DIVISIBLE S-SYSTEMS AND R-MODULES

by VICTORIA GOULD

(Received 2nd May 1985)

1. Introduction

Throughout this paper S will denote a given monoid and R a given ring with unity. A set A is a right S-system if there is a map $\phi: A \times S \rightarrow A$ satisfying

$$
\phi(a, 1)=a
$$

and

$$
\phi(a, s t)=\phi(\phi(a, s), t)
$$

for any element a of A and any elements s, t of S. For $\phi(a, s)$ we write $a s$ and we refer to right S-systems simply as S-systems. One has the obvious definitions of an S subsystem, an S-homomorphism and a congruence on an S-system. The reader is presumed to be familiar with the basic definitions concerning right R-modules over R. As with S-systems we will refer to right R-modules just as R-modules.

A number of papers have been published which classify monoids by properties of their S-systems, for example [3], [4], [6]. Many of the properties considered are inspired by the corresponding work in ring theory. In a previous paper [5] the author introduced a new concept of a coflat S-system, the definition used being a non-additive analogue of that of a coflat module, as in Proposition 1.3 of [2]. Proposition 3.3 and Corollary 3.4 of [5] together give a characterisation of a coflat S-system in terms of the existence of solutions of certain consistent equations. This suggests it might be of interest to study the connections between coflat and divisible S-systems.

It is easy to characterise monoids over which all S-systems are divisible. This we do in Section 2. We then give a detailed construction of a divisible S-system \bar{A} containing any given S-system A. This construction enables us to classify those monoids for which all divisible S-systems are coflat. In an ensuing paper we generalise this method in order to characterise monoids over which all coflat S-systems are weakly f-injective and monoids over which all weakly f-injective S-systems are weakly injective.

The connections between injectivity and divisibility properties of R-modules have been well-researched (for example, [8]). In the last section we classify those rings R for which the notions of a divisible R-module and a weakly p-injective R-module coincide, using similar methods to those of Section 2.

The relevant definitions for S-systems may be found in Section 2 and for R-modules in Section 3.

I would like to thank Dr J. B. Fountain for several particularly helpful suggestions with regard to this work.

2. Divisible \boldsymbol{S}-systems

As stated in the introduction, S will denote a fixed monoid. We remind the reader that an element s in S is left (right) cancellable if $s a=s b(a s=b s)$, for any elements a, b of S, gives that $a=b$. Then an S-system A is said to be torsion free if, given any elements a, b of A and any right cancellable element s of $S, a s=b s$ implies $a=b$. If $A=A s$ for any left cancellable element s of S, then A is divisible.

An S-system A is weakly $(f-, p-)$ injective if, given any diagram of the form

where I is a (finitely generated, principal) ideal of $S, \imath: I \rightarrow S$ is the inclusion mapping and $\theta: I \rightarrow A$ is an S-homomorphism, then there exists an S-homomorphism $\psi: S \rightarrow A$ such that

commutes.
We now give the definition of a coflat S-system, proposed in [5].
An S-system A is coflat if, given any elements a of A and s of S with $a \notin A s$, there exist elements h, k in S such that $s h=s k$ but $a h \neq a k$.

Proposition 2.1. The following conditions are equivalent for an S-system A :
(i) A is coflat,
(ii) A is weakly p-injective, .
(iii) if the equation $a=x s$, where $a \in A$ and $s \in S$ is soluble in some S-system B containing A, then it has a solution in A.

This result follows from Proposition 3.3 and Corollary 3.5 of [5].
Let A be an S-system, $a \in A$ and $s \in S$, where s is left cancellable. It is immediate from Lemma 3.2 of [5] that the equation $a=x s$ has a solution in some S-system B containing A. Hence, if A is coflat, then $a=b s$ for some $b \in A$ and it follows that $A=A s$. Thus we have proved

Proposition 2.2. If A is a coflat S-system then A is divisible.
The next result is equally straightforward. Before stating it we recall that an element s of S is left (right) invertible if there exists an element s^{\prime} of S such that $s^{\prime} s=1\left(s s^{\prime}=1\right)$.

Proposition 2.3. The following conditions are equivalent for the monoid S.
(i) all right S-systems are divisible,
(ii) all right ideals of S are divisible
(iii) S is divisible (as an S-system),
(iv) left cancellable elements of S are left invertible.

Proof. (i) $\Rightarrow(i i) \Rightarrow(i i i)$. Clear.
(iii) \Rightarrow (iv). Let $s \in S$ be left cancellable. Then as S is a divisible S-system there exists an element s^{\prime} of S with $1=s^{\prime}$. Thus s is left invertible.
$(i v) \Rightarrow(i)$. Let a be an element of an S-system A and let s be a left cancellable element of S. From (iv) there is an element s^{\prime} of S with $1=s^{\prime} s$. Then

$$
a=a 1=a\left(s^{\prime} s\right)=\left(a s^{\prime}\right) s
$$

Hence $A=A s$ and A is divisible.
In Theorem 2.2 of [6] Knauer and Petrich show that all right S-systems are torsion free if and only if all right cancellable elements are right invertible. Hence

Corollary 2.4. All right S-systems are divisible if and only if all left S-systems are torsion free.

