-91.

10. P. NORMAK, Purity in the category of M-sets, Semigroup Forum 20 (1980), 157-170.

School of Mathematics University of Bristol University Walk Bristol BS8 1TW England

200