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Abstract

Let UNn be a {/-statistic based on a simple random sample of size n selected without replace-
ment from a finite population of size N. Rates of convergence results in the strong law are
obtained for UNn , which are similar to those known for classical {/-statistics based on samples
of independent and identically distributed (iid) random variables.
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1. Introduction

{/-statistics, first introduced by Hoeffding (1948), form a large class of statis-
tics that are widely used in estimation and testing. Nandi and Sen (1963)
studied the weak limit behaviour of [/-statistics based on samples drawn
from finite populations, and Sen (1970) considered the strong convergence
behaviour of such statistics.

Rates of convergence in the strong law of large numbers for [/-statistics
based on samples of independent and identically distributed (iid) random
variables have been the focus of attention in several recent papers. Baum and
Katz (1965) obtained necessary and sufficient conditions for convergence rate
results for the mean of an iid sample: Lin (1981) obtained the corresponding
sufficient condition for [/-statistics, and Kokic (1987) extended these results
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to obtain convergence rates for degenerate [/-statistics. The aim of this
paper is to extend these results to [/-statistics based not on iid samples but
on samples from finite populations.

Let {xNl, ... , xNN} be a vector of N real numbers denoting the elements
of the Nth finite population of interest. Let (RNl, ... , RNN) be a vector
chosen at random from the set of N\ permutations of (1 , 2, . . . N) and let
XNi = xNR . A random sample of size n drawn from the finite population
of size N can be written Xm , ... , XNn . An unbiased estimator of the
population mean, xN = N~l £ * , xm , is n~lSNn , where SNn = £"= 1 XNi.
This is an example of a [/-statistic of order 1. In this paper we will be
mainly interested in [/-statistics of order 2 defined as follows. Let hN:R2-*
M be a sequence of functions which are symmetric in their arguments and
let wNij = hN(x^,xNj). If WNiJ = hN{Xm, XNj) is unbiased for some
unknown population parameter 6N , say, then the corresponding [/-statistic
with kernel hN, ( j)" UNn , is also unbiased for 6N, where

Note that if we take hN(xNi, xNj) - ?{xNi - xNj) then we obtain the usual
estimator of the population variance. This paper will study the conditions
under which {(l)~lUNn - 6N} converges strongly to zero and the rate of
such convergence. Strong convergence for such situations was defined by Sen
(1970). An equivalent definition of strong convergence is given below.

D E F I N I T I O N . L e t {TNn{Xm , ... , X N n ) , l<n<N,N>l}bea t r i a n -
gular array of statistics and let {6N, N > 1} be a sequence of real numbers.
Then TNn - 6N strongly converges (s.c.) to 0, if for every e > 0,

Urn limsupP ( max \TN1. - dN\ > e) = 0.
fl-oo J V ^ O / \n<k<N[ Nlc N> )

Rosen (1964) established that n~lSNn - Jc^ -> 0 s.c. if and only if

\xNi(1.1) lim limsupiV"1 V \xNi -^1/(1*^,- - ^ 1 > L) = 0.

In Section 2 we will show that the rate at which n 1SNn - xN converges to

zero depends on the values of t for which supJV>1 N'1 J2?=\ \XNI~^N\' < °° •
In Section 3 we establish the corresponding result for UNn , and improve the
strong convergence result for UNn established in Theorem 2 of Sen (1970).
Further, we refine the rate of convergence for the case when the arrays {wNij}
have all row and column sums equal to a fixed constant. These results are
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analogous to the rate results established by Kokic (1987) for degenerate U-
statistics based on samples of iid random variables.

2. Rate results for the sample sum

Suppose

(2.1) sup AT1 f ^ . l ^ oo.

Then (1.1) holds if t > 1. Hence n xSNn - f J V - » O s . c . In fact, we have
the following result.

THEOREM 1. If 0 < t < r, r > 1 and condition (2.1) holds, then for each
e>0,

N / \
(2.2) limsup Ynr~2P ( max k~r"\S,fk\ > e ) < oo.

If 1 < r < t < 2 r , c o n d i t i o n ( 2 . 1 ) Ao/^fe and for all N > 1 , x N = 0, then for
each e > 0, (2.2) AoWs.

This result is the analogue of Theorem 3 of Baum and Katz (1965), who
developed a similar result for the sum of iid random variables. The follow-
ing lemma about trangular arrays of real numbers allows us to deduce the
convergence rate result given in Corollary 1 of Theorem 1.

