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Abstract. The global maps of homomorphisms of directed graphs are very closely
related to homomorphisms of a class of symbolic dynamical systems called subshifts
of finite type. In this paper, we introduce the concepts of ‘induced regular
homomorphism’ and ‘induced backward regular homomorphism’ which are associ-
ated with every homomorphism between strongly connected graphs whose global
map is finite-to-one and onto, and using them we study the structure of constant-to-
one and onto global maps of homorphisms between strongly connected graphs and
that of constant-to-one and onto homomorphisms of irreducible subshifts of finite
type. We determine constructively, up to topological conjugacy, the subshifts of
finite type which are constant-to-one extensions of a given irreducible subshift of
finite type. We give an invariant for constant-to-one and onto homomorphisms of
irreducible subshifts of finite type.

0. Introduction
A homomorphism between graphs (the word ‘graph’ means ‘directed graph’
throughout this paper), naturally induces a mapping between the bisequence spaces
over the graphs, which is called the global map of the homomorphism. The
bisequence spaces Q(G) over graphs G with the shift homeomorphisms o on them
constitute a class of symbolic dynamical systems (Q(G), o) called subshifts of finite
type (or topological Markov chains) and hence the global map of a homomorphism
of graphs is a homomorphism of subshifts of finite type. The converse of this is
almost valid by the theorem of Curtis, Hedlund and Lyndon [8]. Therefore, many
properties of the global maps of homomorphisms of graphs can straightforwardly
be interpreted as those of homomorphisms of subshifts of finite type, so that the
study of the global maps of homomorphisms of graphs provides useful combinatorial
approaches to that of homomorphisms of subshifts of finite type (cf. [17]). In fact,
in [1] and others, a notion similar to that of a homomorphism of graphs was used
as a one-block map together with other graph theoretical notions for the study of
homomorphisms of subshifts of finite type.

On the other hand, the global maps of homomorphisms of graphs and homomorph-
isms of subshifts of finite type can be considered as a new area of graph theory
which investigates relations between graphs, especially in connection with the
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spectral properties of the adjacency matrices of graphs. In fact, [17] treated this,
and moreover the results in the classification theories for subshifts of finite type of
[21], [18], and [1] and the results on homomorphisms of subshifts of finite type of
[13]and [10] can be interpreted as results in graph theory concerning the above area.

In this paper, we introduce the concepts of ‘induced regular homomorphism’ and
‘induced backward regular homomorphism’ which are associated with every
homomorphism between strongly connected graphs whose global map is finite-to-
one and onto. Using them we study constant-to-one and onto global maps of
homomorphisms between strongly connected graphs and constant-to-one and onto
homomorphisms of irreducible subshifts of finite type. (The term ‘constant-to-one’
means ‘k-to-one for some k’.) We give some necessary and sufficient conditions for
the global map of a homomorphism between strongly connected graphs to be
constant-to-one and onto, one of which immediately gives a structure result for
constant-to-one and onto homomorphisms of irreducible subshifts of finite type
(corollary 6.4). Using this we obtain our main theorem (theorem 7.3) which
determines constructively, up to topological conjugacy, the subshifts of finite type
which are constant-to-one extensions of a given irreducible subshift of finite type
(that is, the subshifts of finite type such that there are constant-to-one and onto
homomorphisms from them to a given irreducible subshift of finite type). It is also
shown that if there exists a constant-to-one and onto homomorphism from a subshift
of finite type ((G,), o) to an irreducible subshift of finite type (U G,), o,), then
the elementary divisors not divisible by A (the indeterminate) of the adjacency
matrix of G, are contained in the elementary divisors of the adjacency matrix of G,.

Many extended notions, techniques and results of those in [8] appear in this
paper; the reader is assumed to be familiar with [8].

Many statements of the theorems, propositions, and lemmas after § 2 contain
second versions. But proofs will be given only for the first versions because the
proofs of the second versions are similar.

This work was done when the author was at the Research Institute of Electrical
Communication, Tohoku University.

1. Background
A graph (directed graph with labelled points and labelled arcs) G is defined to be
a triple (P, A, {) where P is a finite set of elements called points, A is a finite set
of elements called arcs and ¢ is a mapping of A into PXP. If {(a) =(u, v) forac A
and u, ve P, then u and v are the initial endpoint of a and the terminal endpoint
of a, respectively, which are denoted by i(a) and t(a), respectively.

A sequence x=a, - -a,(p=1) witha;e A,i=1,...,p,is a path of length p in
G if

t(a;) =i(a;+,) fori=1,...,p—1.

