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A remark on elementary

abelian groups

J.L. Hickman

Dr M.F. Newman has asked whether in the absence of the Axiom of

Choice it is possible to have two non-isomorphic elementary

abelian groups of the same (finite) exponent and of the same

(infinite) cardinality. By means of an example, I show that this

is in fact possible, if the exponent is at least five; I do not

know the answer in the remaining two cases. The example given

requires the construction of a Fraenkel-Mostowski model of set

theory, and for this purpose I draw upon the terminology,

constructions, and results contained in the first two sections of

a previous paper, "The construction of groups in models of set

theory that fail the Axiom of Choice" (Bull. Austral. Math. Soa.

14 (1976), 199-232), with which I assume familiarity.

Wherever possible, we use upper case script letters to denote

algebraic or relational structures, and the corresponding upper case italic

letters to denote their carriers. The letters "i", " j " , ..., "q" denote

natural numbers, "w" denotes the first transfinite ordinal, and "| |"

denotes set-theoretic cardinality.

Abelian groups will be written additively, and the identity element of

an abelian group will be denoted by "0" (usually with an appropriate set

of subscripts). If p is a prime number, then an abelian group all of

whose nontrivial elements have order p will be called an "elementary

abelian p-group".
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2 14 J.L. H ickman

We draw upon the terminology, constructions, and results contained in

the first two sections of [/]. A straightforward modification of Theorem

II. 1 of that paper tells us that there is an FMC-model M containing two

countably infinite elementary abelian p-groups C and C such that

CQ n C. = 0 and C = C. u C is the set of urelemente of M , and p is

an arbitrary but fixed prime. Henceforth we assume that p > 5 , and we

work entirely within the model M ; that is, we assume that M is the

universe. The fact that we are now working in FMC set theory instead of

the more usual ZFC or VMB set theory should not cause us any concern, for

it is only at the foundational levels of mathematics that the technical

eccentricities of FMC set theory begin to make their presence felt. In

particular, the following constructions can be carried out in FMC set

theory just as well as in ZFC.

By the Axiom of Choice, we can show that any two elementary abelian

p-groups of the same cardinality are isomorphic; it follows that for each

i < 2 we can represent C. as the complete direct sum of an w-sequence
It

[C. .) . of groups C. . , where each C. . is a copy of the cyclic group
i3 3 ̂w *3 *3

of order p . We denote the elements of C. . by "c. . ," , k < p , and
T-3 "^3 >*

we assume that the a . . , are subscripted in such a fashion that

o. . „ = 0.. and c. . , = ka. . n for 0 < k < p . Thus we may think of

the elements of C. as w-sequences (e. . , ) . , with k. < p for each
d

j < a) , and with addition being performed pointwise.

Let i, jy k be given, with i < 2 and k < p . We denote by

"a*.. ," the element [o. ) „ of C. defined by n. = k and n = 0
13 ,k K %m ,n Jm<u) i J j m

for m # j . We now put C*. . = {o*. . , ? C.; k < p} ; the set C* . is of
13 <̂7 >̂  *̂ "3

course the carrier of a subgroup C*. . of C. isomorphic to C. . .
13 1 13

Let the number j be given. We define a bijection1 f. : CQ. •* C .

C ., C . are both cyclic of order p and p > 5 , these equations

completely define /. . Using these functions /. , we now define a
3 3

1 See note added in proof at end.
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M j e c t i o n / : CQ + ^ by / ( ( c ^ ) . J - ( f . ( O ( y > f c )) .^ f o r e a c h

3 3

k)ju C0 •
0

Once again l e t j be given, and for each i < 2 , define the

automorphism g.. of C. by g. .[c* . J = e* . . , and
"tf3 *̂ "^3 ^3 j l 1*3 ^^•*ir

9''i°$ -i)=c* T **or m ^ 3 * I t i s easily seen that these equations
1fQ irTTl, J. tfJTt , X

define ^. . completely, and moreover, for any j we have

/*l̂ n •(̂ )J = Q •Lf>(̂ )J for every c € C •u j xj u

Let X be the set of all finite subsets of C , and let G be the

group of all permutations g of C satisfying the following:

(1) g"C. = C. and g\C. is an automorphism of C. , i < 2 ;

(2) f[g(c)) = ?(/(e)) for every o (. CQ .

