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Abstract

We use the Freiman theorem in arithmetic combinatorics to show that if the Fourier transform of certain
measures satisfies sufficiently bad estimates, then the support of the measure possesses an additive
structure. The result is then discussed in light of the Falconer distance problem.
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1. Introduction and main results

In this paper we prove a structural theorem that relates L p, p ≥ 4, estimates for the
Fourier transform of measures with translation invariance properties of their supports.
Naturally, a lot of information about microstructure of the supports is contained in the
decay properties of the Fourier transforms.

Our motivation comes largely from the Erdős and Falconer distance conjectures.
The Erdős conjecture can be formulated as follows: let q � 1 and E ⊂Rd be a point
set. What is the minimum cardinality #E to ensure that the distance set

1(E)= {|x − y| : x, y ∈ E} (1.1)

has cardinality q? Erdős [5] suggested that one must have

#E �q qd/2 (1.2)

(where the constant hidden in�q may grow slowly with q).
Sets that indicate tightness of the conjecture (1.2) are truncations of lattices,

suggesting the heuristics that a lot of translation invariance means few distances.
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98 A. Iosevich and M. Rudnev [2]

The Falconer distance conjecture [8], regarded as the continuum version of (1.2),
says that, if the Hausdorff dimension of a compact set E ⊂Rd is greater than d/2,
then the Lebesgue measure of 1(E) is positive. This formulation calls immediately
for the use of the Fourier transform, and criticality of the dimension d/2 is once again
supported by lattice-based constructions.

Distance problems have been recently set up and studied in the finite field setting,
which we address at the end of this paper. For some recent results in this direction
using Fourier methods, see recent work by the authors [15] and Shparlinski [18].

Here we ask a question: Given the set E of critical dimension, how much of its
translation-invariant structure can be revealed by the Fourier transform Ê , where E is
identified with its characteristic function? The general idea is that one needs to look at
L p averages of Ê , for p > 2. We consider by far the easiest case, p ≥ 4.

For somewhat more technical motivation, let us quote some theorems about Fourier
transforms of convex curves in R2 and hypersurfaces in Rd in the same vein.

Let ζ be a rectifiable curve in R2 contained in the unit square [0, 1]2. Let σζ denote
the Lebesgue measure on this curve and

σ̂ζ (ξ)=

∫
ζ

e−2π i x ·ξ dσζ (x) (1.3)

be its Fourier transform.
The following theorem is due to Podkorytov [17] in two dimensions, and to

Brandolini et al. [1] in higher dimensions (from now on we use the notation γ for
the surface/curve involved).

THEOREM 1.1. Let γ be a convex hypersurface in Rd . Then(∫
Sd−1
|̂σγ (tω)|

2 dω

)1/2

. t−(d−1)/2. (1.4)

Here, and throughout the paper, X . Y means that there exists some positive C,
such that X ≤ CY , X & Y means X ≥ cY , for some c, and X ≈ Y if both X . Y and
X & Y . The notation X . Y , X & Y and X ≈ Y also appears in the literature in the
guise X = O(Y ), X =�(Y ) and X =2(Y ), respectively.

Note that the decay rate in (1.4) cannot be improved. Indeed, suppose that (1.4)
holds with t−(d−1)/2 replaced by t−(d−1+ε)/2. Then

∞ =

∫ ∫
|x − y|−(d−1) dσγ (x) dσγ (y)

≈

∫
|̂σγ (ξ)|

2
|ξ |−1 dξ

.

∫
∞

1

(∫
Sd−1
|̂σγ (tω)|

2 dω

)
td−2 dt

.

∫
∞

1
t−1−ε dt <∞, (1.5)

which is absurd.
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The L2 estimate (1.4) does not distinguish between different types of convex
surfaces: it is true both for polygons and well-curved surfaces. The differences
between the two types can be seen by looking at other L p spherical averages. On
the upper end of the L p spectrum, if γ is a polyhedron, then σ̂γ (ξ) does not decay at
all in directions normal to the (d − 1)-dimensional faces of the polygon. On the other
hand, if γ is convex and has everywhere nonvanishing curvature, then there is an L∞

estimate

|̂σγ (ξ)|. |ξ |
−(d−1)/2. (1.6)

Conversely, if (1.6) holds under the convexity and sufficient smoothness
assumption, then γ has everywhere nonvanishing curvature. See [12] and the
references contained therein.