We call i(a,) and t(a,) the initial endpoint of x and the terminal endpoint of x,
respectively. Every point u of G is a path of length 0 in G whose initial and terminal
endpoint is u. For any path x in G, we denote by i(x) and t(x) the initial endpoint
of x and the terminal endpoint of x, respectively, and if i(x) =u and t(x) = v, then
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we often say that x goes from u to v. The set of all paths in G is denoted by II(G).
The set of all paths of length p=0 in G is denoted by II'”’(G).
Standing hypothesis. Throughout the remainder of this paper, we assume that a
graph has at least one point and for each point u, there exists at least one arc going
to u and at least one arc going from w.
Let Z be the set of integers. Let G =(P, A, {) be a graph. A mapping a:Z~> A is
a bisequence over G if

t(a(i)) =i(a(i+1)) for all ie Z.

Let Q(G) denote the set of all bisequences over G. If « € Q(G) and i€ Z, then a (i)
will often be denoted by «; For a € Q(G) and i, je Z with i<, let

ali, jl= a0, + * -+ o
Clearly afi, j1le 1Y"""P(G). We define a metric d on Q(G) as follows: let a, B e
UG),
d(a,B)=0 if a=4,
d(a,B)=(01+k)" ifa#B.
where

k =min {i = 0|a[—i, i]# B[—i, i]}.
With this metric, Q(G) is compact. _

Let G,=(P, A, {;) and G,=(Q, B, {,) be graphs. A homomorphism of G, into
G, is a pair (h, ¢) of mappings h: A—> B and ¢: P> Q such that for any a € A, if
¢1(a) = (u, v) with u, ve P, then

$r(h(a)) =(d(u), 6(v)).
By our standing hypothesis for graphs, the homomorphisms (h, ¢) of G, into G,
is uniquely determined by h. Therefore, we say that h is a homomorphism of G,
into G, and we denote by ¢, the unique mapping ¢ such that (h, ¢) is a homomorph-
ism of G, into G,.

A homomorphism h:A - B of a graph G, = (P, A, {;) into a graph G, =(Q, B, {,)

is naturally extended to a mapping

h*:1I(G,) > II(G,).
That is, we define h*:I1(G,) > II(G,) as follows: for each x € I1(G,), if the length
of x is 0, i.e. x is a point of G,, then h*(x)=¢,(x), and if x=a,---a, (p=1)
with a;€ A,i=1,..., p,then h*(x) = h(a,) - - - h(a,). The mapping h* is called the
extension of h. Another mapping is naturally induced by h. We define

he: U(Gy) > Q(G,)

as follows: for a € Q(G,), ho(a) =B, where 8; = h(a;) for all ie Z. We call h,, the
global map of h. A graph G=(P, A, () is strongly connected if for any u, ve P,
there exists a path going from u to v.

For a positive integer k, a mapping f: X > Y is k-to-one if |f~'(y)|=k for all
y€ f(X). Amapping f: X - Y is constant-to-one if there exists a positive integer k such
that f is k-to-one; uniformly finite-to-one if there exists a positive integer k such that

/()| K for all y& Y; and finite-to-one if |~ (y)| <o for all ye Y.
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Let h be a homomorphism of a graph G, into a graph G,. Two paths x and y
in G, are indistinguishable by h if

i(x)=i(y), t(x)=t(y), and h*(x)=h*(y).

The following results are found in [17]. Similar results also appear in [1].

PrROPOSITION 1.1. Let h be a homomorphism of a strongly connected graph G, into
a graph G,. Then the following statements are equivalent.

(1) No two distinct paths in G, are indistinguishable by h.

(2) h* is uniformly finite-to-one.

(3) hy is uniformly finite-to-one.

(4) hy is finite-to-one.

ProrosiTiON 1.2. For any homomorphism h of a graph G, into a graph G,, h* is
onto iff h, is onto.

For a graph G, we denote by M(G) the adjacency matrix of G (i.e. if G has n
points uy, ..., U, then M(G) is the square matrix (m;) of order n such that m; is
the number of arcs going from u; to u;). Since M(G) is a non-negative matrix, by
the Perron-Frobenius Theorem, M(G) has the non-negative characteristic value
that the moduli of all the other characteristic values do not exceed (cf. [6, Vol.
I1]). We denote by r(G) that ‘maximal’ characteristic value of M(G).

The following result is found in [17]. In view of the above propositions and the
facts stated later in this section, it is essentially the same as the well-known result
on symbolic flows (see, e.g., [1]) that a finite-to-one and onto homomorphism (of
symbolic flows) between subshifts of finite type preserves topological entropy.