For an S-system A and a subset H of $A \times A$ we denote by $\rho(H)$ the congruence generated by H, that is, the smallest congruence v over A such that $H \subseteq v$.

Lemma 2.5. [10]. The ordered pair (a, b) is in $\rho(H)$ if and only if $a=b$ or there exists a natural number n and a sequence

$$
a=c_{1} t_{1}, d_{1} t_{1}=c_{2} t_{2}, \ldots, d_{n-1} t_{n-1}=c_{n} t_{n}, d_{n} t_{n}=b
$$

where t_{1}, \ldots, t_{n} are elements of S and for each $i \in\{1, \ldots, n\}$ either $\left(c_{i}, d_{i}\right)$ or $\left(d_{i}, c_{i}\right)$ is in H.
A sequence as in Lemma 2.5 will be referred to as a $\rho(H)$-sequence of length n. For any congruence ρ on A, the set of congruence classes of ρ can be made into an S system, with the obvious action of S. We write A / ρ to denote this S-system and $[a]_{\rho}$, or simply [a] where ρ is understood, for the ρ-class of an element a of A.

We say that an element s of the monoid S is almost regular if there exist elements $r, r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{m}$ of S and left cancellable elements c_{1}, \ldots, c_{m} of S such that

$$
(A R) s=s r s_{1}, c_{i} s_{i}=r_{i} s_{i+1},(i=1, \ldots, m-1), c_{m} s_{m}=r_{m} s
$$

If $s \in S$ in regular, then taking $m=1, s_{1}=s, c_{1}=r_{1}=1$ and $r=s^{\prime}$ for some inverse s^{\prime} of s it is clear that s is an almost regular element. However, we note that non-regular elements may be almost regular. For example, a left cancellable element s of a monoid need not be regular but putting $m=1, r=s_{1}=r_{1}=1$ and $c_{1}=s$ one sees that s is almost regular.

If all elements of S are almost regular, then we say that S is an almost regular monoid.

We make immediate use of the above ideas in the next proposition, which classifies those monoids for which the notions of a divisible S-system and a coflat S-system coincide.

We point out that in view of the remarks above, all regular monoids and all left cancellative monoids have this property.

Proposition 2.6. All divisible S-systems over the monoid S are coflat if and only if S is almost regular.

Proof. Assume that S is an almost regular monoid. Let A be a divisible S-system and $\theta: s S \rightarrow A$ be an S-homomorphism from a principal right ideal $s S$ of S to A. By hypothesis s is an almost regular element and so there exist elements $r, r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{m}$ of S and left cancellable elements c_{1}, \ldots, c_{m} of S satisfying (AR). Then

$$
\theta(s)=\theta\left(s r s_{1}\right)=\theta(s r) s_{1}
$$

and as A is divisible, $\theta(s r)=a_{1} c_{1}$ for some element a_{1} of A. Hence

$$
\theta(s)=\left(a_{1} c_{1}\right) s_{1}=a_{1}\left(c_{1} s_{1}\right)=a_{1}\left(r_{1} s_{2}\right)=\left(a_{1} r_{1}\right) s_{2} .
$$

Again by the divisibility of A there is an element a_{2} in A such that $a_{1} r_{1}=a_{2} c_{2}$. This gives

$$
\theta(s)=\left(a_{2} c_{2}\right) s_{2}=a_{2}\left(c_{2} s_{2}\right)=a_{2}\left(r_{2} s_{3}\right)=\left(a_{2} r_{2}\right) s_{3}
$$

Continuing in this manner we obtain

$$
\theta(s)=a_{m}\left(c_{m} s_{m}\right)=a_{m}\left(r_{m} s\right)=\left(a_{m} r_{m}\right) s
$$

Hence θ is given by left multiplication with an element of A; it is easy to see from this that A must be weakly p-injective. Thus A is coflat by Proposition 2.1.

To prove the converse we begin by detailing a construction of a divisible S-system \bar{A} containing an arbitrary given S-system A.

First we let C be the set of left cancellable elements of S and define Σ_{0}, F_{0}, K_{0} and A_{1} as follows:

$$
\Sigma_{0}=C \times A,
$$

F_{0} is the free S-system on the set $\left\{x_{\sigma}: \sigma \in \Sigma_{0}\right\}$, that is is $F_{0}=\bigcup_{\sigma \in \Sigma_{0}} x_{\sigma} S$,

$$
\begin{gathered}
K_{0}=\left\{\left(x_{\sigma} c, a\right): \sigma=(c, a) \in \Sigma_{0}\right\}, \\
A_{1}=\left(A \cup F_{0}\right) / \rho\left(K_{0}\right) .
\end{gathered}
$$