On the other hand, if γ is a polyhedron in Rd , it is not difficult to show that, in the
whole range 2≤ p ≤∞, one has(∫

Sd−1
|̂σγ (tω)|

p dω

)1/p

≈ t−(d−1)/p, (1.7)

precisely the answer obtained by interpolation of the general result in the case p = 2
given by Theorem 1.1 and complete lack of decay in some directions for p =∞. It
would be interesting to understand whether it is true that, if (1.7) holds in, say, a
rectifiable category, then γ must contain a piece of a hyperplane.

Overall, there is a general pattern that the lack of curvature that one can associate
with translation invariance corresponds to bad L p estimates, for p > 2. (The situation
changes to the complete opposite for 1≤ p < 2, where the best possible estimates
in the class of convex curves are rendered by polygons and get gradually worse as
curvature is allowed to enter. See [3] and [2].)

The purpose of this paper is to investigate a structural question that is somewhat
similar in spirit to the above described results. Our main interest, however, is the
theory of distance sets, and we are further interested in higher L p Fourier transform
estimates, not for hypersurfaces, but rather for compactly supported Borel measures
with the support dimension not smaller than d/2, which is critical for the Falconer
distance conjecture. The averages we consider are taken over a thick spherical shell
of large radius and are therefore easier to deal with than the spherical averages above,
at least on the level of the proofs presented. The discretization argument central for
the main result in Theorem 1.4 of this paper requires regularity assumptions on the
measures involved. We start out with rather stringent assumptions in Theorem 1.4
and then notice along the way that these assumptions can be weakened to yield a less
uniform, but more practical, result in Theorem 1.5. The assumptions of the latter
theorem are naturally satisfied in all the examples dealing with measures that arise as
thickenings of well-distributed sets that provide a quantitative link between the discrete
Erdős distance conjecture and the Falconer distance problem as its continuum version;
see [13] and the references contained therein.
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Recall that a measure µ is called Ahlfors–David regular if there exists some
s ∈ [0, d], such that, if Bδ(x) denotes a ball of radius δ that is centered at x ,

µ[Bδ(x)] ≈ δ
s, ∀ x ∈ supp µ. (1.8)

More generally, µ is a Frostman measure if, in the above definition framework,

µ[Bδ(x)]. δs, ∀ x . (1.9)

Basic examples of Ahlfors–David regular measures are given by the Lebesgue measure
on submanifolds in Rd or Cantor measures.

DEFINITION 1.2. A finite point set A is an arithmetic progression in Zd of dimension
k and size L , if each element of g ∈A possesses a representation

g= g0 + {r1g1 + · · · + rkgk}1≤r j≤L j
, (1.10)

where each r j is an integer, each g j is a fixed element of Zd , called a generator, and
L1 · L2 · · · · · Lk = L . An arithmetic progression is proper if the representation (1.10)
is unique for each g ∈A. Arithmetic progressions are defined similarly in an arbitrary
abelian group G, and in particular Rd , to substitute Zd in this definition.

DEFINITION 1.3. We say that an Ahlfors–David regular measure µ, supported on
a compact set E ⊂Rd of Hausdorff dimension α > 0 (further E always stands for
the support of the measure µ, and one always has α ≥ s, where s is the exponent
in (1.8) and (1.9)) is arithmetic if, for each δ sufficiently small, there exists E ′ ⊂ E , of
positive α-dimensional Hausdorff measure, such that E ′δ , the δ-neighborhood of E ′,
is contained in some C1δ-neighborhood AC1δ of some proper arithmetic progression
A in Rd , of length L(A). δ−s , and such that A is C2δ-separated, that is, for any
nonequal x, y ∈A, the distance |x − y|& C2δ, with some 1< C1 < (1/10)C2.

Further we deal specifically with the case s = d/2, which is crucial for the Falconer
distance problem. Our main result is as follows.

THEOREM 1.4. Let µ be a compactly supported Ahlfors–David regular measure,
satisfying (1.8) with s = d/2. Let p = 2l, l ≥ 2. Suppose that∫

t≤|ξ |≤2t
|µ̂(ξ)|p dξ &

∫
t≤|ξ |≤2t

|µ̂(ξ)|2 dξ ≈ td/2, (1.11)

for all sufficiently large t. Then µ is arithmetic.