PrROPOSITION 1.3. If there is a homomorphism h of a graph G, into a graph G, with
h* uniformly finite-to-one and onto, then r(G,) = r(G,).

In [17], a stronger result has been given. That is, it has been proved there that with
the same condition as in proposition 1.3, not only r(G,)=r(G,) but also the
characteristic polynomial of M(G,) divides that of M(G,). Furthermore, Kitchens
([10]) has given a still stronger result. He has proved that if G, and G, are strongly
connected graphs and M(G,) and M(G,) are 0-1 matrices and if there is a
homomorphism & of G, into G, with h, finite-to-one and onto, then the block of
the Jordan form of M(G-) is a principal submatrix of the Jordan form of M(G,).
The condition that M(G,) and M(G,) are 0-1 matrices can be eliminated.

The following result has been proved in [17] using a graph-theoretical method.
In view of propositions 1.1 and 1.2, it can also follow from a result in [4].

THEOREM 1.4. Let G, and G, be two strongly connected graphs with r(G,) = r(G,).
Then for any homomorphism h of G, into G,, h* is uniformly finite-to-one iff h* is
onto.

Let G, and G, be strongly connected graphs and let & be a homomorphism of G,
into G,. Then, by the above propositions and theorem 1.4, we have many equivalent
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statements; the following are several of them.

(1) r(G,)=r(G,) and h* is onto.

(2) h* is uniformly finite-to-one and onto.

(3) hy is finite-to-one and onto.

(4) h* is onto and there exist no two distinct paths which are indistinguishable
by h.

(5) r(G,)=r(G,) and there exist no two distinct paths which are indistinguish-
able by h.
We will use (1) as a representative of these and the other equivalent statements in
most statements of conditions in our results. Moreover the equivalence of them will
be used frequently without reference.

Let G =(P, A, {) be a graph. For any non-negative integer p, we define a graph
LP(G) as follows: L'”(G)=G. For p=1, L'P(G)=([1'""(G), I'?*V(G), '),
where (‘P (a;- ap)=(a, - aya; - a,,) for a,---a,,,€1P"V(G) with
a;eA,i=1,...,p+1. We call L'”(G) the path graph of length p of G. (L'"(G)
is usually known as the line digraph of G (cf. [7]) or the adjoint of G (cf. [2]).)
Essentially the same notion as L'”(G) was also used for ‘higher block system’ of
[1].) Clearly, if G is strongly connected, then L'”(G) is strongly connected for all
p=0. For any integers p and g with p=g =1, we define a mapping

hGpq: IP(G)»> A
as follows. For any a, - - - a, € [1'”(G) with ag;€ A,
hgpqlai: - a,)=a,.
Then clearly h_,, isa homomorphism of L‘*""(G) into G and (hgp,)* is uniformly
finite-to-one and onto. Hence by proposition 1.3,

r(L? Y(G))=r(G).

Furthermore (A ,q)« is @ homeomorphism of Q(L'*~"(G)) onto Q(G).
Let A be a finite non-empty set (of symbols). Let Gy(A) be the graph defined by

Go(A)=({A}, A, {a)
where {4(a) = (A, A) for all a e A. Then Gy(A) is a strongly connected graph having

only one point A and each element of A is an arc (loop) going from A to itself.
Clearly I1(Gy(A)) is the set of all finite sequences of elements of A and

Q(Gy(A)) = AZ,

Let Q4= A” Each element of Q, is a bisequence over A. Of course, 4 is a
compact metric space with the metric defined before. The homeomorphism o: (2 4 >
1 4 defined by

(o(a))i = i1, ae),, ieZ,

is called the shift. The dynamical system (£} 4, o) is called the full shift system over
A. Let X be a closed non-empty subset of {14 such that o~'(X) = X. The dynamical
system (X, o) is called a subdynamical system of (Q 4, o) or a symbolic flow over
A. (For simplicity, we denote o|X by a.)
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Let G ={(P, A, {) be a graph. Then (2(G), o) is a subdynamical system of ({14, o).
A symbolic flow of this type is called a subshift of finite type, (cf. [21] and [19]). If
G is strongly connected, then (2(G), o) is an irreducible subshift of finite type. (Cf.
[3]. Note that G is strongly connected iff the adjacency matrix M(G) of G is
irreducible.)

Let (X, o,) and (Y, o,) be two symbolic flows. A homomorphism =:(X, o) >
(Y, o) is a continuous mapping of X into Y such that =o, = o,7. We say that
(X, 1) and (Y, 0,) are topologically conjugate if there exists an isomorphism of
(X, o) onto (Y, 05).

