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Abstract

Let {X(t) : t ∈ R} be the integrated on–off process with regularly varying on-periods, and
let {Y (t) : t ∈ R} be a centered Lévy process with regularly varying positive jumps (inde-
pendent of X(·)). We study the exact asymptotics of P(supt≥0{X(t) + Y (t) − ct} > u)

as u → ∞, with special attention to the case r = c, where r is the increase rate of the
on–off process during the on-periods.
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1. Introduction

The problem of analyzing the asymptotic behavior of the tail distribution of

sup
t≥0

{X(t) + Y (t) − ct}, (1.1)

where {X(t) : t ∈ R} and {Y (t) : t ∈ R} are independent stochastic processes with stationary
increments, c > E[X(1)+Y (1)], plays an important role in many fields of applied probability.
In particular, the steady state buffer content in queues fed by the superposition of two input
streams, X(·) and Y (·), has the representation (1.1); see, e.g. [19]. On the other hand, (1.1) can
be used to describe the ruin probability for perturbed ruin models; see, e.g. [11] and [22].

Throughout the paper, we assume that {X(t) : t ∈ R} is an integrated on–off process, i.e.
during ‘on-periods’ X(·) increases linearly with rate r > 0, while it is constant during ‘off-
periods’. The second process, Y (·), is assumed to be a Lévy motion with regularly varying
positive jumps, with index α.

A large number of results lead to precise asymptotics for the tail distribution of (1.1). These
asymptotics often yield the appealing and important qualitative insight that one of the two
processes can be replaced by its mean. Results like these are also obtained for systems with more
than two input sources, where typically a nontrivial subset of on–off processes is responsible
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104 K. DȨBICKI ET AL.

for overflow; cf. [4], [13], and [26]. The first result of this type was proved in Theorem 4.4 of
[13], as noted in [1], which termed these results reduced load equivalence. See [12], [14], [20],
[24], and [25] for more references.

As in the abovementioned references, the aim of this paper is to derive the exact asymptotics
for the tail distribution of (1.1) within the setting of an on–off process and a Lévy process. It
turns out that this setting is tractable enough to obtain some tail estimates in a situation where
the so-called reduced load equivalence does not hold.

For completeness, we consider the more standard situation as well, which occurs if r �= c. In
this case, either the process X(·) or Y (·) can be replaced with its mean, while the other process
is entirely responsible for the tail behavior. It is also possible that both scenarios can occur if
the tail of the on-period is regularly varying with index α (i.e. the tail of the on-period is as
heavy as the tails of the jumps of the Lévy process). Section 3 contains precise statements, and
a proof, which utilizes general results in [26].

The main contribution of the present paper is a detailed analysis of the critical case r = c,
which is analyzed under the additional assumption that Y (·) is α-stable, α ∈ (1, 2). This case
is not covered by the above references, and as will be shown, it leads to genuinely different
behavior. We give a precise mathematical statement in Section 4, and provide a more informal
description here. If r = c, the process X(t)+Y (t)−ct has the same increments as Y (t) during
on-periods. For Y (·) a Brownian motion, Zwart et al. [24] showed that the most likely way
for (1.1) to reach level u is by a single big on-period which has already taking place at time 0;
this on-period should have length of order u2. During that on-period, level u is reached by the
oscillatory behavior of the Brownian motion.

In the more general α-stable case, it is tempting to conjecture that an initial on-period of size
uα suffices. If a standard on-period is regularly varying with index γ , a residual on-period is
regularly varying with index γ −1, so that the probability of a residual on-period exceeding uα

is regularly varying with index α(γ − 1). However, a different way for (1.1) to reach high level
u is by a single big jump of the Y (·) process, which will have a probability which is regularly
varying with index α − 1. Comparing α − 1 with α(γ − 1) then leads to the critical value
γ ∗ = (2α − 1)/α. It is shown in Section 4 that if γ < γ ∗, a single big on-period of length uα

suffices for (1.1) to happen, and if γ > γ ∗, (1.1) is most likely caused by a single big jump of
the Y (·) process. The way we prove this is by using the regenerative structure of the process
X(·) + Y (·), using techniques from [2] and [17].

