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The description of the feedback mechanism is one of the crucial points in the
understanding of self-sustained flow oscillations, such as the edge tone or the cavity tone.
In this paper a new model for the edge tone, using linear adjoint modes is proposed for low
speeds, when acoustic effects are negligible. The two crucial points of the model are (i) a
new relationship between the jet oscillation and the generated vortex at the edge tip and
(ii) a new model for the effect of the generated vortex on the oscillation. The frequency
corresponding to the optimum open-loop gain of the feedback mechanism was compared
with experimental data and good agreement was found.
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1. Introduction

The edge tone is one of the basic aeroacoustic configurations. It consists of a fully
developed plane jet emerging from a nozzle, and a wedge placed in front of the nozzle.
The jet is unstable, and a self-sustained oscillation develops at certain parameters.
Although the edge tone was first observed 150 years ago, the feedback mechanism
responsible for the self-sustained oscillation has not been fully understood (Fabre &
Hirschberg 2000; Vaik, Varga & Paál 2014a). With the variation of the parameters, jumps
can be observed in the frequency of the oscillations, also producing hysteretic behaviour
with respect to the direction of the parameter change (Brown 1937b). The coexistence
of multiple frequencies has also been observed both in experiments and numerical
simulations (Kaykayoglu & Rockwell 1986b; Ohring 1986). It was shown experimentally
that at low speeds the feedback can be considered purely hydrodynamic and at high speeds
the acoustic effects become significant (Brown 1937b). The high sensitivity of the jet for
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both fields at the orifice, found experimentally by Brown (1935) and numerically by Nagy
& Paál (2016), plays a significant role in the feedback.

Brown (1937b) summarised the first papers and carried out well-documented careful
experiments to clarify the previous controversial experimental results. He examined the
frequency of the oscillation in a jet issuing from a short nozzle (implying top-hat velocity
profile), while varying the nozzle–edge distance and the jet velocity. He observed the
various well known characteristics of the flow: the different stages, the hysteresis between
them and the coexistence of the first stage with higher ones. He also noted that in different
stages the degree to which the vortex growing from the shear layer develops varies, i.e. the
vortex interacts with the edge at a different phase. He was the first to report that the edge
tone activity requires an unstable jet. He applied external acoustic forcing to the jet–edge
oscillations and found that at higher stages the system is much more receptive to acoustic
excitation. This observation implies that in these stages the acoustic feedback is significant,
while at low speed mostly the hydrodynamic feedback is responsible for the self-sustained
oscillations. Later, Brown (1937a) suggested that at low speed, the oscillation is due to the
force exerted on the jet by the vortices shed at the edge, while at higher speeds the feedback
gets dominated by acoustic effects. He established this theory based on the previous visual
observations, supported by the fact that at low speed the up–down edge movement and at
high speed the acoustic forcing is the more effective external forcing.

Curle (1953) and Nyborg (1954) created simple models of the edge tone which were
able to explain many aspects of the experimentally observed phenomena. Powell (1961)
developed one of the most sophisticated edge tone models. First, he derived an acoustic
dipole at the edge using Lighthill’s analogy, which acts on the jet at the nozzle exit.
He validated this theory with measurements. He neglected the propagation time of the
acoustic wave and assumed instantaneous forcing, since he studied the flow at low Mach
numbers. In the model, the feedback loop is made up of four different components, namely
the effectiveness of the edge influence at the orifice without the nozzle, the effect of the
nozzle, the convective amplification of the disturbances and the force induced by the
flow on the edge. Based on this he established a gain criterion, from which he deduced
the ratio of frequencies, and that higher stages have more substantial amplification, thus
higher amplitude oscillations, but in order to maintain the gain criterion, the sound
pressure level is lower compared with lower frequencies. He argued that the reason for
the existence of different stages is that the jet amplification, and the maximum amplitude
which the jet oscillation can reach both depend on the Reynolds number and the nozzle
width/edge–orifice distance ratio. He formulated the hypothesis that the simultaneous
existence of different modes is only possible when the edge tone oscillation is close to
linear, since this way the modes can be superposed onto each other; if the first stage has
a high degree of vortex development, when new modes appear with the variation of the
jet–edge distance or the jet velocity, instead of superposition, a frequency jump occurs.
He also argued that the different amplification of the modes is the reason for the hysteretic
nature of the frequency jumps. Later, Powell (1962) argued that the feedback from the
edge towards the nozzle exit could also be modelled through the vortex field. Substituting
the edge with a small cylinder, he assumed that the feedback is exerted by the vorticity
created at the edge by the impinging flow, and the transversal velocity component of the
vortex field triggers the disturbances at the orifice. With this line of thought, he reached
the same formulae that he derived with his more renowned model, in which the feedback
was modelled with a dipole. He concludes with the following. ‘A simple model has been
chosen to provide the basis for showing that the vortex theory of edgetone can be improved
to the stage that it is essentially the same as the “acoustical” theory. The difference between
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the methods – and much of the interesting history of edgetones – lies simply in the manner
of description.’

Holger, Wilson & Beavers (1977) proposed a model, which differs significantly from the
previous ones. They considered a fully developed vortex street and substituted the edge
with a flat plate. Their idea was that the interaction of vortices is the key feature of the
edge tone. They used the conservation of momentum, and approximated the propagation
speed of the vortices with Kármán’s solution of the infinite vortex street. Furthermore,
they assumed that the strength of vortices saturates before they reach the edge. A major
difference between his and the previous models is that the edge only affects the growth of
those vortices which are close to it. In addition, the vortices originating at the orifice are
generated by the nearby ones. Their model also includes a growth rate and an amplification
parameter which are taken over from the literature. They derived a phase criterion for the
oscillation wavelength, and their model predicts the frequencies of the edge tone fairly
well. However, this model cannot explain the frequency jumps, the hysteresis and the
coexistence of the modes; these phenomena are attributed to jet instability characteristics
of the configuration.

Stegen & Karamcheti (1970) carried out hot wire measurements, mainly being interested
in the phase characteristics of the jet instabilities in the edge tone configuration. They
found that for one jet velocity a power law can approximate the phase, and concluded
that in the case of the multiple-frequency oscillations, the low-frequency component is
a continuation of the first stage. Later, Woolley & Karamcheti (1974) summarised the
previous results and concluded that the former models are not satisfactory, since they did
not consider the variation of the phase speed of the disturbances along the jet, which is
significant. They argued that the frequency of the edge tone is the one which receives
the maximum total amplification, and for the oscillation to occur, they reasoned that the
total amplification must be larger than unity. Based on this, and their weakly non-parallel
stability calculations, they concluded that the non-parallel nature of the jet is important in
modelling the edge tone phenomenon.

A comprehensive experimental investigation of the edge tone oscillations was carried
out by Rockwell’s research group. Lucas & Rockwell (1984) made observations based on
flow visualisation with dye and hydrogen bubbles and carried out pressure measurements
on the edge and hot wire velocity measurements on an edge tone with an initially
parabolic velocity profile. They suggested that in the second stage, in which multiple
frequencies coexist, the low-frequency component is not actually the continuation of the
previous stage one. They found that the shear layer vortices with the largest amplitude
(frequency β) developing along the jet generate counter-rotating vortices at the edge, and
every second of these vortex pairs coalesce into giant vortices. The frequency of this
vortex–vortex merging coincides with the low-frequency component of the oscillations,
which is one-third of the frequency dominant frequency of the oscillations (β/3). For
this reason, they called this subharmonic process modulation. This also explains why
the frequency of the first stage drops at the onset of the second stage: the mechanism
of the oscillation at this frequency changes. They also measured the amplitude of the
oscillations and found that the growth of the dominant frequency component can be
very well approximated by local parallel inviscid linear stability theory near the nozzle.
Supporting their theory of subharmonic modulation, they found that the low-frequency
oscillations in the second stage do not grow according to their growth rate predicted
by linear stability theory but with the growth rate of the dominant mode. Furthermore,
they also found several other frequency components with lower but not insignificant
amplitude. The frequencies of these components could be calculated by the sum and
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difference of the two primary frequencies (β and β/3), thus indicating nonlinear effects.
Later, Kaykayoglu and Rockwell continued the research on their edge tone measurement
configuration, being mainly interested in the characteristics of the pressure field in single
frequency (stage one) (Kaykayoglu & Rockwell 1986a) and multiple frequency oscillations
(Kaykayoglu & Rockwell 1986b). They observed that the maximum pressure along the
edge occurs at the boundary layer separation downstream of the tip and that the vortex
formation pattern at the edge is strongly correlated with the pressure field. Furthermore,
they noted that displacing the edge from the centreline of the nozzle amplifies the dominant
component of the oscillation, rather than detuning it. Similar observations were made by
Krothapalli & Horne (1984) in the case of higher speed edge tones (Mach numbers 0.18
and 0.86).