Note that, assuming that the total mass of µ is 1, the inequality (1.11) holds
automatically in the opposite direction. Hence the condition (1.11) presupposes the
worst possible L p decay.

The ensuing proof of Theorem 1.4 implies that one can relax regularity conditions
on µ as follows.
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THEOREM 1.5. Let µ be a compactly supported Frostman measure, such that it
satisfies (1.8) with s = d/2, for some small δ. Let l ≥ 2 and suppose that the
condition (1.11) holds for t ≈ δ−1. Then for some 1< C1 < (1/10)C2 there exists a
proper C2δ-separated arithmetic progression A ∈Rd , of length L(A). δ−(d/2), with
the property that ∫

AC1δ

dµ& 1, (1.12)

with the constant in (1.12) independent of δ.

Let us illustrate Theorem 1.4 by two examples.

EXAMPLE 1.6. Let µ be the Lebesgue measure on a straight line segment of length 2.
The measure µ is clearly Ahlfors–David regular, with s = 1, and arithmetic, as the
support of µ is contained in the δ-neighborhood of some proper arithmetic progression
with one generator of size�(δ) and length O(δ−1), for any δ� 1, in accordance with
Definition 1.3. On the other hand, one can choose the coordinates so that

µ̂(ξ1, ξ2)= 2
sin(2πξ1)

2πξ1
,

and therefore, for p > 1,∫
t≤|ξ |≤2t

|µ̂(ξ)|p dξ ≈
∫

t≤max(ξ1,ξ2)≤2t
|µ̂(ξ)|p dξ . t.

Hence, the conditions of Theorem 1.4 are satisfied, as well as the theorem itself.

EXAMPLE 1.7. Our next example is a d-dimensional q/q2 Cantor set, which has
dimension dlog q/log q2

= d/2. We treat q � 1 as an asymptotic parameter.
A similar construction—for clarity’s sake, we skip some technicality—was

developed by Falconer [8] (see also [9] for details) to point out optimality of the
dimension d/2 in the homonymous distance problem. The construction can be easily
carried over to well-distributed sets (see [13]).

For i ≥ 1, let E ′i be the union of balls Bδi (x) with radius δi = q−2i , centered
at points x ∈ q1−2iZd that fit into the unit cube [0, 1]d . The set E =

⋂
∞

i≥1 E ′i has
Hausdorff dimension α = d/2, and supports a natural Cantor-type Frostman measure
µ, which satisfies (1.8) with the exponent s = d/2, whenever δ = δi . (For other values
of δ, however, the constant hidden in (1.8) can become as small as O(q−d/2).) Let
us also denote Ei =

⋂i
j=1 E ′j . Clearly, the set Ei =Ai

δi
, where Ai is an arithmetic

progression of length O(qdi
= δ
−(d/2)
i ), with di generators. The first d generators

have length q−1, the second d generators have length q−3, all the way to the last d
generators that have length q−2i+1; the length L j corresponding to each generator is
approximately q .
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Let us describe the measure µ as a limit of measures µi that are supported on Ei
and show that each µi satisfies the conditions of Theorem 1.5 with δ = δ j , for any
j = 1, . . . , i .

Let φ be a test function that integrates into one and is identically one in the
ball of some radius r0(d) and vanishes outside the ball of radius 4r0. Suppose,
the Fourier transform φ̂ is nonnegative (φ can be taken as a convolution). Let
φi (x)= q2diφ(q2i x).

Let

fi (x)= q−d(2i−1)
∑

a∈Zd

φ(aq1−2i )φi (x − aq1−2i)) (1.13)

be an L1 density. The factor φ(aq1−2i ) effectively does the cut-off |a|. q2i−1
; the

choice of the unit cube to contain the support of µ was clearly irrelevant and has now
been changed to the unit ball. Then µi has the density

∏i
j=1 fi .

A direct calculation via the Poisson summation formula shows that the Fourier
transform f̂i (ξ) is the sum of the translates of φ̂ to the lattice points q2i−1Zd that
sit inside the large ball of radius approximately δ−1

i = q2i . The latter fact follows from
the uncertainty principle, in particular the fact that φ̂i vanishes rapidly outside the
latter ball.