The paper is organized as follows. In Section 2 we introduce the notation and describe the
analyzed model. In Section 3 we analyze the case where r �= c. The more intricate case r = c

is analyzed in Section 4.

2. Notation and model description

We consider a fluid queue with infinite buffer capacity, fed by the superposition of two
independent input processes, X(·) and Y (·), with stationary increments and emptied at a constant
rate c.

Following Reich’s representation [19], under the stability condition E[X(1) + Y (1)] < c,
the steady state buffer content Qc

X+Y has the representation

Qc
X+Y

d= sup
t≥0

{X(t) + Y (t) − ct},

where ‘
d=’ denotes equality in distribution.
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Asymptotics of hybrid fluid queues with Lévy input 105

Before describing X(·) and Y (·), let us introduce some notation. For a nonnegative random
variable X, by Xr we denote the random variable with density P(X > t)/E[X]. We write
f (x) ∼ g(x) if limx→∞ f (x)/g(x) = 1 and f (x) � g(x) if lim supx→∞ f (x)/g(x) ≤ 1.

Moreover, for c > E[X(1)] and D ⊂ [0, ∞), we define Qc
X(D) := supt∈D{X(t) − ct} and

Qc
X := Qc

X([0, ∞)); we define Qc
Y (D) and Qc

Y analogously. In order to shorten the notation,
let Qc

Y (t) := Qc
Y ([0, t]).

We write X ∈ S to denote that the distribution of the random variable X belongs to the class
of subexponential distributions, and we write X ∈ RVα to denote that the tail distribution of
X is regularly varying at ∞ with parameter α.

Throughout the paper, the process {Y (t) : t ≥ 0} is a zero-mean Lévy motion with heavy-
tailed jumps.

The process {X(t) : t ≥ 0} is an integrated on–off process, that is, X(t) = r
∫ t

0 η(s) ds,
where {η(t) : t ≥ 0} is a stationary alternating on–off (0–1) process. Let {U, Ui : i ≥ 0} be
independent and identically distributed (i.i.d.) nonnegative random variables representing on-
periods, and let {V, Vi : i ≥ 0} be i.i.d. nonnegative random variables representing off-periods.
We assume that {Ui : i ≥ 0} and {Vi : i ≥ 0} are mutually independent, and that EU < ∞ and
EV < ∞. We impose the assumption that

(A) U ∈ RVγ with γ := γon > 1 and Y (1) ∈ RVα with α > 1.

For future analysis, we recall the construction of η(·), following [10] or [24]. Let

p := EU

EU + EV
.

Additionally, let I be an independent random variable such that P(I = 1) = 1−P(I = 0) = p.
We introduce the delayed renewal sequence

{Ti, i ≥ 0} :=
{
T0, T0 +

i∑
k=1

(Uk + Vk), i ≥ 1

}
,

where
T0 = I (Ur

0 + V0) + (1 − I )V r
0 . (2.1)

Then

η(t) := I 1{t<Ur
0 } +

∞∑
i=0

1{t∈[Ti ;Ti+Ui+1)} .

Additionally, we introduce X�(t) := r
∫ t

0 η�(s) ds, where

η�(t) :=
∞∑
i=0

1{t∈[Ti−T0,Ti−T0+Ui+1)}

is the Palm-stationary version of η(·) (that is, an on-period starts at time 0). We note that
ρ := EX(1) = rp and assume the stability condition ρ < c.

We finally review the asymptotic behavior of Qc
X and Qc

Y .
The case of an on–off process in isolation is analyzed in [12]. This result holds under our

assumptions, and actually continues to hold if the residual on-time has a subexponential tail.
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Proposition 2.1. Let ρ < c < r . Then

P(Qc
X > u) ∼ (1 − p)

ρ

c − ρ
P

(
Ur >

u

r − c

)
as u → ∞.