Based on the previous measurements of Rockwell’s research group, Kwon (1998)
derived an edge tone model, in which the edge is represented by an array of dipoles on
a flat plate, and the flow is substituted by harmonically oscillating impinging vortices.
The pressure field predicted by this model agrees well with the measurement data
of Kaykayoglu & Rockwell (1986a). He also suggested that when determining the
phase-locking criterion for the edge tone system, the upstream travelling disturbances
should originate from the location of the pressure maximum on the edge. Later, this
argument was also supported by Nonomura, Muranaka & Fujii (2006), who carried out
compressible computational fluid dynamics (CFD) simulations at Mach numbers 0.1–0.5.
They also noted that although the model of Powell (1961) relies on physically reasonable
assumptions, the fact that it predicts the frequencies of the edge tone oscillations is due to
a lucky cancellation of the errors introduced by the simplification of the model.

Howe (1997) derived a linear model for the edge tone, in which the real part of the
impulse response function’s pole determines the oscillation frequency. He argued that
the impulse response function is the Rayleigh conductivity of the two-dimensional (2-D)
opening between the wall from which the jet issues and the edge. His model yielded
excellent frequency prediction for large edge–orifice distance, for which the reason is
that he assumed that the orifice height is much smaller than the jet–edge distance, and
he also neglected the spreading of the jet. He suggested that the reason for the success
of linear edge tone models is that the convection velocity of the waves does not depend
on the amplitude, therefore is not influenced by the nonlinearities. He criticised vortex
based models because they involve multiple empirical parameters (Curle 1953; Holger
et al. 1977), and managed to improve the nonlinear vortex-based model of Holger et al.
(1977) to include only one fitting parameter.

Several authors made CFD studies of edge tone oscillations. A detailed review of these
articles can be found in Vaik et al. (2014a). Here, only a few key studies are referenced.
Ohring (1986) performed 2-D simulations modelling the experimental apparatus of the
research group of Rockwell. He managed to reproduce the key features of the edge
tone, which implies that the 2-D approximation is reasonable at low Reynolds numbers.
However, as Takahashi et al. (2010) who examined the sound generation mechanism of the
oscillations noted, there could be a difference between the 2-D and three-dimensional
(3-D) simulations. In their compressible large-eddy simulations, the 3-D simulations
reproduced the measurements better than the 2-D ones.

Finally, Paál & Vaik (2007), Vaik et al. (2014a) and Vaik, Varga & Paál (2014b) carried
out a detailed experimental and numerical investigation of the edge tone in the case of
parabolic and top-hat velocity profiles. They clarified the Reynolds number dependence
of the different stages, including the multiple frequency oscillations, and showed that
the results of the 2-D simulations agree well with the experimental data. However, the
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prediction for the onset of the oscillations can be different from the experimental results.
They derived more accurate formulae for the frequency of the oscillations, and they
observed that a Reynolds number based on not the mean velocity but the quadratic or
cubic mean velocity could be a better non-dimensional quantity for describing the flow,
meaning that the momentum or the kinetic energy flux equivalence of various jet profiles
is more important than the mass flow equivalence. Furthermore, in both experiments and
2-D simulations, they observed frequency switching between the modes in the hysteretic
regions of the flow, and also intermittent oscillations at the onset of the first oscillation
stage. This implies that the 2-D models can accurately capture the general characteristics
of the flow, while there may be also 3-D effects which influence precise dynamics of the
flow. Differences between the 2-D and 3-D simulations of the edge tone were also found
by Vaik et al. (2013).

It can be concluded that the edge tone configuration exhibits a rich dynamical behaviour.
Although the existing models are based on reasonable assumptions, they include drastic
simplifications. Therefore, as noted by Fabre & Hirschberg (2000) in their article reviewing
lumped models of flue instruments and edge tone oscillations, these models do not fully
reveal the underlying physical mechanism. In this article, we aim at developing a more
sophisticated feedback model to predict the frequency and the open loop gain of the
oscillations without any empirical constants.

It has been established that linear stability theory describes the jet oscillations close
to the nozzle (Nolle 1998), and this is also valid in the case of the edge tone (Lucas &
Rockwell 1984; Kaykayoglu & Rockwell 1986a). In our feedback model, the amplification
of the disturbances is calculated with linear stability equations similarly to Fletcher (1976),
Verge (1995) and de La Cuadra (2006). Furthermore, within the framework of linear
stability theory, the amplitude of a disturbance wave induced by a known forcing can be
calculated by adjoint stability equations (Hill 1995) which to the best of our knowledge has
not been applied to the investigation of edge tone yet. This technique, the linear stability
equation and its adjoint are introduced in § 2.

The effect of the forcing can be handled mathematically but the description of the proper
forcing is challenging. The scope of the paper is restricted to low Mach number flows with
the focus on purely hydrodynamic feedback. However, the method can be extended to
acoustic excitations, too. Studies visualising the flow of the edge tone (Lucas & Rockwell
1984; Kaykayoglu & Rockwell 1986a,b) have shown that the vortex formation at the
edge plays a vital role in the feedback mechanism. The same conclusion was reached by
Verge, Hirschberg & Caussé (1997). In this study, we argue that the best, and physically
most plausible feedback mechanism, is based on a potential vortex at the tip of the edge.
However, as a part of the physical argumentation we also add two further possible velocity
fields as feedback agents: the exponential vortex suggested by De Roeck, Baelmans &
Desmet (2008) and the incompressible dipole – an approximation of the acoustic dipole. It
turns out that these velocity fields are much less efficient and therefore are unable to sustain
the oscillation. Although this vortex describes well the jet–edge interaction, our model
was tested against further two possible velocity fields. One of them is the exponential
vortex field described by De Roeck et al. (2008). The last one is the incompressible, scalar
potential dipole, a rough approximation of the acoustic dipole at the edge. The strengths
of the vortex and the dipole are calculated purely from the amplitude of the jet oscillation.
The velocity field of the vortex is used to calculate the forcing via the nonlinear term in
the momentum equation. Using this forcing and applying Hill’s theorem to calculate the
generated jet oscillation make it possible to determine the open-loop amplification of the
feedback. The calculation method of the forcing term and the formulae for the vortices and
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the dipole are described in detail in § 3. In § 4 the feedback model is presented, and the
results are compared with the experiments of Vaik et al. (2014a).