From (l) we see that each g € G can be expressed as an ordered pair

(̂ n' 9i) ' wnere g. is an automorphism of C. , •£ < 2 , and from (2) and
U 1 If 1r

the preceding remarks we see that g. = [gn-, g, •) £ G for each j < to .
3 ^3 -^-3

It is easily seen that X is a normal ideal with respect to G , and

so by I.I, 1.2 of [7] we have an FM-model V = V(G, I) such that for every

x we have x € V if and only if x c_V and S c ff for some X € X .

It is 1/ that is the FM-model we require.

We know from the general properties of V (see [J]) that C € V and

that V is a transitive class - that is, x c V for every a; € 7 . Hence

we have C. c V for each i < 2 . But from (l) above we have Gr = G ,

and so 5^c ff . Thus C. € K , and we must now show that the
i

appropriate group structure on C. is contained in the model V .
In

We put K. = {[a,a,o) € C. x C. x c.; e_ + a = c o } > i < 2 .

The set K. represents the group structure of C. . Now 1/ is an

FM-model, and we have established that C. d V . Hence C. x C.• x C. € V ,

and so C. x c. x C. c K . Thus X. c V . But for any g ? G and any
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(eQ, o±, c2) $ K^ , we have g[[aQ, o±, c^) = [g[oQ) , g[c^) , g[o^) (see

[/], p. 20*0. It follows from this and from (l) that g"K. = K. for each

g i G , that is, Gv = G . Thus K. (. V . Therefore V contains the

group C. , and of course within V the group C. is still an elementary

abelian p-group.

We now turn our attention to the bijection / : C' -*• C' . We have of

course / c_ C. x C , and so as above we obtain f c_ V . Take any

[o0, oj f / and any g d G ; then g{[oQ, ej) = [g{aQ) , gioj) . But

by (2) we have gfcj = g[f[cQ)) = f{g[aQ)) , and so [g{cQ) , g{o^)) i f .

It follows from this that g"f = / for each g € G ; thus / € V . Since

it is clear that within V the set f is still a bijection C. ->• C , it

follows that within the model V we have |C-| = \C \ .

It remains to show that within V there is no isomorphism C -*• C .

Suppose that h is such an isomorphism. By the rules of the game, there

must exist X d I such that S^ c_ G, - that is, for each g € G , if

g(x) = x for every x € X , then g"h = h . Now * is finite, and so if

we let V. be the subgroup of C. generated by X n C. , then we must

have £>. n C? . = {o.} for all but a finite number of j . Hence we can

certainly choose j° such that D n C* .o = {0Q} and

Put ^ = [g..o, g. .o) , where the g. . are as defined previouslv.

Then g (. G , and it is clear from our choice of j° that g i. Sy . Now

put o =)i(^.O ] 1) . Then gi^-o^) = 2o*0jo^ , whilst g(a) = 3ka for

some k < p , and so g[[a*.o , ejj ^ /z , whence g1"^ ^ h ; that is,

g $ G, . This contradiction shows that no such isomorphism exists, and so

our result is established for FM set theory; we now transfer it to ZF set

theory by means of the Jech-Sochor Embedding Theorem (see [/])•
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Note added in proof [21 March 1977]. When a set theorist starts

having delusions that he is an algebraist, he is sometimes aroused from his

daydreams with a very nasty jolt. This act of awakening was performed upon

me by Professor B.H. Neumann, who pointed out that the relation

f. c C x C . defined at the bottom of p. 2lU is a bijection if and only
3 ^3 1J

if 2 and 3 are both primitive roots of p ; such of course is not

always the case. In fact, in certain cases, /. is not even a function.
3

We correct this mistake by choosing, for a given prime p 5 5 > two

distinct primitive roots q, r of p , and replace 2 by q and 3 by

r (such primitive roots always exist). The function g.. defined on

p. 215 must now have the defining relations gn.(a*. ,) = a*. ,

9l3^l3,l] = °h,r ' mi 9iMm,J = °im,X ** * < 2 and m * j .

Finally, the equations "g[c*.o ) = 2c* .o ," and "g(o) = 3ko" in the

final paragraph of p. 2l6 must be corrected appropriately. The proof now

goes through as planned.

I am indebted to Professor Neumann for drawing the mistake to my

attention, and for suggesting the above correction.
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