Clearly global maps of homomorphisms of graphs are homomorphisms of symbolic
flows. The converse is almost valid. '

Let G,=(P, A, ¢{,) and G,=(Q, B, {;) be two graphs and let p be a positive
integer. A mapping f:II'”(G,)> B is an admissible p-block map if for any
a, - a,. €eIP*V(G,) with ay,...,a,.1 €A,

t(f(ar- - a,))=i(f(az" - - api1)).
Corresponding to any admissible p-block map f:I1'”(G,) > B, we define a mapping
fo: QU(G,) > Q(G,) by
fola) =B where Bi=f(a;- - - @;1p-1)
for all ie Z. Clearly an admissible 1-block map f is a homomorphism of G, into
G, and f, is its global map. The well-known theorem of Curtis, Hedlund & Lyndon

[8] for homomorphisms of symbolic flows (as pointed out by Klein [12]) implies
the following.

THEOREM 1.5. (Curtis, Hedlund & Lyndon) Let G, and G, be graphs. Then a
mapping w:Q(G,) > Q(G,) is a homomorphism of (U G,), oy) into (UG,), p,) iff
there exist integers p=1 and k and an admissible p-block map

f: n'(G,)~» H(l)(Gz)
such that

=0k o

The following, which appears in [17], is a graph-theoretical interpretation of the
above theorem.

CoROLLARY 1.6. Let G, and G, be graphs. Then a mapping 7:Q(G,)» Q(G,) is
a homomorphism of (U G,), ay) into (U G,), o,) iff there exist integers p and q with
p=q=1 and a homomorphism h of L'*"V(G,) into G, such that

m™= hco(hGl,p,q);ol-

We remark that for a graph G and integers p and g with p=g=1, (hgp4)w is an
isomorphism of (Q(L"?"V(G)), o’) onto (AUG), o).

2. Regular homomorphisms and biregular homomorphisms
A homomorphism h of a graph G, into a graph G, is regular [backward-regular
(abbreviated to b-regular)] if for each point u of G, and for each arc b going from
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{to] ¢, (u), there exists exactly one arc a going from [to] u with h(a) = b. The same
notions appear in[1] as ‘right-resolving’ [‘left-resolving’] together with the following.

PrROPOSITION 2.1. If h is a regular [ b-regular] homomorphism of a graph G into a
strongly connected graph G,, then h* and h., are uniformly finite-to-one and onto
and r(G,) = r(G,).

A homomorphism # is biregular if h is both regular and b-regular.

ProrosITION 2.2. Let h be a biregular homomorphism of a graph G, =(P, A, {)
into a strongly connected graph G,= (Q, B, {;). Then h* and h, are |P|/|Q|-to-one
and onto.

Proof. By proposition 2.1, h* and h,, are onto. Since h is regular, it follows that
[(B*)7 ()] =65 G| for all yeII(G).
Since h is b-regular, it also follows that

[(h*)7 (] =1¢x" ()|  for all yeII(G>).

Let v,, v,€ Q. Since G, is strongly connected, there exists a path y in G, going
from v, to v,. Hence, by the above,

63" (0l =1(R®) ' (N =183 (v2)l.
Thus, for all ve Q,|¢5' (v)|=|P|/|Q|, and hence for all y e [1(G,),

[(h*)~'(»)| =Pl/|Q.
Thus h* is |P|/|Q|-to-one.
For each B € Q(G,),
[h<H (B)| = (R*)(BI-4, i)
for some sufficiently large integer i =0. Hence |hz'(8)|=<|P|/|Q). Thus it suffices
to show that for each 8 € (G,), there exist at least | P|/|Q| bisequences a such that

h«(a) = B. This is proved in a similar way to that used in the proof of theorem 6.7
of Hedlund [8]. 0

For a graph G, we call a graph G, such that there exists a biregular homomorphism
h of G, into G a biregular extension of G. Given a strongly connected graph G, it
is easy to determine all biregular extensions G, and biregular homomorphisms h
of G, into G.