2. Modelling the jet oscillation

2.1. Direct and adjoint modes of linearised Navier–Stokes equations
The jet oscillation is modelled with the linearised Navier–Stokes equations. The oscillating
velocity field of the jet (uj) is split into a time-independent equilibrium solution (base flow)
U and the part ud describing the disturbance wave (the oscillation behaviour of the jet) as
follows:

uj = U + ud. (2.1)

The corresponding pressure fields are denoted similarly as

pj = P + pd. (2.2)

These equations are substituted into the incompressible continuity and momentum
equations. The nonlinear terms can be neglected assuming small disturbances, and the
linearised Navier–Stokes equations are derived. The base flow is calculated with a
numerical CFD code here (described later), and the next task is to obtain the disturbance
field. This problem is almost as complicated as the original Navier–Stokes equation, and
further assumptions are necessary. The most common one is the parallel-flow assumption
meaning that the base flow depends only on one coordinate (in our case y, see figure 1)
and any disturbance field (ud, vd,wd, pd) has the following waveform:

qd(x, y, t) = C0q̂( y) exp(i(αx − ωt)) = C0q̂d(x, y) exp(−iωt), (2.3)

where C0 is the amplitude of the wave, q̂ is the amplitude function (the eigenvector of
the linear problem), α is the wavenumber, ω is the angular frequency and q̂d(x, y) is the
temporal complex Fourier transform of qd. The solution of the original linear problem can
be expressed as the infinite sum (inverse Laplace transform) of these modes but usually
one mode, the most unstable one describes the disturbance field well (Nagy & Paál 2017).

Assuming a 2-D disturbance field, the introduction of the stream function is beneficial,

ud = ∂ψd

∂y
, −vd = ∂ψd

∂x
, (2.4a,b)

which again has the following waveform:

ψd(x, y, t) = C0ψ̂( y) exp(i(αx − ωt)). (2.5)

With these assumptions, the original equation system can be reduced to a fourth-order
differential equation, the Orr–Sommerfeld equation,

(
d2

dy2 − α2
)2

ψ̂ = i
ν

(
(αU( y)− ω)

(
d2

dy2 − α2
)
ψ̂ − α

d2U
dy2 ψ̂

)
. (2.6)

Any solution of this equation is called a mode where the ψ̂ functions are the eigenvectors
(eigenfunctions) and the corresponding (α, ω) pairs the eigenvalues. In our case, the
oscillation is modelled with a single mode which grows or decays in space, meaning that
ω is assumed to be real, while α is a complex number. The amplitude of the wave (C0)
depends on the external excitation field. If the eigenvectors are orthogonal, this amplitude
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Edge

Jet Vortex
y

x

Flow

OrificeNozzle

Figure 1. The schematic drawing of the edge tone.

can be calculated by an inner product. Unfortunately, in this case these eigenvectors are
not orthogonal but biorthogonal (together with the adjoint eigenvectors). Then, the adjoint
problem must be solved. Considering the adjoint problem (denoted by superscript †), the
perturbation has the following waveform:

ψ
†
d (x, y, t) = C0ψ̂

†( y) exp(−i(α†x − ωt)). (2.7)

The adjoint Orr–Sommerfeld equation is(
d2

dy2 − α†2
)2

ψ̂† = i
ν

(
(α†U( y)− ω†)

(
d2

dy2 − α†2
)
ψ̂† + 2α† dU

dy
ψ̂†
)
. (2.8)

The question is what the proper (α, ω) eigenvalue pairs and corresponding ψ̂

eigenfunctions are that fulfil the boundary conditions. Since (2.6) is a fourth-order
differential equation, four boundary conditions have to be prescribed. Two of them express
that the perturbation must vanish in the far field,

lim
y→∞ ψ̂ = lim

y→∞
dψ̂
dy

= 0. (2.9)

The further two boundary conditions prescribe the symmetry of the transversal velocity
field. It is called, in the literature, the sinuous mode. It is applied because the symmetric
perturbation waves are more unstable than the antisymmetric ones. (In the literature,
sometimes the symmetric modes are called antisymmetric since the displacement field
is antisymmetric then.) The boundary conditions are

dψ̂
dy
(0) = d3ψ̂

dy3 (0) = 0, (2.10)

at the symmetry line. The same four boundary conditions have to be prescribed for the
adjoint problem. For the solution the compound matrix method (known as CMM) was
used, which was described in our previous work (Nagy & Paál 2017). There, only the
direct problem was solved, however, the method can easily be adapted to the adjoint one.
Extracting the coefficients from (2.8) and substituting them into (17) of the cited paper,
the steps there can be followed.

The eigenvalues of the direct and adjoint problem have to be the same. This fact is used
for validation; in our case, the relative difference between them was around 10−5 owing
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to the small numerical errors. After the eigenvalue pairs and the eigenfunctions have been
determined, the adjoint eigenfunctions are normalised, their inner product has to be unity
(if l = k) or zero (if l /= k). Since, the eigensolution set is biorthogonal, the definition of
the inner product of the spatial problem is not obvious. Its simplified definition is (Salwen
& Grosch 1981)

[[
ψ̂

†
l , ψ̂k

]]
=
∫ ∞

0
−iν(αk + α

†
l )

((
α2

k + α
†2
l − iω

ν

)
ψ̂

†
l ψ̂k + 2

dψ̂†
l

dy
dψ̂k

dy

)

+ U

(
(α2

k + αkα
†
l + α

†2
l )ψ̂

†
l ψ̂k + 2

dψ̂†
l

dy
dψ̂k

dy
+ d2ψ̂

†
l

dy2 ψ̂k

)
dy, (2.11)

where l, k are the indices of two discrete modes. The expression (2.11) is used to normalise
the adjoint and the direct mode, since they have to fulfil the biorthogonality condition,[[

ψ̂
†
l , ψ̂k

]]
= δlk, (2.12)

where δlk is the Kronecker delta.
The amplitude of the perturbation (C0), or in other words, the response of the flow can

be calculated for a specific excitation field as

C0(x) =
∫ x

0

∫ ∞

−∞
ŝm · û† exp(−iαξ) dy dξ, (2.13)

where ξ is a dummy variable for x. Here it is assumed that excitation sources are present
only in the momentum equation, where

sm = ŝm exp(−iωt) (2.14)

is a periodic excitation field and

û† = [û†, v̂†, 0]T =
[

dψ̂†

dy
, iα†ψ̂†, 0

]T

. (2.15)

Equation (2.13) is a simplified version of Hill’s formula. Our approximation assumes that
the amplitude of the direct mode is zero at the orifice (x = 0) and there are neither further
mass sources (acoustic waves) nor excitation at the boundaries. It is important to emphasise
that the adjoint indicates the sensitivity to excitations of the flow through formula (2.13),
as pointed out by Hill (1995). Furthermore, C0 is not a constant but the function of x, as the
jet is excited. However, the downstream excitation is less effective in the case of unstable
jet because of the exponential decay of the multiplier (|exp(−iαξ)| = exp(−μξ)), where
μ = −αi is the growth rate of the unstable wave. If the excitation is only polynomial in
space, it cannot balance the exponential, and the change of C0 becomes negligible.

The velocity modes can be expressed from the stream function similarly to the adjoint
variables as

û = [û, v̂, 0]T =
[

dψ̂
dy
,−iαψ̂, 0

]T

. (2.16)
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2.2. The modified expressions for the slightly non-parallel case
The presented method is valid only if the flow is fully parallel. If it is slightly non-parallel,
as in the jet, the model can still be easily extended, by dividing the base flow into the series
of parallel flows. The idea is similar to the Wentzel–Kramers–Jeffreys–Brillouin (known
as WKJB) approximation that was implemented for a jet by Garg (1981). Nevertheless,
the correction term was found to be small (Nagy & Paál 2017) and is neglected here. In
this approach, the velocity profiles (the series of base flows) U( y; x) are exported from a
stationary CFD simulation at various x coordinates. The calculation procedure has to be
repeated at every cross-section. This means that α depends on x in contrast to the parallel
case, where it does not. To be precise, the modes differ slightly from those defined before
as

ψd = ψ̂( y; x) exp
(

i
(∫ x

0
α(ξ) dξ − ωt

))
(2.17)

instead of (2.5), and

ψ
†
d = ψ̂†( y; x) exp

(
−i
(∫ x

0
α†(ξ) dξ − ωt

))
(2.18)

instead of (2.7), where ξ is the dummy variable for x. The direct and adjoint modes were
normalised at all x coordinates to fulfil (2.12). Furthermore,

C0(x) =
∫ x

0

∫ ∞

−∞
ŝm · û†( y; ξ1) exp

(
i
∫ ξ1

0
−α†(ξ2)dξ2

)
dy dξ1 (2.19)

should be used instead of (2.13). This method and its implementation are verified in § 3.3
with a numerical simulation.