For general Lévy processes with subexponential jumps, it is possible to obtain the tail
behavior of Qc

Y in terms of the tail of Y (1) (cf. [9] and [16]). Both of these works investigate
the more general framework of subexponential jumps, which is not necessary for this paper;
cf. assumption (A). For stable processes, we note that there is an older result, due to Port [18,
Theorem 9].

Proposition 2.2. It holds that

P(Qc
Y > u) ∼ 1

c

∫ ∞

u

P(Y (1) > y) dy as u → ∞.

The following result is due to Willekens [23].

Proposition 2.3. It holds that

P(Q0
Y (1) > u) ∼ P(Y (1) > u) as u → ∞.

The following proposition combines Breiman’s theorem (see [5] and [6, Corollary 3.6]) with
the findings of Denisov and Zwart [7, Proposition 2.1].

Proposition 2.4. Suppose that X and Y are independent nonnegative random variables such
that P(X > u) = L(u)u−α for some α > 0 and L(·) slowly varying at ∞.

(i) If E[Yα+ε] < ∞ for some ε > 0 then

P(XY > u) ∼ E[Yα]P(X > u) as u → ∞.

(ii) If P(Y > u) = o(P(X > u)) as u → ∞, E[Yα] < ∞, and

lim sup
x→∞

sup
1≤y≤x

L(y)

L(x)
< ∞,

then
P(XY > u) ∼ E[Yα]P(X > u) as u → ∞.

3. Reduced load equivalence

In this section we consider the relatively simple case where r and c are not equal. Since the
results in this section are reminiscent of several other results in the literature (a recent example
arising in GPS queues is [15]), we keep the presentation concise. In particular, we will simply
apply existing results in the literature on tail asymptotics of the superposition of heavy-tailed
input processes, in particular Theorem 5.3 of [26]. In the case r < c, this leads to the following
theorem.

Theorem 3.1. Assume that (A) holds. If r < c then

P(Qc
X+Y > u) ∼ P(Q

c−ρ
Y > x).
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Asymptotics of hybrid fluid queues with Lévy input 107

The intuition is that, since r < c, the on–off process cannot cause a big workload on its own,
while a single big jump of the Lévy process suffices (cf. the usual intuition behind the large
deviations of Q

c−ρ
Y ).

Proof of Theorem 3.1. To reduce the model discussed here to the framework of [26], we
decompose the process Y (·), i.e. we take Y (·) = Y1(·) + Y2(·), with Y1(·) containing all jumps
bigger than size 1, and Y2(·) containing jumps smaller than size 1 (including all downward
jumps). The processes are constructed in such a way that their mean is 0. By [3], Qc

Y2
has an

exponential right tail for all c > 0, implying that Y2(·) satisfies Assumption 2.1 of [26].
In the terminology of the setup preceding Theorem 5.3 of [26], X(·) is not critical, and,

therefore, not dominant. Since Y1(·) is the only process with instantaneous heavy-tailed input,
it is also dominant, implying the result.

The case r > c is somewhat richer, since now either the on–off process or the Lévy process, or
both can cause the event {Qc

X+Y > u} to happen. In terms of input parameters, this corresponds
to the cases α < γ , α = γ , and α > γ .

Theorem 3.2. Assume that (A) holds. Let r > c.

(i) If α < γ then
P(Qc

X+Y > u) ∼ P(Q
c−ρ
Y > u).

(ii) If α > γ then
P(Qc

X+Y > u) ∼ P(Qc
X > u).

(iii) If α = γ then
P(Qc

X+Y > u) ∼ P(Qc
X > u) + P(Q

c−ρ
Y > u).

Proof. In the terminology of Theorem 5.3 of [26], X(·) is critical since r > c, and is weakly
dominant if γ ≤ α. The process Y (·) is weakly dominant if γ ≥ α. Theorem 5.3 of [26] then
implies the result.