Let h be a biregular homomorphism of a graph G, =(P, A, {,) into a strongly
connected graph G, =(Q, B, {,). Since h is regular, for each b < B, we can define
a mapping

pot 5t (i(D) > ¢’ (t(B))
as follows. For each u e ¢,'(i(b)), define u,(u)=t(a), where a is the unique arc
of G, such that i(a)=u and h(a)=b. Since h is b-regular, it follows that u, is a
bijection. Since G, is strongly connected, by proposition 2.2 there exists a positive
integer k such that |¢};" (v)| =k for all ve Q. Thus for each be B, u, is a bijection
of a k-point set onto a k-point set.
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Let the adjacency matrix M(G,) of G, be (m;). Then it is easy to see that the
adjacency matrix of G, can be written in the form

M, -+ M,
M(G,)=
M,

q
where ¢ =|Q| and M, is the square matrix of order k obtained by summing the m;
permutation matrices corresponding to the w;’s such that b’s are the arcs of G,
going from point i€ Q to point je Q. (If m; =0, then M; is the zero-matrix of
order k.)

Conversely, if we are given an assignment of some permutation u, on{1,..., k}
to each arc be B of a strongly connected graph G,=(Q, B, {,), then we can
straightforwardly obtain a biregular extension of G, and a biregular homomorphism
h of G, into G,. (Let the set of points of G, be {(i, j)|ie Q,1=j=k} and for each
be B, make k arcs a,, j=1,..., k, of G, such that

i(ay) = (i(), ), tlaw)=(t(b), us(j)), and h(ay)=>b.)

Thus we have the following proposition.

1 qu

PROPOSITION 2.3. Let G=(Q, B, {) be a strongly connected graph with |Q|=q and
M(G)=(my). Then G, is a biregular extension of G iff for some positive integer
k, M(G,) is written as a square matrix of order qk of the form

M, - Mlq
M(G,)=
Mql qu

where Mj; is the sum of some m;; permutation matrices of order k.

A rectangular 0-1 matrix with non-zero columns and with exactly one 1 in each
row, is called an amalgamation matrix.

Let h be a homomorphism of a graph G, with m points, u,,. .., U, into a graph
G, with n points vy, ..., U, and let ¢, be onto. Let R be the m X n matrix with
R =(r;) where r;=1 if ¢,(u;)=1v; and otherwise r;=0 for i=1,...,m and j=
1,..., n. Clearly R is an amalgamation matrix. We call R the amalgamation matrix
associated with ¢,

A similar result to the following appears in [18].

ProrosITION 2.4. Let G, and G, be graphs. If h is a regular [ b-regular] homomorph-
ism of G, into G,, then M(G,)R = RM(G,) [R'M(G,)=M(G,)R’], where R is
the amalgamation matrix associated with ¢,. [R' denotes the transpose of R.] Con-
versely if R is an amalgamation matrix satisfying M(G,)R = RM(G,) [R'M(G,) =
M(G,)R'], then there exists a regular [ b-regular] homomorphism h of G, into G,
such that R is the amalgamation matrix associated with ¢,,.

Proof. Let G,=(P,A,¢{;) and G,=(Q, B,{,) with P={u,,...,u,} and Q=
{v1,...,v,}. For any 1=1i, j=m, let A; be the set of arcs of G, going from u; to
u;. For any 1=k, I=n, let By, be the set of arcs of G, going from v, to v;.
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Let h be a regular homomorphism of G, into G, and let R be the amalgamation
matrix associated with ¢,. Since h is a regular homomorphism, for any i, j with
1<i=mand 1=j=<n, we have

Y lAul=|Buyl
wedp (vy)
where k; is the index such that ¢,(u;) = v,. Since the left-hand-side of the above
equation equals the (i, j) entry of M(G,)R and the right-hand-side equals the (i, j)
entry of RM(G,), we have M(G,)R = RM(G,).

Cbnversely, assume that R =(r;) is an amalgamation matrix such that M(G,)R =
RM(G,). Let ¢:P>Q be the mapping such that r;=1iff (u))=v; (i=
I,...,m,j=1,..., n). Then since M(G,)R = RM(G.), for any i,j with 1 <i<m
and 1=<j=n, we have

=1
wed (v

Z , ,Aill = ,Bk,-jl

where k; is the index such that ¢ (u;) =v,. For any i, j with 1=i=mand 1=j=n,

let
hi]': L'~J1 A,-l -> Bk,-i
wee (v
be any bijection. Let h: A > B be defined as follows: h(a) = h;(a)ifac Uu,e¢“(v,) Ay
fori=1,...,mand j=1,..., n Itis easy to see that h is a regular homomorphism
of G, into G, with ¢, = ¢. O