2.3. The simulations of the base flow
Prior to the stability calculations, the base flow has to be identified. Two base flows were
used in our analysis. The validation of the vortex excitation technique and the adjoint
calculation were applied on a single jet without the edge. In this case, the same base
flow was used, as in our previous paper for acoustic excitation (Nagy & Paál 2017). The
parameters can be found in § IV/A there. A similar calculation was carried out to validate
our feedback model in the edge tone configuration. The only difference is the presence of
the edge in front of the jet. The main settings and the parameters will be described here
only for this case. This simulation was carried out using Ansys CFX 16.2, which is a finite
volume method-based commercial CFD code.

The main parameters of the base flow simulations can be found in table 1, and
the mesh with the boundary conditions is displayed in figure 2. Due to the symmetry
of the configuration, only half of the geometry is present in the simulations. This also
prevents the emergence of the instability waves. The mesh in the y direction consists of
two parts: the lower equidistant region is very fine to capture the jet and the boundary
layer attached to the edge; the upper part increases towards the boundary with a quotient
of 1.05. Similarly, the mesh is divided into two regions in the x direction: the part between
the nozzle and the edge is refined at its end; and downstream along the edge the mesh size
increases progressively with a quotient 1.004. With this mesh, the region near the nozzle
can be resolved properly, as displayed on the right-hand side of figure 2. At the end of
the nozzle, a parabolic or top-hat inlet velocity profile is prescribed. At both sides of the
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Nozzle height, h 1 mm
Length of the domain 85 mm
Height of domain 75 mm
Edge angle 30◦
Density, ρ0 1.185 kg m−3

Kinematic viscosity, ν 1.575 × 10−5 m2 s−1

Reynolds number 80–1200

Table 1. The main parameters of the base flow simulation.

Opening

Wall

Wall

Inlet Symmetry

y

x

Figure 2. The mesh used in the base flow calculations for edge tone with the boundary conditions displayed.
The upper left part of the figure displays the whole mesh, while the lower right part shows the extra fine mesh
close to the edge.

nozzle, rigid wall and at the far field, opening boundary conditions are defined. In the case
of opening boundary condition, the relative pressure and the direction of the velocity are
prescribed. It allows both inflow and outflow (CFX 2015).

After a careful mesh independence study the mesh with 83 000 elements was used for
the base flow calculations.

The base flow calculations were carried out for several Reynolds numbers. The Reynolds
number was defined with the nozzle height h and the mean jet velocity at the nozzle exit
UMean as follows:

Re = hUMean

ν
. (2.20)

The Reynolds number was adjusted in the simulations with the variation of the mean jet
velocity.

915 A13-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.47


A feedback model of the edge tone

3. Excitation of the flow

3.1. Theory
One of the key elements in the modelling of the feedback mechanism is the description
of the excitation effect of the jet–edge interaction. Powell (1961), in his classical paper
assumed an acoustic dipole at the edge. This model has been widely accepted in the
literature on edge tones for almost sixty years. However, the experience of the authors
shows that the edge tone feedback works even with incompressible flow (Paál & Vaik
2007), meaning that acoustics is actually not necessary. The other possible mechanism to
initiate an instability wave is via a vortical excitation. Brown (1937a,b) hypothesised the
same on the basis of his extensive experiments.

The vorticity is generated by the velocity gradient due to the jet moving up and down
along the edge. The vortex is illustrated by the flow visualisations of Verge et al. (1994)
and also by Pullin & Perry (1980), cited by van Dyke (1982, p. 47).

In our previous paper (Nagy & Paál 2017) a method was derived to model the
acoustically excited jet. In this paper a model for a purely hydrodynamic excitation
mechanism is developed, based on the vortex, located in the vicinity of the edge tip.

Let us write the governing equations for an incompressible flow field, where the
variables (the velocity and pressure) are split into two parts: into the excited (unstable
jet) flow and the excitation (the vortex) field. The former one is denoted with subscript j,
and it is unknown, while the excitation field is denoted with subscript e. It is known and
fulfils the governing equations by itself. The incompressible continuity equation is

∇ · (ue + uj) = 0. (3.1)

The continuity can be simplified to

∇ · uj = 0, (3.2)

which is the original continuity equation and clearly shows that in the case of
hydrodynamic excitation the forcing does not affect continuity, in contrast to the acoustic
excitation.

The incompressible momentum equation reads as

∂(ue + uj)

∂t
+ (ue + uj) · ∇(ue + uj) = − 1

ρ0
∇( pe + pj)+ νΔ(ue + uj), (3.3)

where ρ0 is the density, ν is the kinematic viscosity of the fluid, p is the pressure and Δ
is the Laplace operator. Since the excitation field should fulfil the governing equations,
some of the terms can be eliminated. Let us rearrange the remaining terms; express the
momentum equation for the unknown jet flow and collect the remaining parts as the
extra/excitation terms in sm (the origin of these terms lies in the nonlinear convective
terms, meaning that the excitation field exerts its effect via these terms),

∂uj

∂t
+ uj · ∇uj = − 1

ρ0
∇pj + νΔuj + sm, (3.4)

sm = −ue · ∇uj − uj · ∇ue. (3.5)

It has to be mentioned that the terms in sm are not source terms in the strict sense of the
word, since they are not independent of the solution. Furthermore, this way of modelling
the interaction has the benefit that the forcing (the vortex) velocity will not directly appear
in the simulated velocity field of the jet. (The results show only the velocity field uj and
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not the sum of the two fields uj + ue.) Only the effect of the vortex field is taken into
account. The velocity of the jet (uj) can be split into the base flow U and the fluctuations
(disturbance wave) ud. If we assume that the fluctuations are small compared with the base
flow, then

U ≈ uj (3.6)

and the extra term can approximated as

sm ≈ −ue · ∇U − U · ∇ue. (3.7)

We note that ue can be replaced by other, physically reasonable, incompressible
excitation velocity fields. The excitation method will be used in a time-dependent CFD
analysis in § 3.3. In that case, the method was used in its nonlinear form described by
(3.5). When the amplitude of the linear disturbance waves was calculated (§ 2) only
the simplified version can be used (i.e. (3.7)) where the U is calculated from the CFD
simulations described in § 2.3.

3.2. Vortex formulae
A proper formula of the vortex must be defined which does not only fulfil the governing
equations but also describes well a real vortex field and that can be handled numerically.
The simplest model is the potential vortex. It describes well the vortex field far from its
centre. At the same time, the potential vortex is singular at the centre, and its velocity field
is also unrealistic there. An improvement is made to handle this issue. An extra term is
added to the velocity formulae which read as

ue,pot = − Γ ( y − y0)

2π((x − x0)2 + ( y − y0)2 + r2
0)
, (3.8a)

ve,pot = Γ (x − x0)

2π((x − x0)2 + ( y − y0)2 + r2
0)
, (3.8b)

we,pot = 0, (3.8c)

where u = [u, v,w]T, Γ is the circulation, x0, y0 are the coordinates of the centre of the
vortex, r0 is the extra term in the denominator. The extra term is related to the size of the
vortex, preventing the velocity field from becoming singular. If r0 is zero, this description
will be identical to that of the original potential vortex. Furthermore, these expressions
are differentiable everywhere. The formulae will approximate well the velocity fields of a
rigid body rotation if |x − x0| < r0/2 and a potential vortex if |x − x0| > 3r0, as shown in
figure 3.