Suppose now that $a_{1}, a_{2} \in A$ and $\left[a_{1}\right]=\left[a_{2}\right]$ in A_{1}. Thus $a_{1}=a_{2}$ or a_{1} and a_{2} are connected via a $\rho\left(K_{0}\right)$-sequence, which it is easy to see must be of even length. If

$$
a_{1}=b_{1} t_{1}, \quad d_{1} t_{1}=b_{2} t_{2} \quad d_{2} t_{2}=a_{2}
$$

is a $\rho\left(K_{0}\right)$-sequence, then $b_{1} \in A$ and $d_{1}=x_{\sigma} c$ for some $\sigma=\left(c, b_{1}\right) \in \Sigma_{0}$. Thus $b_{2}=x_{\sigma} c$ and $d_{2}=b_{1}$. From $d_{1} t_{1}=b_{2} t_{2}$ it follows that $c t_{1}=c t_{2}$ and so $t_{1}=t_{2}$ as c is left cancellable. Hence

$$
a_{1}=b_{1} t_{1}=b_{1} t_{2}=d_{2} t_{2}=a_{2} .
$$

We now choose $n \in \mathbb{N}, n>0$ and make the induction assumption that if m_{1}, m_{2} are elements of A connected by a $\rho\left(K_{0}\right)$-sequence of (necessarily even) length less than $2 n$, then $m_{1}=m_{2}$.

Suppose that

$$
a_{1}=b_{1} t_{1}, \quad d_{1} t_{1}=b_{2} t_{2}, \ldots, d_{2 n} t_{2 n}=a_{2}
$$

is a $\rho\left(K_{0}\right)$-sequence connecting a_{1} and a_{2}. As above, $a_{1}=d_{2} t_{2}$ and so

$$
a_{1}=b_{3} t_{3}, \quad d_{3} t_{3}=b_{4} t_{4}, \ldots, d_{2 n} t_{2 n}=a_{2}
$$

is a $\rho\left(K_{0}\right)$-sequence of length $2(n=1)$ connecting a_{1} and a_{2}, thus $a_{1}=a_{2}$ by the induction assumption. Hence A is embedded in A_{1} and we may identify the element a of A with the element [a] of A_{1}.

In a similar manner one constructs a sequence $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$ using $\Sigma_{1}, \Sigma_{2}, \ldots$, F_{1}, F_{2}, \ldots and K_{1}, K_{2}, \ldots where Σ_{i}, F_{i} and K_{i} are defined using A_{i} in the same way that Σ_{0}, F_{0} and K_{0} are defined in terms of A. Although $\Sigma_{0} \subseteq \Sigma_{1} \subseteq \ldots$ at each stage we choose a basis for F_{i} which is disjoint from the bases used for $F_{0}, F_{1}, \ldots, F_{i-1}$. For ease of notation we make the convention that for $n \in \mathbb{N}$ the $\rho\left(K_{n}\right)$-class of an element a of $A_{n} \cup F_{n}$ will be denoted by $[a]_{n}$.

Now put $\bar{A}=\bigcup_{i \in N} A_{i}$, where $A_{\mathbf{0}}$ is identified with A. We claim that \bar{A} is divisible.
Let $\bar{a} \in \bar{A}$ and $c \in C$. Then $\bar{a} \in A_{n}$ for some $n \in \mathbb{N}$ and so $\sigma=(c, \bar{a}) \in \Sigma_{n}$ and $\left(y_{\sigma} c, \bar{a}\right) \in K_{n}$, where $\left\{y_{a}: \sigma \in \Sigma_{n}\right\}$ is the basis for F_{n}. In A_{n+1},

$$
\bar{a}=[\bar{a}]_{n}=\left[y_{\sigma} c\right]_{n}=\left[y_{\sigma}\right]_{n} c .
$$

Now $\left[y_{\sigma}\right]_{n}$ is an element of A_{n+1} and hence of \bar{A}. Thus \bar{A} is a divisible S-system containing A.

We now assume that all divisible S-systems are coflat. Let s be an element of S. We wish to show that s is almost regular.

The S-system $\overline{s S}$ is divisible and hence is coflat by assumption. Thus the inclusion mapping $t: s S \rightarrow \bar{s} \bar{S}$ can be extended to an S-homomorphism $\psi: S \rightarrow \overline{s S}$. This gives that

$$
s=t(s)=\psi(s)=\psi(1) s
$$

Now $\psi(1) \in(s S)_{n}$ for some $n \in \mathbb{N}$. If $n=0$ then s is a regular element, hence s is almost regular. Thus we may assume that $n \geqq 1$.

From the construction of $(s S)_{n}, \psi(1)$ is either of the form $\psi(1)=\left[z_{v} r_{n}\right]_{n-1}$ where $v=\left(c_{n}, a_{n-1}\right), v \in \Sigma_{n-1}, r_{n} \in S$ and $\left\{z_{v} v v \in \Sigma_{n-1}\right\}$ is the basis of F_{n-1}, or the form $\psi(1)=$ $\left[m_{n-1}\right]_{n-1}$ where $m_{n-1} \in(s S)_{n-1}$. In this latter case we note that $\tau=\left(1, m_{n-1}\right) \in \Sigma_{n-1}$ and so $\psi(1)=\left[x_{\tau}\right]_{n-1}$, hence we may assume that $\psi(1)$ is of the first form.