The condition (1.11) is then satisfied by each density fi , with the specific choice
t = δ−1

i . It is also satisfied by µi , for any t = δ−1
j , j = 1, . . . , i and a finite i , simply

because of the fact that µ̂i = f̂1 ∗ · · · ∗ f̂i and the above described properties of
each individual f̂ j , 1≤ j ≤ i . As i goes to infinity, however, the bump functions,
characteristic of the Fourier transform of µi (represented by translates of φ̂ in each
individual f̂ j ) spread out, due to convolution. This causes the integral on the left-hand
side of (1.11) to get smaller, and as a result the number of generators in the arithmetic
progressions Ai increases.

In particular, µ itself does not satisfy (1.11) for the sequence of the values of
{t = ti }i≥1, with constants uniform in i , and therefore the Cantor set E cannot be
contained in the δ-neighborhood of any arithmetic progression with the number of
generators bounded independently of δ as δ→ 0.

The proof of Theorem 1.4 is based on a simple L4 type argument followed by
application of the Freiman theorem (see Theorem 2.3). The examples above, however,
do not indicate any specific criticality of p = 4. Naturally, a question comes about
whether Theorems 1.4 and 1.5 are true for p ∈ (2, 4). We do not know how to
approach this question at the moment. For now, let us contrast the above theorems
with the following simple positive result that will direct us towards the Falconer
distance problem.

DEFINITION 1.8. We call a compactly supported Borel measure µ additively simple
if the equation

x + y = x ′ + y′, x, y, x ′, y′ ∈ supp µ, (1.14)
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has at most a bounded number of nontrivial solutions, that is those when x 6= x ′ or y′.

Note that, in d = 2, a measure supported on a strictly convex curve is additively
simple. This is not the case, however, for measures supported on convex hypersurfaces
in higher dimensions. Take, for instance, a uniform measure on a sphere in R3.
Equation (1.14) will be satisfied by all pairs (x, y) of diametrically opposite points
on any given circle drawn on the sphere.

THEOREM 1.9. Let µ be an additively simple Frostman measure, satisfying (1.9) with
the exponent s. Then ∫

1≤|ξ |≤t
|µ̂(ξ)|4 dξ . td−2s . (1.15)

COROLLARY 1.10. Let E ⊂Rd have Hausdorff dimension α ≥ (d/2). Suppose that
E supports an additively simple Frostman measure µ, satisfying (1.9) with the
exponent s ≥ d/2. Then the Lebesgue measure of the distance set 1(E) of E is
positive. In other words, the Falconer conjecture holds for sets that support additively
simple measures.

Connections with the Falconer conjecture are discussed in the final section of this
paper. Unfortunately, we stop a step short of proving that the Falconer conjecture holds
for measures that satisfy the assumptions of Theorem 1.4. Vindication of this would
require generalizing the known facts about lattices, regarding the Falconer conjecture
(see for example [14]), to the case of proper arithmetic progressions in Rd that have
a finite number of generators that exceeds d . If such a proof becomes available, it
would indicate that sets, such that measures supported thereon satisfy very poor L4

Fourier estimates, have large distance sets. Conversely, Theorem 1.9 states that sets
that have almost no arithmetic structure yield very good L4 Fourier estimates and
hence have large distance sets. This would open a way to approach the Falconer
conjecture by attempting to interpolate the two extreme cases towards the ‘generic’
situation in between.

The rest of the paper is structured as follows. In Section 2 we construct a discrete
model resulting from the assumptions of Theorem 1.4 and use a variant of Freiman’s
theorem [10] (Theorem 2.3 here) to complete the proof of Theorem 1.4. In the last
section we discuss the connection between the problem we are studying and the
theory of distance sets. There we prove Theorem 1.9 and Corollary 1.10 based on
the machinery developed by Mattila [16] for the Falconer distance problem [8]. In
conclusion we describe the finite field analog of our main result.