The exponentially decaying vortex formulation used by De Roeck et al. (2008) can be
used, too. In this case the velocity field is the following:

ue,exp = −A0y exp
((

a0 − 1
r0

√
(x − x0)2 + ( y − y0)

2
))

, (3.9a)

ve,exp = A0x exp
((

a0 − 1
r0

√
(x − x0)2 + ( y − y0)

2
))

, (3.9b)

we,exp = 0, (3.9c)

where A0 is the amplitude, related to the circulation and a0 is a parameter, related to
the shape of the vortex field. In the case, a0 = 1 the transversal velocity field is shown
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Potential vortex
Exponential equation (3.9)
Rigid body rotation
Mod. pot. vortex equation (3.8)

0 r0

ve

3r0
(x – x0)

Γ/2πr2
0, A0

Figure 3. The velocity field of various vortex formulae.

in figure 3. It can be seen that the velocity field is finite but not smooth in the centre.
Meanwhile, the velocity decreases more rapidly far from the centre compared with the
potential vortex. This causes its ineffectiveness, discussed later in the paper. The formulae
(3.8) and (3.9) fulfil the continuity equation but not the momentum equation. Yet, choosing
a reasonable r0 value (0.01 < r0/h < 1) the error is marginal far from the vortex centre.

In the edge tone, the generated circulation is not constant in time at the tip. As the jet
moves up and down periodically, the circulation of the generated vortex field changes
periodically. This was modelled with a single harmonic function in the next section.
However, for a full edge tone model, the circulation field should be approximated based
on the amplitude of the fluctuating transversal velocity at the edge. A possible estimation
of the circulation amplitude from the jet oscillation at the edge will be presented later in
§ 4.1.

In reality, the generated vortex is shed from the edge and convected away (van Dyke
1982). In our model, however, the vortex was assumed to be stationary in space, close to
the edge tip. Neglecting the vortex convection is not significant from the model point of
view since the vortex exerts the strongest effect on the jet excitation when it is at the edge
tip. Since the jet excitation takes place mostly immediately after the nozzle exit (Nagy &
Paál 2016), when the vortex is farther away from the edge tip, its effect is much weaker
due to the increased distance, as shown by the Biot–Savart law.

3.3. Validation of the jet oscillation model
The amplitude of the disturbance waves was calculated by the method presented in § 2
and a CFD simulation. A plane jet was excited by a fluctuating vortex. The simulation is
similar to that of the base flow (described in our previous paper (Nagy & Paál 2017) and
§ 2.3 in this paper) but here the full geometry (not the half) was taken into account, and
a time-dependent simulation was carried out (instead of a steady one). The 2-D set-up
can be seen in figure 4. The nozzle was resolved with 40 and 60 elements vertically in
the coarse and the fine grid, respectively. It means that the smallest element sizes were
y = 0.025 mm ory = 0.016 mm. The size of the elements was increased continuously
with a quotient 1.03. At the nozzle, the size in the other direction of the cells was the same
(x = y), and was increased in both negative and positive directions with a quotient
1.01. The time step is 5 × 10−5 on the coarse grid and 2.5 × 10−5 s on the fine one, and
the total simulation time was 0.4 s. Second-order accurate spatial (with upwinding) and
the temporal method were used (CFX 2015).
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Opening

0 0.01

0.005 0.015

0.02 (m)

Wall

Monitor points
along the centreline

Velocity
inlet

Centre
of the vortex

Figure 4. The CFD configuration and boundary conditions of the excited plane jet.

The periodic change of the excitation is approximated by a harmonic variation of the
circulation of the vortex,

Γ (t) = Γ0 sin(ωt), (3.10)

where ω is the angular frequency.
Both vortex formulae (exponential, modified potential) were tried via modifying the

momentum equation as described in (3.5). The modified potential vortex centre was
defined at x0 = 10 mm, y0 = 0 mm. The amplitude of its circulation is Γ0 = 10−5 m2 s−1,
the angular frequency is ω = 772.5 rad s−1, meaning an excitation Strouhal number
St = ωh/UMean = 0.5. The size of the vortex is r0 = 1 mm in both cases. The exponential
vortex is defined similarly. The missing two parameters are defined as A0 = Γ/(2πr2

0) =
1.591 1 s−1 and a0 = 1. The mesh dependence study was only done in the case of modified
potential vortex formulation. The amplitude of the disturbance wave was 4.051 mm s−1 in
the case of coarse and 4.077 mm s−1 in the case of fine grid. It means a difference of less
than 1 %, which is acceptable. The amplitude of the disturbance wave along the centreline
is displayed in figure 5 in both cases.

The result of the simulation for the modified potential vortex can be seen in figure 6.
There a typical velocity field is plotted at t = 0.4 s. The displacement of the jet is visible
only far from the orifice, at the end of the domain, since the excitation is not very strong.
The velocity components are monitored at 150 locations placed at the centreline of the jet.
The transversal velocity signals are fast Fourier transformed using MATLAB 2017a. In
each spectrum, a strong peak is obtained at the excitation frequency, as expected. This
means that our model is able to excite the flow, and the jet responds with the same
frequency as the excitation frequency.

The two vortex formulae were compared with each other with CFD simulations. The
amplitude of the disturbance waves is plotted in figure 5.

The results show that the exponential vortex is very ineffective compared with the
modified potential vortex. The transversal velocity amplitude of the generated disturbance
wave is 0.003 m s−1 at x/h = 15, that is one order of magnitude smaller than that in the
case of the modified potential vortex excitation. From this point, the modified potential
vortex will be in the focus of the paper. Unless otherwise stated, all calculations will refer
to that.

The full Navier–Stokes equations (CFD) simulation and the most unstable linear mode
(at the excitation frequency) model are compared with each other. The Orr–Sommerfeld
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0

0.01

0.02

0.03

0.04
Mod. potential fine
Mod. potential coarse
Exponential

0.05

5 10 15
x/h

|v̂
| (

m
 s

–1
)

Figure 5. The amplitude of the disturbance wave along the centreline of the jet in three different cases:
modified potential vortex formulation and coarse grid; exponential vortex formulation and coarse grid; modified
potential vortex and fine grid. The results cover each other in the case of modified potential vortex with different
grid resolutions.

2.25

2.02

1.80

1.57

1.35

1.13

0.90

0.67

0.45

0.22

0
(m s–1)

Figure 6. The velocity field of the simulation at t = 0.4 s in the case of the modified potential vortex.

mode was calculated with the compound matrix method as described in Nagy & Paál
(2017). The α values were determined at every x location for St = 0.5. The response of
the jet is modelled with Hill’s method using the one mode with the highest growth rate.
The strange mode found in our previous work (Nagy & Paál 2017) and experimentally
(Zayko et al. 2018) was excluded because it exists only near to the orifice. In the linear
approach it has no effect downstream of the point of its disappearance. The real part of
α (wavenumber) values was around 1.05–1.2, while their imaginary part (the opposite
of the growth rate) was between −0.7 and −0.12. The amplitude of the mode (C0) was
calculated with the formula in (2.19). The integral was evaluated using the trapezoidal rule,
where the grid was the same as in the CFD simulation. The amplitude of the transversal
velocity fluctuations along the centreline is plotted in figure 7 for both cases. The nearly
exponential growth of the disturbance wave can be seen in both cases. The difference
between them is non-negligible, around 10 %. There are many reasons for this. First,
the parallel-flow assumption is inaccurate close to the orifice. The more sophisticated
methods of the parabolised stability equations (known as PSE) and its adjoint (known
as APSE) could reduce this error (Dobrinsky & Collis 2000). Furthermore, the amplitude
of the disturbance wave is assumed to be zero at the orifice (x/h = 0), while Blanc et al.
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0

0.01

0.02

OS
CFD

0.03

5 10 15
x/h

|v̂
| (

m
 s

–1
)

Figure 7. The absolute value of the transversal velocity fluctuation (of the disturbance wave) along the
centreline of the excited jet: continuous line, the CFD simulation; dashed line, the predicted value based on the
technique developed by Hill (1995). OS stands for the Orr-Sommerfeld equation.
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0
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y/h
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(a)

Figure 8. The absolute value of the streamwise (a) and transversal (b) velocity component of the most
unstable adjoint mode.