ProrosiTION 2.5. Let G, and G, be graphs such that G, is a biregular extension of
G,. Then the elementary divisors of M(G,) is contained in the elementary divisors
of M(G,).
Proof. By proposition 2.4, there is an amalgamation matrix R such that
M(G,)R=RM(G,) and R'M(G,)=M(G,)R".
Since R is an amalgamation matrix, the columns of R are non-zero and any distinct
two of them are orthogonal. Hence if R is a p X ¢ matrix, we can choose a pX(p—q)
matrix S with non-zero columns such that any two distinct columns of the pXp
matrix T of the form (R S) are orthogonal. That is, R’S=0, and T'T and S'S
together with R'R are diagonal matrices. Therefore, since M(G;)R = RM(G,) and
R'M(G,)=M(G,)R’, it follows that

T'M(G)T=(T'T) 'T'M(G,)T

- (5 )mGar 9

. (R'M(G)R  R'M(G,)S
=(T'T) I(S’M(Gl)R S‘M(Gl)S)
_((R'R)‘1 0 )(R'RM(Gz) M(Gz)R'S)
- 0 ('S 'J\S'RM(G,)  S'M(G,)S
_(M(Gz) 0)

0 M,
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where M, =(5'S)"'S’M(G,)S. Thus the result follows. (See [6, Vol. I, Chap. VI,
theorem 5.) a

3. A maximal compatible set is a minimal complete set
Let G,=(P, A, {;) and G,=(Q, B, {,) be two graphs and let h be a homomorphism
of G, into G,. Let U c P and let y € II(G,). Define

Cu(U, y) ={t(x)|xeII(Gy), i(x)eU, h*(x)=y}
and

Cu(y, U)={i(x)|xeII(G,), t(x)eU, h*(x)=y}.
For ue P and yell(G,), we denote C,({u}, y) [Cr(y,{u})] by Ci(u, y) [Ch(y, u)].
A subset U of P is called a compatible set [a backward-compatible (abbreviated to
b-compatible) set] for h if U =C,(u, y) [U =Cu(y, u)lfor some u € Pand y e I1(G,).
A subset U of P is called a complete set [a backward-complete (abbreviated to
b-complete) set] for h, if there exists v e Q such that U< ¢ (v) and C,(U, y) # D
[C.(y, U)# 2] for all yeII(G,) with i(y) = v [t(y) =v].

LeEMMA 3.1. Let G; and G, be graphs and let h be a homomorphism of G, into G».
If h* is onto, then there exists a compatible [ b-compatible] set for h which is a complete
[b-complete] set for h.

Proof. Assume that h* is onto but that any compatible set for h is not a complete
set for h. Let v be a point of G,. Since h* is onto, ¢, (v) is a complete set for h.
Let ¢ (v)={u,,..., u,}. Since a compatible set {u,} is not a complete set, there
exists y, € [1(G,) such that i(y,) = v and C(u4, y,) =&. (If h is understood, we shall
often omit ‘for h’ and the suffix & of C,(u, y).) Since a compatible set C(u,, y;) is
not a complete set, there exists y, € [1{(G,) such that i(y,) =t(y,) and

Cluz, y1y2) =C(C(uz, y1), ¥2) = .
Proceeding in this way, we have y,, ..., y, in [I(G,) such that y, - - - y, € II(G,) and
Clu,y, - -y)=90 fori=1,...,p

Hence we have
14
C(dn' (0), 317 ¥p)= L_J1 Clu, y1- -+ y,) =9,

which is a contradiction. O

THEOREM 3.2. Let G, =(P, A, ;) and G,=(Q, B, {,) be two strongly connected
graphs with r(G,)=r(G,). Let h be a homomorphism of G, into G, with h* onto.
Then every maximal compatible [b-compatible] set for h is a minimal complete
[b-complete] set for h.

Proof. Let U be a maximal compatible set for h. Then there exists u€ P and
y € II(G,) such that U =C(u, y). By lemma 3.1, there exists a complete set written
as C(v, z) with ve P and z € II(G.,). Let v’ € C(v, z). Since G, is strongly connected,
there exists a path x going from v’ to u. Clearly

C(v, zh*(x)y)> U.
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Since U is a maximal compatible set, U = C(v, zh*(x)y). Since C(v, z) is a complete
set,

U =C(C(v, 2), h*(x)y)-
is a complete set.

Assume that there exists s € U such that U’ = U —{s} is a complete set for h. Let
C(t, w) be a maximal compatible set with € P and w e II(G,). Since G, is strongly
connected, there exists a path x’ in G, going from s to ¢ Clearly we have

C(t, w) = C(s, h*(x")w) = C(U, h*(x)w).
Since U is a compatible set, C(U, h*(x')w) is a compatible set. Since C(f, w) is a
maximal compatible set, it follows that C(t, w) = C(U, h*(x')w), so that
C(s, h*(x)w)=C(U, h*(x")w).