Thus $[s]_{n-1}=\left[z_{\sigma} r_{n} s\right]_{n-1}$ for some $\sigma=\left(c_{n}, a_{n-1}\right) \in \Sigma_{n-1}$ and $r_{n} \in S$. As $s \neq z_{\sigma} r_{n} s$ there is a $\rho\left(K_{n-1}\right)$-sequence

$$
z_{\sigma} r_{n} s=b_{1} t_{1}, \quad d_{1} t_{1}=b_{2} t_{2}, \ldots, d_{p} t_{p}=s
$$

connecting $z_{\sigma} r_{n} s$ and s in $(s S)_{n-1} \cup F_{n-1}$. Hence $b_{1}=z_{\sigma} c_{n}$ and so $r_{n} s=c_{n} t_{1}$. Further, $d_{1}=a_{n-1}$ and as $a_{n-1} t_{1}, s$ are both in $(s S)_{n-1}$ and any two $\rho\left(K_{n-1}\right)$-related elements in $(s S)_{n-1}$ are equal in $(s S)_{n-1}$, it follows that $a_{n-1} t_{1}=s$.

Either $n=1$ and so $a_{n-1}=s r$ for some $r \in S$, or $n>1$. In the latter case we obtain as above $a_{n-2} \in(s S)_{n-2}, t_{2}, r_{n-1} \in S$ and $c_{n-1} \in C$ such that $r_{n-1} t_{1}=c_{n-1} t_{2}, a_{n-2} t_{2}=s$. Clearly we may continue in this manner to obtain $s=a_{0} t_{n}$ where $a_{0} \in s S$ and $t_{n} \in S$. Thus $s=s r t_{n}$ for some $r \in S$. Then by putting $t_{1}=s_{n}, t_{2}=s_{n-1}, \ldots, t_{n}=s_{1}$ we see that s is almost regular.

Corollary 2.7[7]. All S-systems of the monoid S are coflat if and only if S is regular.
Proof. If S is regular then as noted above, S is almost regular and so all divisible S systems are coflat. Let s be a left cancellable element of S. Then $s=s s^{\prime} s$ for some $s^{\prime} \in S$, hence $1=s^{\prime} s$ and s is left invertible. Proposition 2.3 gives that all S-systems are divisible, hence all S-systems are coflat.

Conversely, assume that all S-systems are coflat. By Proposition 2.2, all S-systems are divisible and so by Proposition 2.3, left cancellable elements are left invertible.

Let $s \in S$. Since all divisible S-systems are coflat, s is almost regular. Let $r, r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{m}$ be elements of S and let c_{1}, \ldots, c_{m} be left cancellable elements of S satisfying (AR). For $i \in\{1, \ldots, m\}$ choose $c_{i}^{\prime} \in S$ with $c_{i}^{\prime} c_{i}=1$. Then $s_{m}=c_{m}^{\prime} c_{m} s_{m}=c_{m}^{\prime} r_{m} s$ and for $i \in\{1, \ldots, m-1\} s_{i}=c_{i}^{\prime} r_{i} s_{i+1}$. Now

$$
s=s r s_{1}=s r c_{1}^{\prime} r_{1} s_{2}=\cdots=s r c_{1}^{\prime} r_{1} c_{2}^{\prime} r_{2} \ldots c_{m-1}^{\prime} r_{m-1} c_{m}^{\prime} r_{m} S
$$

and so s is regular.

3. Divisible R-modules

The definition of a weakly (f-, p-) injective R-module corresponds directly to that of a weakly (f-, p-) injective S-system. However, the notion of coflatness in R-modules coincides with that of weak f-injectivity [2] and not with weak p-injectivity as in the semigroup case. Further, every weakly-injective R-module is injective [1], whereas this is not true for S-systems. Finally, an R-module M is divisible if $M=M r$ for every non zero-divisor r of R.

The relations between the above properties of R-modules have been extensively investigated. In [8], Ming considers rings for which the properties of divisibility, weak p-injectivity and injectivity coincide. The proof of Proposition 2.6 , in particular the construction of a divisible S-system \bar{A} containing any given S-system A, suggests that a
similar method might be used to obtain an elementary characterisation of rings over which all divisible R-modules are weakly p-injective. Such a characterisation is obtained in Proposition 3.3.

First we have the straightforward analogues of Propositions 2.2 and 2.3.
Proposition 3.1[8]. If M is a weakly p-injective R-module then M is divisible.
Proposition 3.2. The following conditions are equivalent for a ring R.
(i) all right R-modules are divisible,
(ii) all right ideals of R are divisible,
(iii) R is divisible (as a right R-module),
(iv) non-zero-divisors in R are left invertible.

A ring R is Von Neumann regular if the multiplicative semigroup of R is regular. We shall refer to Von Neumann regular rings simply as regular rings.

We now state the analogue of Proposition 2.6.
Proposition 3.3 The following conditions are equivalent for a ring R with set of non-zero-divisors C :
(i) all divisible R-modules are weakly p-injective,
(ii) for any element r of R there exist a positive integer n and n finite sets

$$
\left\{s_{i 1}, \ldots, s_{i, p(i)}\right\} \quad(1 \leqq i \leqq n)
$$

of elements of R and n finite sets

$$
\left\{c_{i 1}, \ldots, c_{i, p(i)}\right\} \quad(1 \leqq i \leqq n)
$$

of elements of C such that if $I_{j}=R s_{j 1}+\cdots+R s_{j, p(j)}(j=1, \ldots, n)$ and $I_{n+1}=R r$, then
(a) $r \in r I_{1}$,
(b) $c_{j k} s_{j k} \in I_{j+1}(j=1, \ldots, n ; k=1, \ldots, p(j))$.