2. Discretization and proof of Theorem 1.4

Without loss of generality, the total mass of the measure µ is 1, so it clearly
suffices to prove Theorem 1.4 for l = 2. Notwithstanding this fact, to emphasize the
combinatorial aspects of the problem, let us further regard l as an integer that is not
smaller than 2.
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Define a ≈δ b if |a − b| ≤ δ. Let µ be an arbitrary compactly supported Ahlfors–
David regular measure, satisfying (2.6) with s = (d/2), and such that (1.11) holds.
Let X = (x1, . . . , xl) ∈Rdl , Y = (y1, . . . , yl) ∈Rdl and µ∗ = µX × µY = µ× µ×

· · · × µ, 2l times. Observe that, with δ ≈ (1/t), the condition (1.11) implies that

µ∗{(x1, . . . , xl , y1, . . . , yl) | x1 + · · · + xl ≈δ y1 + · · · + yl}& δd/2, (2.1)

for all sufficiently small values of δ. Indeed, if ψ is a radial cut-off function that is
supported in the annulus {ξ : 0.9≤ |ξ | ≤ 2.1}, and is identically one for 1≤ |ξ | ≤ 2,
then, by the Fubini theorem,∫

t≤|ξ |≤2t
|µ̂(ξ)|2l dξ .

∫ ∫ ( ∫
e−2π i z·ξψ(ξ/t) dξ

)
dµX dµY

= td
∫ ∫

ψ̂(t z) dµX dµY , (2.2)

where z = x1 + · · · + xl − (y1 + · · · + yl). The estimate (2.1) now follows since ψ̂
decays rapidly.

Assume without loss of generality that E ⊂ [0, 1]d . Since µ is Ahlfors–David
regular, we can choose δ = c0t−1, with some 0< c0 < 1, so that for N = δ−1 there
exists a set 0N ⊂ (N E ∩ Zd) of cardinality c1 N d/2, for some sufficiently small
c1 ∈ (0, 1), such that the left-hand side of (2.1) equals∫

µX {(x1, . . . , xl) | x1 + · · · + xl ≈δ y1 + · · · + yl} dµY

≈ δdl #{(a1, . . . , al , b1, . . . , bl) ∈ 0N | a1 + · · · + al = b1 + · · · + bl}. (2.3)

Without loss of generality we may assume that N is an integer, and that N ≈ t .
Theorem 1.4 now reduces to the following combinatorial problem.

DISCRETE MODEL. Let 0N be the aforementioned subset of Zd
∩ [0, N ]d of

cardinality c1 N d/2. Suppose that

#{(a1, . . . , al , b1, . . . , bl) ∈ 0N | a1 + · · · + al = b1 + · · · + bl}& N dl−(d/2). (2.4)

The following theorem describes the structure of 0N as N →∞.

THEOREM 2.1. Condition (2.4) implies that there exists a set 0′N ⊆ 0N , of cardinality
#0′N ≈ N d/2, which is contained in some proper arithmetic progression A⊂ Zd of
length L = O(N d/2).

In view of what has been done so far in this section, Theorem 1.4 will follow from
Theorem 2.1 immediately. As we have shown, the assumptions of Theorem 1.4 imply
the assumption (2.4) of Theorem 2.1 quite readily, since µ has been assumed to be
Ahlfors–David regular.
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[9] Freiman theorem, Fourier transform and additive structure of measures 105

To prove Theorem 2.1, define for u ∈ l0N = 0N + · · · + 0N , l times, the
multiplicity function

n(u)= #{(a1, . . . , al) ∈ 0
l
N | a1 + · · · + al = u}. (2.5)

The statement of the theorem can now be rewritten in the form∑
u∈l0N

n2(u)& N dl−(d/2). (2.6)

Now we have the following combinatorial observation.

LEMMA 2.2. There exists a family of subsets 0 j,N ⊂ 0N , j = 1, . . . , l, such that,
for all j , #0 j,N ≈ #0N and

#(01,N + · · · + 0l,N ). #0 j,N . (2.7)

Lemma 2.2 will be proved shortly. To take advantage of it, we need a slight
generalization of the following classical result due to Freiman [10] (see Green’s
notes [6] for the state-of-the-art exposition).

THEOREM 2.3 (Freiman’s theorem). Let A ⊂ Z such that #(A + A)≤ C#A. Then the
set A is contained in some k-dimensional arithmetic progression in Z, where k depends
only on C.