Since U’ is a complete set, C(U’, h*(x')w) # . Hence there exist s'e U’ and
peC(U’, h*(x")w) and a path x; going from s’ to p with

h*(x,) = h*(x")w.
Since C(U’, h*(x")w)c C(U, h*(x")w)=C(s, h*(x")w), peC(s, h*(x')w). Hence
there exists a path x, going from s to p with

h*(x,) = h*(x")w.
Since U is a compatible set and s, s" € U, there exist two paths x; and x, in G, such

that
i(x3) =i(xy), t(x3)=s", t(xs)=s and h*(x;)=h*(x,).

Hence x;x; and x,x, are two distinct paths in G, which are indistinguishable by h.
This is a contradiction (see § 1). Thus we conclude that U is a minimal complete
set. O

As a corollary of the above theorem, we have the following basic result, which can
be viewed as a generalization of a result of L. R. Welch, [8, theorem 14.4]. (Cf.
[14, lemma 2].)

CoroLLARY 3.3. Let G, and G, be two strongly connected graphs with r(G,) = r(G,).
Let h be a homomorphism of G, into G, with h* onto. If U is a maximal compatible
[b-compatible] set for h, then for any path y in G, with i(y) € ¢,(U)[t(y) € d,(U)],
C.(U, y) [Ci(y, U)] is a maximal compatible [b-compatible] set for h.

Proof. Let U be a maximal compatible set for h. Let y be a path in G, with
i(y) € ¢, (U). From theorem 3.2, U is a complete set. Hence C(U, y) is a complete
set. Since U is a compatible set, C(U, y) is a compatible set. Let V be a maximal
compatible set such that V >C(U, y). Then from theorem 3.2, V is a minimal
complete set. Therefore since C(U, y) is a complete set, we have V =C(U, y). Thus
C(U, y) is a maximal compatible set. O

4. Induced regular and b-regular homomorphisms

By virtue of corollary 3.3, we can introduce the notions of ‘induced regular
homomorphism’ and ‘induced b-regular homomorphism’ which are associated with
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every homomorphism h between two strongly connected graphs such that h* is
uniformly finite-to-one and onto. (These are a generalization of ‘right A-bundle-
graph’ and ‘left A-bundle-graph’ of {14].)

Throughout this section, we assume that G, = (P, A, {,) and G, =(Q, B, {,) are
two strongly connected graphs with r(G,) =r(G,) and h is a homomorphism of G,
into G, such that h* is onto.

Denote by €,[%,] the set of all maximal compatible [b-compatible] sets for h.
For any U c P and y€Il(G,), we define

B.(U, y) ={xeII(G)li(x)e U, h*(x)=y}
and
B,(y, U) ={xcIl(G))|t(x)e U, h*(x)=y}.
We define the bundle-graph induced by h as the graph
gh = (%h’ gh’ {h)
where &, is the set of all pairs of the form (U, B, (U, b)) where U€ %), and be B
with i(b) € ¢,(U), and {.: &, = 6, X €, is defined as follows:
& (U, By (U, b)) = (U, Cn(U, b))
for all U € 6, and b e B with i(b) € ¢,(U). By corollary 3.3, C,(U, b) € 6, for any
Ue %, and be B with i(b) € ¢,(U). Hence ¢, is well-defined. Furthermore, we
define a mapping h: &, > B as follows:
h((U,B,(U, b)) = b

for all Ue €, and be B with i(b) € ¢,(U).

Similarly, the backward bundle-graph (abbreviated to b-bundle-graph) induced
by h is defined to be the graph

@h = ((éh, gh, Zh)
where €, is the set of all pairs of the form (B, (b, U), U) where Ue €, and be B
with t(b) € ¢, (U) and &,: &, > €, X €, is defined as follows:
&n((Bu(b, U), U)) = (Cy(b, U), U)
for all Ue €, and be B with t(b) € ¢,,(U). Also, by virtue of corollary 3.3, {, is
well-defined. We define a mapping h: &, > B as follows:
h((Bu(b, U), U))=b

for all Ue €, and be B with t(b) e ¢, (U).