LEMMA 1. Let {aNn ,l<n<N,N>l}bea triangular array of positive
numbers satisfying aNn >aN n+l when N > n > 1. If for some r > 1,

N

limsupy3nr~2aArn < °°
N-KX .

then

^ = 0(n~r+l) as n —• oo.
N—>oo

COROLLARY 1. Under the conditions of Theorem 1

limsup.P ( max k~ |SVJ > e) = O(n~r+ ) as n —* oo.
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The large order term in Corollary 1 may be replaced by the corresponding
small order term if we replace (2.1) by the stronger condition

N

(2.3) lim lim sup JV"1 ̂  \xNI\'l(\xNi\ >L) = 0.

THEOREM 2. Under the conditions of Theorem 1, if (2.3) hold then

limsupP ( max k~r/'\SNk\ > e) = o{n~r+l) as n 0 0 .

Suppose xN = 0. Condition (1.1) is equivalent to the sequence of random
variables {XNi, N > 1} being uniformly integrable, which is equivalent to
n~lSNn ->Os.c. For t > 1 condition (2.1) implies the uniform integrability
of {XNX, N > 1} , and futher implies the range of convergence rate results
given in Corollary 1. Condition (2.3) is equivalent to the uniform integrabil-
ity of {\XNl\

l, N > 1}. It implies condition (2.1) and the slightly stronger
result of Theorem 2.

3. Rate results for (/-statistics

Throughout this section it is assumed that

i=2 j=\

Also, by symmetry, and since the diagonal terms may be denned arbitrarily,
we have

(3.2) wNij = wNji a n d wNii = °-

Sen (1970) showed that (n
2)~

lUNn - 0 s.c. if suPjv>2 (^)"1 £JL2 E > ! w2
NtJ

< oo. In Theorem 3 below the same result is established under a weaker set
of conditions. Let

N

^ , . = (^-2)-'

and
, , . . _ f WNij ~ WNi ~ WNj x l ' r J » a n a

1 j NiJ 1 0 otherwise.
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THEOREM 3. Suppose that
N

lim lim sup N Y^ \wNi\I{\wNi\ > L) = 0

•JVN-^t i | > L ) = 0
L->oo AT-.OO \ / i = 2 j = l

Corresponding to Theorem 1 we have the convergence rate result given in
Theorem 4 below. The result is essentially the analogue of Theorem
2 of Lin (1981). However, we first give the following moment bound
result, which is essential in the proof of Theorems 4 and 5. Let vNt =

V2/ 2_r,=2 i-ij=\ \WNij\ *

LEMMA 2. Suppose that UNn is based on an array {wNij} satisfying (3.1),
(3.2) and for all i, Y^=xwNij = 0. Then for each t > 2 there exists a
constant Kt, such that

E\UNn\'<Kt(Npq)'vm.

THEOREM 4. Suppose r > 1 and that for some 2 < t <2r,

(3.4) sup vNt < oo.

Then for each e > 0,
N , v

l imsupy"« r ~ 2 P ( max k~l~r/'\UN, | > e I < oo.

COROLLARY 2. f/nrfer //ze conditions of Theorem 4

limsupP ( max fc 1^*1 > s ) — 0(n~r+ ) as n -+ oo.

If in addition to (3.4) we assume that

N
(3.5) lim limsupJV"1 ] T \wNi\'l(\wNi\ >L) = 0,

L->oo flf—too ^ J

then the large order term in Corollary 2 may be replaced by the corresponding
small order term.
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THEOREM 5. If the conditions Theorem 4 are satisfied and (3.5) holds, then
for each e > 0

limsupP ( max k \UNA > e ) = o(n~r+ )

as n —> oo.

If UNn is based on an array {wNij} with the property that the row and
column sums of {wNij} all equal the same constant, then we call UNn a
degenerate {/-statistic. Condition (3.1) forces a degenerate (/-statistic to
satisfy

(3.6) X>*o-= XX,; = 0.

The reason we have denned {vNij} as at (3.3) is that it satisfies (3.6) in
addition to (3.1) and (3.2). As shown in Lemma 2, it is possible to obtain
high order moment bounds for degenerate (/-statistics, which are crucial
in obtaining convergence rate results for (/-statistics. The following strong
convergence rate result for degenerate (/-statistics is the analogue of Theorem
1 ofKokic(1987).

THEOREM 6. Suppose {UNn} are degenerate U-statistics satisfying (3.1)
and (3.2). Let r be a positive constant and suppose that for some t > 2,
condition (3.4) is satisfied. Then for any 8 > 1 and any e>0,

N / \
~SP I max k~l~r/'\UNk\ > e) < oo,f£ \n<k<N

and
limsupP ( max k~x~rlt\UNk\ > e) = O(n r).