Before giving the proof we make some comments on this result. If r is a regular element of R, then putting $n=1, p(1)=1, s_{11}=r, c_{11}=1$, one sees that r satisfies conditions (ii) above. As in the semigroup case, a non-regular element may satisfy (ii). For if $c \in C$, then taking $n=1, p(1)=1, s_{11}=1, c_{11}=c$ we have that c satisfies (ii). Thus all non zero-divisors satisfy (ii).

We now prove the propostion.
(ii) $\Rightarrow(i)$. Let M be a divisible R-module and let $\theta: r R \rightarrow M$ be an R-homomorphism from a principal right ideal $r R$ of R to M. By assumption there exist $n \in \mathbb{N}$ and finite sets of elements

$$
\left\{s_{i 1}, \ldots, s_{i, p(i)}\right\}(1 \leqq i \leqq n),\left\{c_{i 1}, \ldots, c_{i, p(i)}\right\}(1 \leqq i \leqq n)
$$

of R, C respectively, satisfying the conditions of (ii).

We have $r \in r I_{1}=R s_{11}+\cdots+R s_{1, p(1)}$ and so there are elements $r_{1}, \ldots, r_{p(1)}$ of R such that $r=r r_{1} s_{11}+\cdots+r r_{p(1)} s_{1, p(1)}$. Since M is divisible, for any $k \in\{1, \ldots, p(1)\}$ there is an element $m_{1, k}$ in M such that $\theta\left(r r_{k}\right)=m_{1, k} c_{1, k}$. Thus

$$
\begin{aligned}
\theta(r) & =\theta\left(r r_{1}\right) s_{11}+\cdots+\theta\left(r r_{p(1)}\right) s_{1, p(1)} \\
& =\sum_{k=1}^{p(1)} m_{1, k} c_{1, k} s_{1, k} .
\end{aligned}
$$

Now $I_{2}=R s_{21}+\cdots+R s_{2, p(2)}$ so using (b) there are elements $u_{k, l}$ of $R, k \in\{1, \ldots, p(1)\}$, $l \in\{1, \ldots, p(2)\}$ such that for $k \in\{1, \ldots, p(1)\}$,

$$
c_{1, k} s_{1, k}=u_{k, 1} s_{21}+\cdots+u_{k, p(2)} s_{2, p(2)} .
$$

Then

$$
\begin{aligned}
\theta(r) & =\sum_{k=1}^{p(1)} m_{1, k} \sum_{l=1}^{p(2)} u_{k, l} s_{2, l} \\
& =\sum_{k=1}^{p(1)} \sum_{l=1}^{p(2)} m_{1, k} u_{k, l} s_{2, l} \\
& =\sum_{l=1}^{p(2)} v_{2, l} s_{2, l}
\end{aligned}
$$

for some $v_{21}, \ldots, v_{2, p(2)} \in M$.
Again using the divisibility of M, there are elements $m_{21}, \ldots, m_{2, p(2)}$ of M such that $v_{2, l}=m_{2, l} c_{2, l}$ for $l \in\{1, \ldots, p(2)\}$. Then

$$
\theta(r)=\sum_{l=1}^{p(2)} m_{2, l} c_{2, l} s_{2, l}=\sum_{l=1}^{p(2)} m_{2, l} \sum_{k=1}^{p(3)} w_{l, k} s_{3, k}
$$

for some elements $w_{l, k}$ of $R, l \in\{1, \ldots, p(2)\}, k \in\{1, \ldots, p(3)\}$. It follows that there are elements $z_{31}, \ldots, z_{3, p(3)}$ of M with

$$
\theta(r)=\sum_{k=1}^{p(3)} z_{3, k} s_{3, k} .
$$

Clearly we may continue in this way to obtain

$$
\theta(r)=\sum_{k=1}^{p(n)} x_{n, k} s_{n, k}
$$

for some $x_{n, 1}, \ldots, x_{n, p(n)} \in M$. Then there are elements $m_{n, 1}, \ldots, m_{n, p(n)}$ of M with $x_{n, k}=$ $m_{n, k} c_{n, k}, k \in\{1, \ldots, p(n)\}$. This gives that

$$
\theta(r)=\sum_{k=1}^{p(n)} m_{n, k} c_{n, k} s_{n, k} .
$$

But for $k \in\{1, \ldots, p(n)\}, c_{n, k} s_{n, k}=t_{k} r$ for some $t_{k} \in R$. Hence

$$
\theta(r)=\sum_{k=1}^{p(n)} m_{n, k} t_{k} r=\left(\sum_{k=1}^{p(n)} m_{n, k} t_{k}\right) r .
$$

Thus θ is given by left multiplication with an element of M. It is then easy to see that θ can be extended to an R-homomorphism $\psi: R \rightarrow M$. Since $r R$ and θ were chosen arbitrarily it follows that M is weakly p-injective.
(i) $\Rightarrow(i i)$. We parallel the proof of Proposition 2.6 by constructing a divisible R module \bar{M} containing an arbitrary given R-module M.