(2014) showed that the excitation field has some effect already inside the nozzle. At the
same time, the CFD simulation took around 10–12 h while the eigenvalues and modes
can be determined in a few minutes. The direct and adjoint modes could be calculated
in a reasonable time for a wide range of frequencies. Furthermore, the effect of acoustic
excitation could be easily taken into account.

The last missing link to developing a new model of the edge tone is the prediction of the
amplitude of excitation fields from the modes that will be discussed in the next section.

The velocity components of the adjoint mode were further investigated since they clearly
show the most sensitive part of the disturbance waves (the locations where the wave can
be excited more effectively). These fields are plotted in figures 8(a) and 8(b). It shows
that the streamwise excitation can be effective along the two sides of the jet (two shear
layers). (The flow enters into the domain at x = 0 mm and between y ∈ [−0.5, 0.5] mm.)
The strange thing is that the jet is less sensitive to transversal excitation compared with
the streamwise one. At the same time, figure 8(b) shows that the transversal excitation is
more effective close to the orifice than downstream. The importance of this is that the
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Figure 9. The absolute value of the streamwise (a) and transversal (b) velocity component of the most
unstable adjoint mode multiplied by the exponential function of (2.19).

disturbance generated upstream will be amplified more than that generated downstream.
The sensitivity to excitation in the upstream region is more relevant.

This effect is taken into account in figure 9(a) and 9(b), where the modes are multiplied
by the exponential factor of (2.19). This clearly shows us that the flow is more sensitive very
close to the orifice. The difference between the effectiveness of streamwise and transversal
excitations is not so large as without the exponential factor. Similar results were found in
our previous studies (Nagy & Paál 2016, 2017), where the growth rate was investigated and
was found to be large close to the orifice.

3.4. Incompressible dipole formulae
Our framework is able to handle any incompressible forcing field. Some models take into
account the generated dipole at the edge in the feedback mechanism (Powell 1961; Kwon
1998). An approximation of the compressible dipole for acoustically compact problems
at low Mach numbers can be the incompressible, potential dipole. This dipole was also
examined as a possible alternative for the vortex feedback model and as an agent of the
excitation. The formulae of the velocity components of the modified potential dipole, so
that the direction of the dipole is parallel with the y axis, are

ue,dipole = 2A0(x − x0) · ( y − y0)

((x − x0)2 + ( y − y0)2 + r2
0)

2
, (3.11a)

ve,dipole = − A0((x − x0)
2 − ( y − y0)

2)

((x − x0)2 + ( y − y0)2 + r2
0)

2
, (3.11b)

we,dipole = 0, (3.11c)

where A0 is the amplitude of the dipole and a parameter r0, similar to the centre radius of
the modified potential vortex, is also included to relax the singularity in the centre of the
potential dipole.
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4. Modelling the feedback mechanism

4.1. Theory
The schematics of the proposed feedback model is depicted in figure 10. Its main
components are the convective disturbance amplification 1©, the jet–edge interaction
generating circulation 2©, the circulation generating an excitation field 3© and the
excitation generating a disturbance wave 4©. (In the case of the dipole and the exponential
vortex feedback, the jet–edge interaction generates the excitation field. Components 2© and
3© are merged. The circulation does not play a role there. The amplitude is calculated in

both cases from the velocity field at the edge, as discussed later.) Our model is constructed
in Fourier space since the model is based on local linear stability theory of convectively
unstable flows in which time-periodic disturbances are assumed. Because of this, the parts
of the model will yield complex gains, which naturally incorporate the phase relation
between the different processes.

The edge-generated vortex field initiates instability waves. These waves travel
downstream towards the edge and amplify due to the convective instability of the flow. This
amplification is calculated with weakly non-parallel linear instability theory explained
in § 2.2. This was realised by dividing the region between the nozzle and the edge into
intervals, and at the left-hand end of each interval the stability equation was solved for
several Strouhal numbers. The n − 1 segments of the disturbance wave are defined as

ud =
n−1∑
i=1

ui,d, (4.1)

where

ui,d = H(x − xi)C0,iû( y; x) exp
(

i
(∫ x

xi

α(ξ) dξ − ωt
))

, (4.2)

C0,i =
∫ xi+1

xi

∫ ∞

−∞
ŝm,Γ̂=1 · û†( y; ξ1) exp

(
i
∫ ξ1

0
−α†(ξ2) dξ2

)
dy dξ1, (4.3)

where ŝm,Γ̂=1 is the momentum source calculated with (3.7) using the vortex formula
(3.8) for a unitary, periodic circulation (Γ̂in = 1) and H(x) is the Heaviside step function.
The convective amplification (part 1© of the feedback, see figure 10) of the instability
waves originating in the ith interval (denoted by Ki) is independent of the amplitude of the
original instability wave, and can be calculated only from the complex wavenumber,

Ki = exp
(

i
∫ xedge

xi

α(ξ) dξ
)
. (4.4)

The strength of the feedback (parts 2© and 3©, see figure 10) can be expressed with the
amplitudes of the disturbance wave segments C0,i. The disturbance wave arriving at the
edge is considered to be the sum of all the disturbance waves emanating from each spatial
interval and reaching the edge, so the total gain (defined later) is similarly the sum of all
the gains for the subintervals. The disturbance wave at the edge induces a vortical field
at the edge, which excites the jet upstream. This field is modelled as a modified potential
vortex (see (3.8a)) located at the edge. One of the novelties is the estimation of the strength
of the vortex field.

The effect of the edge is assumed to be such that it produces a vortex field with an
opposite circulation compared with the incoming disturbance wave. The effect of the
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4 3

2

1

Figure 10. The schematics of the feedback loop model of the edge tone. 1© The growth of the disturbance
waves described by (2.17). 2© The disturbance wave is ‘destroyed’ by the edge, which generates circulation.
The circulation is calculated according to (4.5). 3© The circulation generates an excitation velocity field (the
vortex field) described by (3.8). 4© The excitation velocity field generates a new disturbance wave, whose
amplitude can be calculated with (2.19).

edge is assumed to be such that it tries to annihilate the incoming disturbance wave. The
circulation and the core radius r0 of the modified potential vortex was found by minimising
the difference of the disturbance wave (ud) and the velocity field induced by the potential
vortex (ue,pot) at the edge,

Γout(t) = min
Γ,r0

(∫ ∞

−∞

∣∣ue,pot(Γ, r0)− ud
∣∣2 dy

)
x=xedge

, (4.5)

which can be written in Fourier space in time

Γ̂out(ω) = min
Γ̂,r0

(∫ ∞

−∞

∣∣∣ûe,pot(Γ̂, r0)− ûd

∣∣∣2 dy
)

x=xedge

, (4.6)

where
ue,pot = ûe,pot exp (−iωt) and ud = ûd exp (−iωt) . (4.7a,b)

This calculation procedure can be easily applied to the exponential vortex or the
incompressible dipole. There the amplitude (A0) can be calculated instead of the
circulation with a similar formula as (4.6).