Observe that the Freiman theorem in the above formulation does not extend
immediately to Zd . However, Green and Ruzsa [7] proved that the theorem generalizes
to arbitrary abelian groups as follows.

DEFINITION 2.4. A coset progression in an abelian group G is the sum A+ H , where
A is a proper arithmetic progression in G and H is a subgroup of G. The sum is direct
in the sense that a + h = a′ + h′ only if a = a′ and h = h′. The dimension of the coset
progression is the number k in (1.10) above and the size of the coset progression is the
cardinality of A+ H .

THEOREM 2.5. Let G be an abelian group and let A ⊂G such that #(A + A)≤ C#A.
Then A is a subset of a coset progression of dimension k(C) and size f (C)#A.

In particular, it is immediate from Theorem 2.5 that, if G= Zd , then, as the theorem
deals with finite sets, the only possible choice for H is {0}, the trivial subgroup. In
other words, Theorem 2.3 carries over to Zd verbatim.

REMARK 2.6. We note that the Freiman theorem continues to hold if we change its
input to #A ≈ #B and #(A + B). #A. In this case, the conclusion is that at least one
of A, B is contained in a generalized arithmetic progression of the designated length
and dimension.

One can probably avoid using the full power of the Green–Ruzsa generalization to
extend the Freiman theorem from Z into Zd . However, we leave it as it is, expecting
Theorem 1.4 to have analogs in Fourier analysis on abelian groups other than Rd (see
in particular the last section of this paper that develops the finite field analog).
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Let us now prove Lemma 2.2. Observe that∑
u∈l0N

n2(u) ≤ max
u∈l0N

n(u) ·
∑

u∈l0N

n(u)

. N (l−1) d/2
· N ld/2

= N dl−d/2. (2.8)

Comparing this with the condition (2.4) we see that there is a subset ϒN ⊆ l0N ,

of cardinality at least c2 N d/2, such that, for all u ∈ ϒN , we have n(u)≥ c3 N (l−1) d/2.
Indeed,

#ϒN .
N ld/2

N (l−1) d/2
= N d/2 . #0N . (2.9)

Then, by simple induction in l, starting from l = 2, there exist subsets 01,N , . . . , 0l,N
such that #0 j,N ≈ #0N ≈ N d/2, as well as

01,N + · · · + 02,N ⊆ ϒN . (2.10)

This is precisely the claim of Lemma 2.2.
It follows from Theorem 2.5 that the set 01,N for instance is contained in

some proper arithmetic progression A in Zd
∩ [0, N ]d , and this suffices to prove

Theorem 2.1 and consequently Theorem 1.4. Observe that, if g0, . . . , gk , where
k = O(1), are generators of the arithmetic progression A, with lengths L j , j =
1, . . . , k, one has L1 · · · · · Lk ≈ N d/2.More information about the generators g j and
lengths L j in terms of the parameter N can possibly be uncovered under additional
assumptions on homogeneity properties of the support of µ; see Example 1.7.

3. Connections with Falconer distance problem

Recent advances towards the Falconer distance problem (see [19] and [4] for the
best results as of today and more references) rely on the L2 approach to distance
measures set forth by Mattila [16]. The approach implies that, if there exists a Borel
measure µ supported on E , such that

M(µ)=
∫
∞

1

(∫
Sd−1
|µ̂(tω)|2 dω

)2

td−1 dt <∞, (3.1)

then the Lebesgue measure of 1(E) is positive. This fact arises by studying the
push-forward ν on 1(E) of the measure µ× µ on E × E , under the distance map.
Namely the criterion (3.1) is equivalent to stating that ν has L2 density. Then, if µ is a
probability measure, by Cauchy–Schwartz and Plancherel one has

1 .

(∫
dν

)2

≤ |1(E)| ·
∫
|̂ν(t)|2 dt, (3.2)
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so the Lebesgue measure |1(E)|> 0 provided that ‖ν‖22 <∞. Mattila showed that

ν̂(t)≈ t (d−1)/2
∫

Sd−1
|µ̂(tω)|2 dω, (3.3)

that is, the integral (3.1) represents a tight estimate for ‖ν‖22.
Observe that, by Cauchy–Schwartz,(∫

Sd−1
|µ̂(tω)|2 dω

)2

.