Let $\Sigma_{0}=C \times M$ and let $X_{0}=\left\{x_{\sigma}: \sigma \in \Sigma_{0}\right\}$ be a set in one-one correspondence with Σ_{0}. Let F_{0} be the free R-module on X_{0} and put $G_{0}=M \oplus F_{0}$. Now let H_{0} be the R submodule of G_{0} generated by K_{0} where

$$
K_{0}=\left\{x_{\sigma} c-m: \sigma=(c, m) \in \Sigma_{0}\right\} .
$$

Finally, put $M_{1}=G_{0} / H_{0}$.
We claim that M is embedded in M_{1}. Suppose that $m_{1}, m_{2} \in M$ and $m_{1}+H_{0}=m_{2}+H_{0}$. Thus $m_{1}-m_{2} \in H_{0}$ and so either $m_{1}=m_{2}$ or $m_{1}-m_{2}$ can be expressed as

$$
m_{1}-m_{2}=\sum_{i=1}^{n}\left(x_{\sigma_{i}} c_{i}-a_{i}\right) r_{i}
$$

where $\sigma_{i}=\left(c_{i}, a_{i}\right) \in \Sigma_{0}, r_{i} \in R \backslash\{0\}, 1 \leqq i \leqq n$. Hence

$$
m_{1}-m_{2}=\sum_{i=1}^{n} x_{\sigma_{i}} c_{i} r_{i}-\sum_{i=1}^{n} a_{i} r_{i}
$$

and as c_{1}, \ldots, c_{n} are cancellable, $c_{i} r_{i} \neq 0$ for $i \in\{1, \ldots, n\}$. Clearly this is impossible. Thus $m_{1}=m_{2}$ and $\phi: M \rightarrow M_{1}$ defined by $\phi(m)=m+H_{0}$ is an embedding of M into M_{1}. We will identify the element m of M with its image $\phi(m)$ in M_{1} and consider M as an R submodule of M_{1}.

In a similar manner one constructs a sequence $M_{1} \subseteq M_{2} \subseteq \ldots$ using $\Sigma_{1}, \Sigma_{2}, \ldots$, $F_{1}, F_{2}, \ldots, G_{1}, G_{2}, \ldots, K_{1}, K_{2}, \ldots$ and H_{1}, H_{2}, \ldots where $\Sigma_{i}, F_{i}, G_{i}, K_{i}$ and H_{i} are defined using M_{i} in the same way that $\Sigma_{0}, F_{0}, G_{0}, K_{0}$ and H_{0} are defined in terms of M. Although $\Sigma_{0} \subseteq \Sigma_{1} \ldots$, at each stage we choose for the basis of F_{i} a set of symbols $\left\{y_{a}: \sigma \in \Sigma_{i}\right\}$ not occurring in G_{0}, \ldots, G_{i-1}.

We put $\bar{M}=\bigcup_{i=0}^{\infty} M_{i}$ where $M_{0}=M$. Then \bar{M} is an R-module containing M, further we claim that \bar{M} is divisible. For let $c \in C$ and $\bar{m} \in \bar{M}$. Then $\bar{m} \in M_{n}$ for some $n \in \mathbb{N}$ and so $\sigma=(c, \bar{m}) \in \Sigma_{n}$. Thus $y_{\sigma} c-\bar{m} \in K_{n}$ where $\left\{y_{\sigma}: \sigma \in \Sigma_{n}\right\}$ is used in the construction of G_{n}. Now in M_{n+1} we are identifying \bar{m} with its image $\bar{m}+H_{n}$ and so

$$
\begin{aligned}
\bar{m}+H_{n} & =\bar{m}+y_{\sigma} c-\bar{m}+H_{n} \\
& =y_{\sigma} c+H_{n}=\left(y_{\sigma}+H_{n}\right) c .
\end{aligned}
$$

As $y_{\sigma}+H_{n} \in M_{n+1}$ and $M_{n+1} \subseteq \bar{M}$, we have shown that \bar{M} is divisible.

Now let R be a ring with all divisible R-modules weakly p-injective. Let $r \in R$ and form the divisible R-module $\overline{r R}$ containing $r R$ as above. By assumption $\overline{r R}$ is weakly p-injective and so there exists an R-homomorphism $\psi: R \rightarrow \overline{r R}$ such that

commutes, where $t: r R \rightarrow R$ and $\kappa: r R \rightarrow \overline{r R}$ are the inclusion mappings. Thus

$$
r=\kappa(r)=\psi l(r)=\psi(r)=\psi(1) r .
$$

By the construction of $\overline{r R}$, either $\psi(1) \in r R$ or $\psi(1) \in(r R)_{n}$ for some $n \in \mathbb{N} \backslash\{0\}$. In the former case it is clear that r is a regular element and so (ii) holds for r.