We see, on comparing this result with Theorem 4 and Corollary 2, that
the rate at which (Q~lUNn converges to zero (s.c.) is faster for degenerate
than nondegenerate (/-statistics.

4. Proofs

Throughout let c, , c2, . . . denote positive constants which do not depend
on n or N. The proof of Theorem 1 is reduced to checking that three sums
converge. The following technicial lemma is required to bound the third
of these sums. The y parameter introduced in the lemma will be used to
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determine truncation values in the proof of the theorem. This truncation
technique can also be used to correct the proof of the claim in Baum and
Katz (1965), page 109, that given E\X\' < oo for some 0 < t < 1 then
nl~l/t\EX I(\X\ < nl/t)\ - t O a s B - n » . To see this note that for any
y e (0 ,1 ) ,

nl~l/'\EXI{\X\<nl/')\

< nl~l/t{E\X\I{\X\ < E\X\I(n7/t < \X\

I{ny < \X\y))
0 as n —> oo.

LEMMA 3. Suppose that r > 1 and 2r > t > 0. Let y be any number
satisfying 1 > y > max{r- 1 , t/(2r)}. Let yNl, ... , yNN be real numbers
such that for some c, and i = 1, . . . , N, \yNj\ < cxn

yrlt, where 1 < n < N,

= 0 and N~l £?£?=, |' < oo. Let Ym = y
NR

and let
j be the smallest integer greater than or equal to t. For each integer M,
independent of n and satisfying

(4.1) IMjyr/t -yr+l>Mj

there exists a c2 such that

lNk
fe=l

2Mj

< c2n
(2Mjyr/t-yr+l)

PROOF. The key to establishing this lemma is the useful inequality found
in Theorem 4 of Hoeffding (1963), which states

(4.2)
n

J2YNk
k=\

<E
n

£*, Nk
k=\

2Mj

where ZNl, . . . , ZNn are iid random variables uniformly distributed on
yNl,... , yNN. The result now follows from (4.2) by the same argument as
used by Katz (1963) to bound his expression (7).

PROOF OF THEOREM 1. Without loss of generality assume that N > 2
and e = 2. For convenience of notation we will drop the N subscript in the
double subscripts throughout all proofs, except where extra clarity is required.
Choose a y and an integer M so that (4.1) is satisfied and

(4.3) (Mt - y > max{(r , t/(2r)}.
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For 1 < m < N let

Am=\J{\Xk\
in '"2

J t = l

and

lfem
k=\

> m

where Xkm = Xk if \Xk\ < myrlt, and Xkm = 0 otherwise. If we argue as
in (1) of Katz (1963), to prove the theorem it suffices to show that

N N

(4.4) l i m s u p ] T n P[\JA™\<OO for / = 1, 2 and 3.

We begin by proving (4.4) for / = 1. Note that

(4-5) U 4? = 0 ™ >»'''> u U
k=\ k=n+\

so Y?n=\ /ir2-P(Um=n -^m) c a n ^ e e xPr e s s ed as the sum of two terms each of
which can be bounded by

(4.6) Y^nr-lP(\Xl\>nr/t)<c3E\Xl\
t.

Thus, by condition (2.1), (4.4) follows in the case / = 1.
Now for 1 = 2

U A» = U \>\\\> nyrlt} U , 1,

and so by similar techniques to those used in the case 1=1,

N 7 N

u
N

x\, \x2(
n=\ \m=n ) k=\

Note Xx and X2 are not independent but

P(\Xl\,\X2\>kyr/t) = I{\xki\>kyrlt)I{\xki\>kyrlt)

N

< N/(N- kyr/t)
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Thus

(4.7)
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i.r-2yr

71=1 \m=n k=\

By (4.3), r(l - 2y) < - 1 , so the series at (4.7) converges. Thus by (2.1),
(4.4) follows in the case 1 = 2.

It remains to prove (4.4) in the case 1 = 3. Let Ykm = Xkm - EXkm ; then

(4.8)
k=\

>mr"(l-ml-r/'\EXlm\)\.

We now show for sufficiently large m that ml r^'\EXlm\ is small.
When 1 < r < t, EXk = 0, and so

ml-r"\EXlm\ <

and when 0 < t < r and r > 1,

Now (4.3) ensures that (l-yr)-r(l-y)/t < 0 and {\-y){l-r/t) < O.and
so condition (2.1) ensures for all sufficiently large m that mi~r^'\EX
By (4.8), to complete the proof it suffices to show that

lm\

(4.9)
N~+°° „=!

lkm
fc=l

< oo.