4. The interplay between rare events and zero-critical behavior

In this section we focus on the case where a single long on-period makes the system behave in
a zero-critical manner during a long period of time, i.e. r = c. As discussed in the introduction,
this case is much less understood. We show that the tail asymptotics in this case are qualitatively
different. In fact, the tail behavior looks quite unusual as the following theorem shows. In this
section we will also assume that Y (·) is an α-stable process, α ∈ (1, 2) and β ∈ (−1, 1].
Theorem 4.1. Assume that (A) holds and that Y (·) is an α-stable process with α ∈ (1, 2) and
β ∈ (−1, 1]. Let r = c.

(i) If γ ∈ (1, (2α − 1)/α) then

P(Qc
X+Y > u) ∼ pE[Q0

Y (1)α(γ−1)]P(Ur > uα).

(ii) If γ = (2α − 1)/α then

P(Qc
X+Y > u) ∼ pE[Q0

Y (1)α(γ−1)]P(Ur > uα) + P(Q
c−ρ
Y > u).

(iii) If γ > (2α − 1)/α then

P(Qc
X+Y > u) ∼ P(Q

c−ρ
Y > u).
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An informal explanation of this result is given in the introduction. The rest of this section
is devoted to the formal proof. The idea of the proof is to use the regenerative structure of the
input process X(·)+Y (·). In particular, we choose the beginning of on-periods as regeneration
epochs. In Lemmas 4.1–4.3 below we investigate the zero-delayed case where an on-period
starts at time 0. We use ideas from [2] (see also [17]) to show that the tail asymptotics can be
reduced to those of the random walk which is obtained by sampling the process at regeneration
epochs only. The necessary conditions under which this holds are checked in Lemmas 4.1 and
4.2, after which Lemma 4.3 concludes.

Since our primary interest is the delayed (time-stationary) case, we need to investigate what
may happen until the first renewal epoch. This is done in Lemma 4.4 below. The section closes
with the proof of Theorem 4.1.

Lemma 4.1. It holds that

P(Qc
Y (V ) > u) ∼ E[V ]P(Y (1) > u) as u → ∞.

Proof. Upper bound. Observe that, due to the self-similarity of Y (·), we have

Qc
Y (V ) ≤ Q0

Y (V )
d= V 1/αQ0

Y (1).

Since Y (·) is α-stable with α ∈ (1, 2) and β ∈ (−1, 1], then P(Y (1) > u) ∼ (constant)u−α

as u → ∞; see, e.g. Property 1.2.15 of [21]. Thus, following Propositions 2.4(ii) and 2.3, we
have

P(Qc
Y (V ) > u) ≤ P(V 1/αQ0

Y (1) > u) ∼ E[V ]P(Y (1) > u).

Lower bound. For given k > 0, using Proposition 2.4, we have

P(Qc
Y (V ) > u) ≥ P(Y (V ) > cV + u)

≥ P(V 1/αY (1) > ck + u; V ≤ k)

∼ E[V 1{V ≤k}]P(Y (1) > u) as u → ∞.

Thus, the lower bound follows by passing with k → ∞.
This completes the proof.

Lemma 4.2. It holds that

P

(
sup

t≤U+V

{Y (t) − c(t − U)+} > u
)

∼ P(Y (U + V ) − cV > u) ∼ E[U + V ]P(Y (1) > u).

Proof. Since P(supt≤U+V {Y (t) − c(t − U)+} > u) ≥ P(Y (U + V ) − cV > u), then it
suffices to find an upper bound for P(supt≤U+V {Y (t) − c(t − U)+} > u) and a lower bound
for P(Y (U + V ) − cV > u) as u → ∞ that are tight.