The location of the vortex centre was also varied in the upstream and also the
downstream direction from the tip of the edge. The method provided good results when
the vortex was placed downstream of the edge, while it yielded erroneous results when
the vortex was located upstream of the edge: the minimisation procedure found opposite
circulations in these two cases. Therefore, we used another, more robust method for the
estimation of the circulation. In this latter method, the circulation of the vortex field
induced by the edge is assumed to be opposite to the circulation of the flow field upstream
of the edge. This latter circulation is found by integrating along a contour which encloses
the region upstream of the edge. Because in the far field (y → ±∞), along the walls from
which the jet issues and at the inlet the perturbation velocity is zero, the estimate for the
circulation induced by the edge can be found by the following integral:

Γ̂out(ω) = −
(∫ ∞

−∞
v̂d(x, y) dy

)
x=xedge

(4.8)

where v̂d is defined as
vd(x, y, t) = v̂d(x, y) exp (−iωt) . (4.9)

With the parameters of the modified potential vortex, the velocity field induced by it can
be computed (part 2© of the feedback). Here ûd was calculated as the response field
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of the flow excited by a modified potential vortex (Γ̂in = 1) of unitary circulation, and
Γ̂out expresses the open loop gain of the oscillation G = Γ̂out/Γ̂in. This expression can be
calculated for all wave segments after substituting (4.1) and (4.3) into (4.5) and using that

v̂d(x, y) = v̂( y; x) exp
(

i
∫ x

0
α(ξ) dξ

)
, (4.10)

that finally leads

G(ω) = Γ̂out

Γ̂in
=
(n−1∑

i=1

C0,iKi

)
Γ̂eig. (4.11)

Here, Γ̂eig is the estimated circulation from the direct eigenvector and it can be calculated
with the formula

Γ̂eig(ω) = min
Γ̂,r0

(∫ ∞

−∞

∣∣∣ûe,pot(Γ̂, r0)− û
∣∣∣2 dy

)
x=xedge

, (4.12)

or with

Γ̂eig(ω) = −
(∫ ∞

−∞
v̂(x, y) dy

)
x=xedge

(4.13)

and the local contribution of a wave segment can be defined as Gi := C0,iKiΓ̂eig. This
calculation will reveal the most important disturbance wave segments in the feedback
mechanism.

An important parameter of these formulae is the vortex location. If the vortex centre
is placed at the edge tip and the perturbation velocity is also evaluated there, in the
minimisation procedure the transverse velocity component drops out (see (3.8b)). Since
it was discussed before (4.8) that placing the vortex centre upstream of the edge tip
leads to unphysical results, we placed the vortex centre downstream of the edge by 0.1
non-dimensional units. The fact that the feedback originates downstream of the edge tip
has been shown also by Kaykayoglu & Rockwell (1986a) and Paál & Vaik (2007). Our
investigation showed that moving the vortex location farther downstream has only a small
effect (moving the vortex by 1 dimensionless unit downstream changed the frequency by
less than 0.1 % using (4.13) and less than 1 % using (4.12)). In the case of the integral
method (see (4.13)), the vortex core radius r0 has to be prescribed. The effect of changing
the core radius r0 was also investigated. We found that in the interval r0 ∈ [0.001, 3],
the frequencies predicted by our model varied by less than 0.2 %. Therefore the results
presented in the following section were obtained by using r0 = 0.1. As argued at the end
of § 3.2 and also the good agreement with experiments indicate that the convection of the
vortex from the edge tip does not play an important role in the feedback mechanism.

The two methods for estimating the circulation led to very similar results: the oscillation
frequencies predicted by the models were the same (within 1 %) but the velocity difference
minimisation usually estimated smaller open loop gains at most by a factor of 1/2. The
calculation of the model presented in this paper was obtained using the formula (4.13)
because it proved to be more robust against sharp variations in the eigenfunctions in the
case of the top-hat edge tone.

Similar investigations were carried out for the exponential vortex and the incompressible
dipole forcing fields. In these cases, the amplitude (A0) was estimated with a similar
formula as (4.6) after substituting the proper velocity field. Since the exponential vortex
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is not singular, only the location of the centre was varied. It has minor effect on the
frequency and significant influence on the gain. In the case of an incompressible dipole, the
effect of r0 and location of the the centre of the dipole were investigated. The parameter
r0 influenced the gain, but not significantly. Meanwhile, the location of the dipole has
a remarkable effect on both the predicted frequencies and also on the gains. A good
agreement of the frequencies was found with experiments if the dipole is placed farther
than 0.3h downstream of the edge tip.

The real part of the gain (G) expresses the amplification of the open loop, and with the
imaginary part, the phase relationship can be determined. Since the amplification process
repeats many times in the closed loop, the disturbance wave with the highest amplification
will be favoured. The real part of the gain has several local maxima and they are very close
to where the phase is zero (the real and the absolute value of gain is equal) and is usually
cited as the phase criterion.

The feedback model takes into account the non-parallel nature of the flow, and also the
variation of the phase speed and the growth rate of the disturbance waves, unlike previous
models. The weakness of this model is its linearity, meaning that it has no nonlinear
term which would limit the growth in the system. Therefore this model cannot predict
the amplitude of the oscillations.

4.2. Validation of the complete feedback model
The feedback model is compared with the measurements of Vaik et al. (2014a). The basis
of comparison was the model with the modified potential vortex. The results are presented
for this model unless otherwise stated. In their experimental configuration, the edge had
a 30◦ angle, and the nozzle–edge distance relative to the nozzle height was 9.72 in the
case when the velocity profile at the nozzle exit was parabolic, and 10.26 when the exit
velocity profile was top-hat. The nozzle–edge distance was divided into 200 intervals, and
the investigated Strouhal number range (St ∈ [0.008, 0.215]) was evaluated at 100 points.

Figure 11 displays the amplitude and phase curves of the loop gain at Reynolds number
Re = 300, in the case of the parabolic inlet velocity profile. For a nonlinear feedback
loop, the condition |G(St)| = 1 would correspond to the self-sustained oscillations.
However, since this model is linear, it lacks nonlinear saturation; therefore, the gain can
be significantly larger than unity. The gain curve as a function of St, after the initial
increase, decreases monotonically. The phase curve is very similar to figure 16 in Holger
et al. (1977), who deduced a phase criterion for the oscillation from their vortex model.
Although the oscillation frequencies are identified as the local maxima of the real part
of the gain, these Strouhal numbers are always close to the location of the zero phase,
similarly to Holger et al. (1977).

Figure 12 displays the spatial variation of parts of the feedback loop as a function of the
non-dimensional streamwise coordinate at Re = 300 and St = 0.1145, which corresponds
to the maximum amplification. The convective amplification (Ki) decreases exponentially
because the disturbances triggered close to the nozzle have a larger distance to grow.
The amplitude of the instability waves created by the forcing of the edge (C0,i) also
decreases exponentially but it increases near the edge. The main reason for this is that
although the velocity of the potential vortex scales with 1/D (D is the distance upstream
of the edge), the adjoint perturbation velocity, characterising the receptivity of the flow
to external excitation, scales with exp(D), and the latter term dominates the product of
the two quantities. The perturbations triggered close to the edge do not have a substantial
contribution to the local gain Gi, since these instability waves do not have much room
to grow. Consequently, the local gains (Gi) also vary approximately exponentially. In the
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Figure 11. Gain absolute value and real part and phase plot from the feedback model as the function of the
non-dimensional frequency. Parabolic inlet velocity profile, Re = 300.

case of the top-hat velocity profile, the spatial variation of the above-mentioned quantities
is qualitatively the same.