∫
Sd−1
|µ̂(tω)|4 dω,

hence

M(µ)≤
∫
∞

1
|µ̂(ξ)|4 dξ. (3.4)

So if E supports a Borel measure µ such that µ̂ ∈ L4(Rd), then the Lebesgue measure
of the distance set is automatically positive.

Therefore, to prove Theorem 1.9, we use (3.4) and (2.2)–(2.4) with l = 2 that imply
that the integral M(µ) can be estimated in terms of the limit as t→∞ of∫

1≤|ξ |≤t
|µ̂(ξ)|4 dξ . tdµ∗{(x, y, x ′, y′) : x + y≈t−1 x ′ + y′}, (3.5)

with the notation of the proof of Theorem 1.4. Since µ is a Frostman measure that
satisfies (1.9), and by the assumption that µ is additively simple (see Definition 1.8),
the right-hand side of (3.5) is O(td−2s), the bounding constant being independent of t .
This completes the proof of Theorem 1.9. Corollary 1.10 follows immediately from
Theorem 1.9, the fact that now s ≥ (d/2), and the estimates (3.4) and (3.2).

3.1. Finite field analog Finally, let us briefly discuss the finite field analog of the
results in this paper. Let F be a finite field of q � 1 elements, F∗ its multiplicative
group, and Fd the d-dimensional vector space over F. The space Fd is equipped with
the counting measure, and its dual with the normalized counting measure.

Let us identify E ⊂ Fd and its characteristic function. For ξ ∈ Fd , the Fourier
transform of E is defined as

Ê(ξ)=
∑

x
E(x)e(−ξ · x), (3.6)

where e : F→ S1 is a nonprincipal character of F. (In the particular case of prime
fields, or modulo arithmetics, when F= Zq , where q is a prime, one simply has
e(ξ · x)= e2π iξ x/q .)

The Falconer distance problem on Fd says that, if #E �q qd/2, then #1(E)& q,
where

1(E)= {(x − y) · (x − y) | x, y ∈ E}. (3.7)
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However, the conjecture can possibly hold in the case of even d only; see [11].
By analogy with Definition 1.8, let us call E additively simple if the equation

x + y = x ′ + y′ on E has at most a bounded (that is, independent of q) number of
nontrivial solutions. Then we have the following analog of Theorems 1.4 and 1.9.

THEOREM 3.1. Suppose #E ≈ qd/2 and∑
ξ

|Ê(ξ)|4 & q3d/2. (3.8)

Then there is a subset E ′ ⊆ E, such that #E ′ & #E, which is contained in a coset
progression that has O(1) generators and size O(qd/2). If q is a prime and the
subgroup H defining the cosets is nontrivial, then #1(E)& q.

If E is additive simple, then also #1(E)& q.

To prove the theorem, observe that by (3.6) the condition (3.8) means that the
equation x + y = x ′ + y′ on E has at least some c4(#E)3 solutions, whereupon the
proof of Theorem 1.4, for l = 2, is repeated step by step. One may need a version of the
Freiman theorem in somewhat more generality than Theorem 2.3, however the Green–
Ruzsa [7] version clearly provides full generality and suffices for this modest purpose.
In particular, if q is a prime and the subgroup H (see Definition 2.4) may be nontrivial,
it contains a straight line (the latter has q points). This implies immediately the claim
about the distance set 1(E). Otherwise, the claim is open—see the discussion at the
end of Section 1.

On the other hand, if the set E is additively simple, then, by the results of [15], the
Mattila criterion (3.1) in Fd , to ensure that #1(E)& q , becomes

q−2d+1
∑
t∈F∗

( ∑
ξ :ξ ·ξ=t

|Ê(ξ)|2
)2

. 1. (3.9)

Applying the Cauchy–Schwarz inequality to the sum in brackets, the condition (3.9)
will hold, provided that

q−2d+1qd−1
∑
ξ

|Ê(ξ)|4 = q−d
∑
ξ

|Ê(ξ)|4 . 1. (3.10)

Compared with (3.8), the condition (3.10) reads∑
ξ

|Ê(ξ)|4 . qd . (3.11)

This, in view of the discussion earlier in the proof of Theorem 3.1, is true in the case
when the set E is additively simple. This completes the proof of Theorem 3.1.
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