Upper bound. Observe that

P

(
sup

t≤U+V

{Y (t) − c(t − U)+} > u
)

≤ P

(
sup

t≤U+V

Y (t) > u
)

= P

(
(U + V )1/α sup

t∈[0,1]
Y (t) > u

)

∼ E[U + V ]P(Y (1) > u) (4.1)

as u → ∞, where (4.1) is due to Proposition 2.4(ii) combined with Proposition 2.3.
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Lower bound. Since, for each u,

P(Y (U + V ) − cV > u) ≥ P(Y (U + V ) − c(U + V ) > u),

then the lower bound follows by the same argument as in the proof of the lower bound of
Lemma 4.1.

Lemma 4.3. Let c = r . Then

P

(
sup
t≥0

{X�(t) + Y (t) − ct} > u
)

∼ P(Q
c−ρ
Y > u).

Proof. The idea of the proof is to check the assumptions of Theorem 3.3 of [2] (see also
Theorem 1 of [17]). In particular, it suffices to prove that

P

(
sup

t≤U+V

{Y (t) − c(t − U)+} > u
)

∼ P(Y (U + V ) − cV > u),

which straightforwardly follows from Lemma 4.2.

We now investigate what happens in the more general delayed case.

Lemma 4.4. (i) If γ ≥ 2 then

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

= o(u1/2−α).

(ii) If γ ∈ (1, 2) then

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

∼ E[Q0
Y (1)α(γ−1)]P(Ur > uα) ∈ RVα(γ−1).

Proof. We distinguish between three cases: γ > 2, γ = 2, and γ ∈ (1, 2).
If γ > 2 then, following the proof of Lemma 4.2, we have

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

∼ E[Ur + V ]P(Y (1) > u) = o(u1/2−α)

as u → ∞.
For the remaining cases, note that

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

= P

(
sup
t≤Ur

Y (t) > u or sup
Ur≤t≤Ur+V

{Y (t) − c(t − Ur)} > u
)

= P

(
sup
t≤Ur

Y (t) > u or Y (Ur) + sup
t≤V

{Y (Ur + t) − Y (Ur) − ct} > u
)

≤ P

(
Q0

Y (Ur) > u or Q0
Y (Ur) + sup

t≤V

{Ỹ (t) − ct} > u
)

= P(Q0
Y (Ur) + Qc

Ỹ
(V ) > u), (4.2)

where Ỹ (·) is a stochastically independent copy of Y (·). Let γ = 2. Combining Lemma 4.1
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with the observation that (Ur)1/α, Q0
Y (1) ∈ RVα yields (applying the corollary to Theorem 3

of [8])

Q0
Y (Ur)

d= (Ur)1/αQ0
Y (1) ∈ RVα.

Hence, due to Lemma 4.1, P(Q0
Y (Ur) + Qc

Y (V ) > u) ∈ RVα , which completes the proof in
the γ = 2 case.

If γ ∈ (1, 2) then Proposition 2.4(i) yields

P(Q0
Y (Ur) > u) = P((Ur)1/αQ0

Y (1) > u) ∼ E[Q0
Y (1)α(γ−1)]P(Ur > uα) ∈ RVα(γ−1).

Thus, (4.2) combined with Lemma 4.1 and the lower bound

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

≥ P(Q0
Y (Ur) > u)

implies the claimed asymptotics. This completes the proof.

We now complete the proof of Theorem 4.1. Note that there is a similarity with Corollary 3.2
of [2]. However, this corollary would only apply to two of our three cases. In addition, given
the overlap between cases, we prefer to give a self-contained proof.

Proof of Theorem 4.1. First, we prove that

P(Qc
X+Y > u) ∼ pP

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

+ P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)
. (4.3)

Following the construction of process X(t) (see Section 2), we have

P(Qc
X+Y > u) = P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u or sup
t≥T0

{X(t) + Y (t) − ct} > u
)

(4.4)

with

P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u
)

= pP

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

+ (1 − p)P(Qc
Y (V r) > u). (4.5)

Moreover,

P(Qc
Y (V r) > u) ≤ P

(
sup

t≤u1/2
Y (t) > u

)
+ P(V r > u1/2)P

(
sup
t≥0

{Y (t) − ct} > u
)
.