Suppose then that $\psi(1) \in(r R)_{n}$ where $n>0$. We note that we may assume that $r \neq 0$, since 0 is a regular element of R. From the construction of $(r R)_{n}, \psi(1)=g_{n-1}+H_{n-1}$ for some $g_{n-1} \in G_{n-1}$. Now in $(r R)_{n}$ we identify r with its image $r+H_{n-1}$ and so

$$
r+H_{n-1}=\left(g_{n-1}+H_{n-1}\right) r=g_{n-1} r+H_{n-1}
$$

giving that $g_{n-1} r-r \in H_{n-1}$.
Suppose that $\left\{z_{\sigma}: \sigma \in \Sigma_{n-1}\right\}$ is the basis of F_{n-1} used in the construction of G_{n-1}. Then

$$
, g_{n-1}=m_{n-1}+\sum_{i=1}^{f(n)} z_{\sigma_{i}} r_{i}
$$

for some $f(n) \in \mathbb{N}, \quad m_{n-1} \in(r R)_{n-1}, \quad r_{1}, \ldots, r_{f(n)} \in R$ and distinct $\sigma_{1}, \ldots, \sigma_{f(n)} \in \Sigma_{n-1}$. However, if $\sigma=\left(1, m_{n-1}\right)$ then

$$
\begin{aligned}
g_{n-1}+H_{n-1} & =g_{n-1}+z_{\sigma}-m_{n-1}+H_{n-1} \\
& =z_{\sigma}+\sum_{i=1}^{f(n)} z_{\sigma_{i}} r_{i}+H_{n-1} .
\end{aligned}
$$

Thus we may assume that g_{n-1} has the form

$$
g_{n-1}=\sum_{i=1}^{f(n)} z_{\sigma_{i}} r_{i}
$$

for some $f(n) \in \mathbb{N}, r_{1}, \ldots, r_{n} \in R$ and distinct $\sigma_{1}, \ldots, \sigma_{f(n)} \in \Sigma_{n-1}$.

We have $g_{n-1} r-r \in H_{n-1}$ and H_{n-1} is generated by K_{n-1}, hence

$$
\begin{equation*}
g_{n-1} r-r=\sum_{k=1}^{p(n)}\left(z_{v_{k}} c_{n, k}-\bar{m}_{n-1, k}\right) s_{n, k} \tag{1}
\end{equation*}
$$

for some $p(n) \in \mathbb{N}, s_{n, k} \in R$ and distinct $v_{k}=\left(c_{n, k}, \bar{m}_{n-1, k}\right) \in \Sigma_{n-1}, k \in\{1, \ldots, p(n)\}$. Thus

$$
\sum_{i=1}^{f(n)} z_{\sigma_{i}} r_{i} r-r=\sum_{k=1}^{p(n)} z_{v_{k}} c_{n, k} S_{n, k}-\sum_{k=1}^{p(n)} \bar{m}_{n-1, k} S_{n, k} .
$$

Now $G_{n-1}=(r R)_{n-1} \oplus F_{n-1}$ so that

$$
r=\sum_{k=1}^{p(n)} \bar{m}_{n-1, k} s_{n, k}
$$

and

$$
\sum_{i=1}^{f(n)} z_{\sigma_{i}} r_{i} r=\sum_{k=1}^{p(n)} z_{v_{k}} c_{n, k} s_{n, k} .
$$

As $r \neq 0, s_{n, k} \neq 0$ for some $k \in\{1, \ldots, p(n)\}$ and so from considering the form of (1) we may assume that $s_{n, k} \neq 0$ for all $k \in\{1, \ldots, p(n)\}$. Hence $c_{n, k} s_{n, k} \neq 0$ for all $k \in\{1, \ldots, p(n)\}$. This gives that $f(n)=p(n)$ and for $k \in\{1, \ldots, p(n)\}$ we have that $c_{n, k} s_{n, k} \in I_{n+1}$ where $I_{n+1}=R r$.

If $n=1$ then there exist $a_{1}, \ldots, a_{p(1)} \in R$ with $\bar{m}_{n-1, k}=r a_{k}$ for $k \in\{1, \ldots, p(1)\}$. Then

$$
r=r \sum_{k=1}^{p(1)} a_{k} s_{1, k}
$$

so that $r \in r I_{1}$ where $I_{1}=R s_{11}+\cdots+R s_{1, p(1)}$ and r satisfies (ii).
Otherwise, $n>1$ and

$$
r+H_{n-2}=\sum_{k=1}^{p(n)} m_{n-1, k} s_{n, k}+H_{n-2}
$$

where $m_{n-1, k}+H_{n-2}=\bar{m}_{n-1, k}, k \in\{1, \ldots, p(n)\}$. Thus

$$
\sum_{k=1}^{p(n)} m_{n-1, k} s_{n, k}-r \in H_{n-2}
$$

For $k \in\{1, \ldots, p(n)\}, m_{n-1, k} \in G_{n-2}$ and as above we may assume that

$$
m_{n-1, k}=\sum_{i=1}^{h(k)} y_{\rho_{k, i}} r_{k, i}
$$

where $h(k) \in \mathbb{N}, \rho_{k, i} \in \Sigma_{n-2}, r_{k, i} \in R, i \in\{1, \ldots, h(k)\}$ and $\left\{y_{\rho}: \rho \in \Sigma_{n-2}\right\}$ is the basis of F_{n-2}
used in the construction of G_{n-2}. Further, we may express $\sum_{k=1}^{p(n)} m_{n-1, k} s_{n, k}-r$ as

$$
\sum_{k=1}^{p(n)} m_{n-1, k} s_{n, k}-r=\sum_{j=1}^{p(n-1)}\left(y_{\mu_{j}} c_{n-1, j}-\bar{m}_{n-2, j}\right) s_{n-1, j}
$$