The comparison between the predicted and measured oscillation frequencies for the
parabolic inlet velocity profile are displayed in figure 13(a). The measured frequencies
are represented with small black crosses, while the coloured circles represent the local
maxima of the calculated amplification of the open loops. The colours show the logarithm
with base 10 of the open-loop gain. The mode with the highest gain is connected with a
continuous curve. Since the colours do not show unequivocally the strength of the modes,
their open-loop gains were plotted in figure 13(b). At low Reynolds number, the model
agrees well with the experiment. In both cases, mode 1 dominates, and the frequencies
of the experiment and the model agree fairly well, although as the Reynolds number
increases, the model tends to overpredict the oscillation frequency. Furthermore, the
Reynolds number, where the frequency shift occurs, is also predicted well by our model.
It occurred at Re = 180 in the experiment and Re = 150 in our model. Considering that in
the 2-D CFD simulations of (Vaik et al. 2013) the first mode shift occurred at Re = 150,
the prediction of the mode shift by the model is reasonable. The calculated frequency
of the second stage (mode 2) agrees exceptionally well with the measurement. However,
mode 1 and mode 3 coexist with mode 2 there. In the case of the first stage (Re < 200),
at lower Reynolds numbers, the difference between the model and the measurement is
not that significant, but the discrepancy takes substantial values as the frequency of the
oscillation component drops at Re ≈ 200. This is because, with the onset of the second
stage, this frequency component is actually different from that of the first stage. In the
second stage, this component is created by the nonlinear vortex–vortex interaction at
the edge (Lucas & Rockwell 1984; Kaykayoglu & Rockwell 1986a), which cannot be
captured by our linear model. In the experiments mode 2 disappeared at Re ≈ 650, and
the mode switching predicted by our model is also at Re = 650. The agreement between
the model and the experiment in the prediction of the mode switching is remarkable.
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Figure 12. Parts of the feedback loop as the function of the streamwise coordinate: Ki, downstream
amplification; C0,i, amplitude of the instability waves triggered by the forcing of the edge; Gi, local total gain.
Parabolic inlet velocity profile, St = 0.1145, Re = 300.

In the case of mode 2 and mode 3, the oscillation frequency predicted by the model also
agrees exceptionally well with the experimental data. This suggests that at higher Reynolds
numbers, the frequency selection is strongly dominated by linear amplification.

Figure 14 displays the oscillation frequency and the maximum amplification as functions
of the Reynolds number with top-hat inlet velocity profile. The agreement with the
experiments is similar to the previous comparison with the parabolic inlet velocity
profile. Vaik et al. (2014a) found that the first stage can be triggered by finite amplitude
disturbances in the interval Re ∈ [60, 100]: our calculations show that in this range the
open loop gain of the first mode is close to unity, which indicates the onset of absolute
instability. The model for mode 1 excellently predicts the oscillation frequency and the
onset of the second stage is predicted with a better accuracy compared with the parabolic
velocity profile. This occurs at Re = 200 in our model and was observed at Re ≈ 200 by
Vaik et al. (2014a). Considering that Brown (1937b) observed the mode switching at Re =
220 for a wedge with an angle of 20◦, the onset of mode 2 is predicted well by our model.
In the experiments, with the appearance of mode 2, the frequency of mode 1 dropped
similarly to the parabolic case, and following the previous discussion, the linear model is
unable to predict the possibly nonlinear interaction. This approximately 25 % difference
between simulations and experiments slightly increases at higher Reynolds numbers.
With the arrival of mode 2, mode 3 could also be observed, although its amplitude was
small. The predicted frequency differs by ≈5 % for mode 2 but the discrepancy decreases
as the Reynolds number increases. The frequency of mode 3 is predicted only crudely
by the model. The less accurate prediction of higher modes is likely because in these
modes since the wavenumber of the oscillations is small, a high degree of vortex roll-up
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Figure 13. (a) The comparison of the oscillation frequencies predicted by the model with the measurements
of Vaik et al. (2014a). The bluish circles indicate gains below one, i.e. no oscillation is generated there. (b) The
absolute open loop gain of the calculated modes. Parabolic inlet velocity profile, nozzle–edge distance relative
to the nozzle height is 9.72.

occurs before the edge. This nonlinear effect is not considered in our model and, therefore,
can cause this difference between simulation and measurement. In the first oscillation
mode, this nonlinear vortex development is less significant; consequently, the frequency
prediction is more accurate.

Finally, the modified potential vortex was replaced by the modified dipole and the
exponential vortex. In the case of an exponential vortex, the frequency was in good
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Figure 14. (a) The comparison of the oscillation frequencies predicted by the model with the measurements
of Vaik et al. (2014a). The bluish circles indicate gains below one, i.e. no oscillation is generated there. (b) The
absolute open loop gain of the calculated modes. Top-hat inlet velocity profile, nozzle–edge distance relative
to the nozzle height is 10.26.

agreement with the experiments. At the same time, the gain was extremely low. It was two
orders of magnitude smaller than 1, which would be necessary for a sustained oscillation.
This means that no oscillation can be sustained. In the case of an incompressible dipole,
if the dipole is placed close to the edge, the predicted frequencies do not agree with
experiments. If it is placed farther downstream (L > 0.3h, L is the distance from the edge
tip) the frequencies are predicted accurately. At the same time, the gain was around one
order of magnitude smaller than in the case of the modified potential vortex. For example,
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Figure 15. The comparison of the oscillation frequencies predicted by the model with the measurements of
Vaik et al. (2014a). Modified incompressible dipole forcing field (r0 = 0.1, L = 0.5h), parabolic inlet velocity
profile. The bluish circles indicate gains below one, i.e. no oscillation is generated there.

the gain of mode 1 is below 1 if Re < 500 in the case of parabolic profile and remains
always below one in the case of top-hat profile (r0 = 0.1, L = 0.5h). The results are plotted
here only for the parabolic profile in figure 15. This means that no oscillation can be
sustained in a significant part of the investigated Reynolds number range, contradicting the
experimental observations. If the dipole is placed farther downstream the gain increases.
At the same time, this model still does not predict oscillation at Reynolds numbers below
200 for L = 1.1h.

5. Conclusion

In our paper, a new model has been proposed to predict the oscillation frequencies of the
edge tone in the case of low Mach numbers when acoustic feedback is not significant. The
model is based on the well known Orr–Sommerfeld equation, calculating the disturbance
waves with linear stability analysis. The novelty of our model is the prediction of the
generated vorticity strength (the circulation) at the edge, based on the amplitude of the
disturbance wave (the jet oscillation). Furthermore, a procedure has been developed by
which any incompressible flow can be excited with a known vortex field, described by an
analytical formula. It handles the rigid body rotation at the near field and the hyperbolic
decay in the far field. With the help of the adjoint velocity field, the amplitude of the
generated disturbance wave can be calculated. The usage of the adjoint mode was validated
to CFD simulation, and the relative error was below 10 %. In addition, the adjoint modes
show the sensitivity of the jet to external excitation which is very high close to the orifice
especially in the shear layer, in agreement with our previous work by other methods (Nagy
& Paál 2016, 2017). A further advantage of our model is that no empirical constants were
used – everything was calculated from first principles.
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Finally, the new feedback model was compared with experiments. The frequencies were
predicted reasonably well at any Reynolds number. The prediction of the selected mode
was excellent at low (Re ≈ 200) Reynolds numbers, and at higher Reynolds numbers in
higher oscillation modes the frequency prediction becomes less accurate. The difference
between simulations and measurements is because of the nonlinear vortex roll-up before
the edge and the subharmonic forcing created by the vortex–vortex interaction downstream
of the edge, which cannot be captured by our linear model. The paper demonstrates the
physical feasibility of the potential vortex model as a feedback agent by presenting two
other models. The alternative models reached a very low gain leading to no oscillation in
a significant Reynolds number range, in contrast to the experiments.
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