Since Y (·) is self-similar, then supt≤u1/2 Y (t) ∈ RVα−1/2. Together with Proposition 2.2,
Proposition 2.3, and Lemma 4.3, this implies that

P(Qc
Y (V r) > u) = o

(
P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
))

as u → ∞. (4.6)
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Upper bound. In order to get the asymptotic upper bound in (4.3), we majorize (4.4) by

P

(
sup
t≤T0

{X(t) + Y (t) − ct} + sup
t≥0

{X̃∗(t) + Ỹ (t) − ct} > u
)

= pP

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} + sup
t≥0

{X̃∗(t) + Ỹ (t) − ct} > u
)

+ (1 − p)P
(
Qc

Y (V r) + sup
t≥0

{X̃∗(t) + Ỹ (t) − ct} > u
)
, (4.7)

where X̃∗(·) and Ỹ (·) are stochastically independent copies of X∗(·) and Y (·), respectively.
Due to (4.6),

P

(
Qc

Y (V r) + sup
t≥0

{X̃∗(t) + Ỹ (t) − ct} > u
)

∼ P

(
sup
t≥0

{X̃∗(t) + Ỹ (t) − ct} > u
)
,

and following Lemmas 4.3 and 4.4,

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} + sup
t≥0

{X̃∗(t) + Ỹ (t) − ct} > u
)

∼ P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

+ P

(
sup
t≥0

{X̃∗(t) + Ỹ (t) − ct} > u
)
.

This yields the asymptotic upper bound

P(Qc
X+Y > u) � pP

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

+ P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)
.

Lower bound. Let y > 0 be given. Then (4.4) can be minorized by

P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u
)

+ P

(
(X(T0) + Y (T0) − cT0) ∈ (−y, y),

(X(T0) + Y (T0) − cT0) + sup
t>T0

{X(t) + Y (t) − ct − X(T0) − Y (T0) + cT0} > u
)

− P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u, (X(T0) + Y (T0) − cT0) ∈ (−y, y),

(X(T0) + Y (T0) − cT0) + sup
t>T0

{X(t) + Y (t) − ct − X(T0) − Y (T0) + cT0} > u
)

= P1 + P2 − P3. (4.8)

Now it suffices to note that

P2 ≥ P((X(T0) + Y (T0) − cT0) ∈ (−y, y))P
(

sup
t≥0

{X∗(t) + Y (t) − ct} > u + y
)
,

which implies that

lim inf
y→∞ lim

u→∞
P2

P(supt≥0{X∗(t) + Y (t) − ct} > u)
≥ 1
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and

P3 ≤ P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u
)
P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u − y
)

∼ P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u
)
P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)

= o
(

min
(
P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u
)
, P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)))

as u → ∞. Application of the above to (4.8) yields the asymptotic lower bound

P(Qc
X+Y > u) � P

(
sup
t≤T0

{X(t) + Y (t) − ct} > u
)

+ P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)

= pP

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

+ (1 − p)P(Qc
Y (V r) > u)

+ P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)

∼ pP

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

+ P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)
, (4.9)

where (4.9) is due to (4.6). This completes the proof of (4.3). Now it suffices to note that, due
to Lemmas 4.4 and 4.3 we can distinguish three cases.

• If γ ∈ (1, (2α − 1)/α) then

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

∼ E[Q0
Y (1)α(γ−1)]P(Ur > uα)

and
P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
)

= o(P(Ur > uα)).

• If γ = (2α − 1)/α then

sup
t≤Ur+V

{Y (t) − c(t − Ur)+}, sup
t≥0

{X∗(t) + Y (t) − ct} ∈ RVα−1.

• If γ > (2α − 1)/α then

P

(
sup

t≤Ur+V

{Y (t) − c(t − Ur)+} > u
)

= o
(
P

(
sup
t≥0

{X∗(t) + Y (t) − ct} > u
))

.

This completes the proof.
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