where $p(n-1) \in \mathbb{N}, s_{n-1.1}, \ldots, s_{n-1, p(n-1)} \in R$ and $\mu_{1}, \ldots, \mu_{p(n-1)}$ are distinct elements of Σ_{n-2}, where $\mu_{j}=\left(c_{n-1, j}, \bar{m}_{n-1}\right), j \in\{1, \ldots, p(n-1)\}$ and as above we may assume that $s_{n-1, j} \neq 0$ for all $j \in\{1, \ldots, p(n-1)\}$. Thus

$$
\sum_{k=1}^{p(n)} \sum_{i=1}^{h(k)} y_{\rho_{k, i}} r_{k, i} S_{n, k}-r=\sum_{j=1}^{p(n-1)} y_{\mu_{j}} c_{n-1, j} S_{n-1, j}-\sum_{j=1}^{p(n-1)} \bar{m}_{n-2, j} S_{n-1, j}
$$

Then

$$
r=\sum_{j=1}^{p(n-1)} \bar{m}_{n-2, j} S_{n-1, j}
$$

Also, for any $j \in\{1, \ldots, p(n-1)\}$

$$
c_{n-1, j} S_{n-1, j} \in I_{n}
$$

where

$$
I_{n}=R s_{n, 1}+\cdots+R s_{n, p(n)} .
$$

Clearly we may continue in this way to obtain

$$
r=\sum_{k=1}^{p(1)} b_{k} s_{1, k}
$$

where $b_{1}, \ldots, b_{p(1)} \in r R$. Then there exist $d_{1}, \ldots, d_{p(1)} \in R$ with $b_{k}=r d_{k}, k \in\{1, \ldots, p(1)\}$ so that

$$
r=\sum_{k=1}^{p(1)} r d_{k} s_{1, k}
$$

hence $r \in r I_{1}$ where

$$
I_{1}=R s_{11}+\cdots+R s_{1, p(1)}
$$

and so (ii) holds.
Corollary 3.4[8]. If R is an integral domain then all divisible R-modules are weakly p injective.

Corollary 3.5[9]. The ring R is regular if and only if all R-modules are weakly p injective.

Proof. If R is a regular ring then it follows as in the case for monoids that all R modules are weakly p-injective.

Conversely, assume that all R-modules are weakly p-injective. By Propositions 3.2 and 3.3, the non zero-divisors of R are left invertible are R satisfies condition (ii) of Proposition 3.3.

Let $r \in R$. Then there is a positive integer n and n finite sets

$$
\left\{s_{i, 1}, \ldots, s_{i, p(i)}\right\} \quad(1 \leqq i \leqq n)
$$

of elements of R and n finite sets

$$
\left\{c_{i, 1}, \ldots, c_{i, p(i)}\right\} \quad(1 \leqq i \leqq n)
$$

of non-zero-divisors of R, satisfying condition (ii). For $j \in\{1, \ldots, n\}$ and $k \in\{1, \ldots, p(j)\}$,

$$
c_{j, k} s_{j, k} \in I_{j+1}
$$

and as $c_{j, k}$ is left invertible, $1=c_{j, k}^{\prime} c_{j, k}$ for some $c_{j, k}^{\prime} \in R$, giving

$$
s_{j, k} \in c_{j, k}^{\prime} I_{j+1} \subseteq I_{j+1} .
$$

Hence for $j \in\{1, \ldots, n\}$;

$$
\begin{aligned}
I_{j} & =R s_{j, 1}+\cdots+R s_{j, p(j)} \\
& \subseteq R I_{j+1} \\
& \subseteq I_{j+1}
\end{aligned}
$$

Thus

$$
r \in r I_{1} \subseteq r I_{2} \subseteq \cdots \subseteq r I_{n+1}=r R r
$$

giving that r is regular.

Acknowledgement. The author acknowledges the support of the Science and Engineering Council in the form of a Research Studentship.

REFERENCES

1. F. W. Anderson and K. R. Fuller, Rings and categories of modules (Graduate Text in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1974).
2. R. F. Damiano, Coflat rings and modules, Pacific J. Math. 81 (1979), 349-369.
3. M. P. Dorofeeva, Hereditary and semi-hereditary monoids, Semigroup Forum 4 (1972), 301311.
4. J. B. Fountain, Completely right injective semigroups, Proc. London Math. Soc. 27 (1974), 28-44.
5. V. A. R. Gould, The characterisation of monoids by properties of their S-systems, Semigroup Forum 32 (1985), 251-265.
6. U. Knauer and M. Petrich, The characterisation of monoids by torsion-free flat, projective and free acts, Arch. Math. 36 (1981), 289-294.
7. J. K. Luedeman and F. R. McMorris, Semigroups for which every totally irreducible S system is injective, preprint.
8. R. Ming, On injective and p-injective modules, Riv. Mat. Univ. Parma 7 (1981), 187-197.
9. R. Ming, On (von Neumann) regular rings, Proc. Edinburgh Math. Soc. 19 (1974), 89-91.
10. P. Normak, Purity in the category of M-sets, Semigroup Forum 20 (1980), 157-170.

School of Mathematics
University of Bristol
University Walk
Bristol BS8 1TW
England