The sum on the left-hand side of (4.9) is bounded by a constant multiple of

N

m P
m=l

lkm
k=l

>

N

m=l
cx>

(4.10)

tr-lm-2MJr,tE

(2Mjr/t)(y-l)-r(y-l)

lkm

2Mj

m=\

by Lemma 3. Now (4.1) and (4.3) ensure that the series at (4.10) converges,
and hence (4.9) and Theorem 1 follow.

Lemma 1 may be proved with standard analytic techniques. The details
are therefore omitted from this paper.
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PROOF OF THEOREM 2. With the notation of the proof of Theorem 1 it is
sufficient to show that

( N \

I I A{'] )= 0 for / = 1, 2 and 3.
m=* )

The argument proceeds almost exactly as in Theorem 1, where we use (2.3)
to bound the / = 1 terms, that is, to bound nr~lP(\J"k=l{Xk > nr/t}) and
n~lP(UL+l{

Xk > kTlt)) ^ £|*,l'/(l*,l' > nr/t).
Essential to the proof of Theorems 3, 4 and 5 is the following decomposi-

ton. Note that

where

1=2 j=\ 1=1

PROOF OF THEOREM 3. Assume without loss of generality that N > 3 . By
(4.11),

( (k\~x \ ( -i ~
P max L, \Uk\ > e < PI max 2k \Sk\ > h

By Theorem 5.2 of Rosen (1964),

lim limsupP ( max 2k~ \Str\> e) = 0 .
n-oo ff^ac \n<k<N * )

To bound the second term we note that by Lemma 2.1 of Sen (1970),
{ ( 2 ) 1 VNn ,2<n<N} is a reverse martingale. Thus,

To bound E\Vn\ we let i>(; = atj + b^ , where

N

1=1

1=1 j=\
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Thus ^2f= j a(j = J2*jL\ by = 0 > anc* f ° r some c^ ,

n i - l n i - l

i=2 7=1 i=2 ;=1

- 1 N i-l
1/2

Z'7

Since (^) Z)̂ -> $Z',-! fln is bounded by a constant,

( (k\~x \
lim limsupP I max I . I IK,. I > ie I = 0.

n-»oo AT-.OO \n<fe<Ar \2 / ' "K] 2

\ ~ ~ x ' /
This completes of the proof of Theorem 3.

PROOF OF LEMMA 2. Since {(JV~2"
+2) UN-n+2 > 2 - n - N} ^s a martingale,

we have via the theorem in Dharmadhikari et al. (1968) that

2'~3)}'where cg = max{8(f - l )max(l , 2 '~3)}' . After some algebra, it may be
shown that

~' £ ££ £wu.
Hence by Holder's inequality,

E 6) ".-("
(4.14)

7=1

t

1,7

t
n-l

7=1

sum °^ aConditional on Rn = m , 23;=i ^B/ *s

of size n - 1 selected without replacement from

& = {Wml , • • • , Wm,m-l ' Wm,m+1

random sample
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Since Un is degenerate the elements of & sum to zero. Thus by Theorem
4 of Hoeffding (1963), and the theorem in Dharmadhikari et al. (1968),

n-\

7=1

Since

(4.15)

we have

(4.16)

n - l

7=1

E
n-l

7=1

N

j=n+l

t

N-n
r - - Y^ w

7=1

cl0(N - n) unt

and so by (4.13), (4.14) and (4.16),

(4.17) ' 4

By similar reasoning to that used at (4.15), we have Un = UN_n . The lemma
follows from this fact and expression (4.17).

PROOF OF THEOREM 4. Using (4.12), we have

P ( max k~x~rlt\Uk\ > e] < P ( max ATr/' |5t| > \e]
\n<k<N K ) \n<k<N K L )

(4.18) +P[ max k^'lC?) Vk\>e).
\n<k<N \2) )

From Theorem 1,

y ^ / / " P ( max /c~ I51. | > ie ) < oo,

so the result will follow if
N

lim sup
N—oo n=l

max /
{n<k<N

> e < oo.

Since

(4.19)

, - i .
, 2 < k < N} is a reverse martingale, we have

P ( max A:
\n<k<N

1 r/t

and the result follows if we use the bound in Lemma 2 and argue as in Lin
(1981), Theorem 2.1
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Theorem 5 now follows almost immediately if we use Theorem 2 to deal
with the first term in the bound (4.18), and (4.19) to bound the second term.

Theorem 6 is established by our using similar arguments to those used in
Theorem 1 of Kokic (1987) and so the details are not included here.
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