PrOPOSITION 4.1._T=he bundle-graph %, [b-bundle-graph %] is strongly connected
and the mapping h[h] is a regular [ b-regular] homomorphism of 4,[%4,] into G,.
Proof. Let U, Ve 4, If C(U,2z)=V for z=b,- -+ b,ell(G,) with b,,..., b,€B,
then there exists a path E, - - - E, in %, such that

E =(U,B,(U, b)) fori=1,...,p

where U, =U, U, =C(U, b;) for i=1,...,p and U,.,= V. Hence to prove that
%, is strongly connected, it suffices to show that there exists a path z in G, such
that C(U, z) = V. Since V is a compatible set, there exists ve P and y € [1(G,) such
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that V =C(y, y). Since G, is strongly connected, there exists a path x such that
i(x) e U and t(x) = v. Clearly,

C(U, h*(x)y)= V.

Since C(U, h*(x)y) is a compatible set and V is a maximal compatible set, we have
C(U, h*(x)y)=V.

The remainder is clear from the construction. O

Remark 4.2. Each of (h)* and (ﬁ)* is uniformly finite-to-one and onto, and
r(%.) = r(%,) = r(G,). This follows from propositions 4.1 and 2.1.

We call A[#] the induced regular [b-regular] homomorphism of h.

It follows from corollary 3.3 that each subset of paths in G, of the form B, (U, y)
(Bi(y, U)] where U e €, [U e €,]and yeIl(G,) with i(y) € ¢u(U) [t(y) € ¢u(D)],
is non-empty. To each path Z of length p= 0 in %,[%,] corresponds the non-empty
subset of paths B, (U, y) [B.(y, U)] of length p in G, where i(Z)=U [t(Z)= U]
and y=l;(Z) [y=};(Z)]. It is called the bundle of Z and is denoted by B(Z).
Clearly each subset of paths in G, of the form B, (U, y)[B4(y, U)] where Ue
%,[U € €,]and y e 1'P(G,) with i(y) € ¢, (U) [t(y) € ¢, (U)], is the bundle of some
path of length p in ,[%,], and is also called a bundle [ backward bundle, abbreviated
to b-bundle] of length p for h.

For Te Q(%,)[I'€Q(%,)] and a € Q(G,), we say that I' contains a if B(I';) > e,
forallieZ.

LemMMA 4.3. For each TeQ(%,) [T €Q(%,)], there exists a € Q(G,) such that T
contains a, and for each a € Q(G,), there exists T € 0(%,) [T € Q(%.)] such that T
contains a.

Proof. Let I'e Q(%,). For each non-negative integer k, there exists an element x,
of B(I'T—k, k), and there exists a'®’ € Q(G,;) such that
a®[—k, k1= x,
(because any point of G, has an arc going from it and an arc going to it by our
standing hypothesis for graphs). Since Q(G,) is a compact metric space, there exists
a sequence 0= ky< k; <- - - of integers and « € Q(G,) such that
lim o =

j>o0

.

It is easy to see that I' contains a.

Conversely, let a € (G,). Let k be any non-negative integer. Let U, be a maximal
compatible set for h such that U, 3i(a[—k, k]). Since B is regular, there exists
Z, eI V(4) going from U, with h*(Z,)=h*(a[-k k]). Clearly B(Z,)>
a[—k, k]. There exists I'* € Q(%,) such that '*[~k, k]= Z, (because, by proposi-
tion 4.1, any point of ¥, has an arc going from it and an arc going to it). Since
Q(%,) is a compact metric space, there exists a sequence 0= ko< k; <- - - of integers

and I"'e Q(¥%,) such that
lim % =T,

}=>0

It is also easy to see that I' contains a. 0

https://doi.org/10.1017/50143385700002042 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002042

400 M. Nasu

5. Mergible homomorphisms

For paths x and y in a graph G, y is an initial subpath [a terminal subpath] of x, if
there exists a path w in G such that x=yw [x=wy]. (Here we assume that
i(x)x = xt(x) = x for each path x in G.)

Let h be a homomorphism of a graph G, into a graph G,. Let p be a non-negative
integer. We say that h is p bundle-mergible [p backward-bundle-mergible (abbrevi-
ated to p b-bundle-mergible)] if for any two paths x; and x, of length I=p in G,
if i(x;) =i(x;) [t(x,) =t(x,)]and h*(x,) = h*(x,), then x; and x, have the same initial
[terminal] subpath of length / — p. We say that h is mergible, if for some non-negative
integers p and g, h is both p bundle-mergible and g b-bundle-mergible. (The notion
of ‘p bundle-[b-bundle]-mergible’ corresponds to ‘nonexistence of a right [left]
f-branch of length p’ in [8].)

Remark 5.1. Let G, and G, be strongly connected graphs with r(G,) =r(G,), and
let h be a homomorphism of G, into G,. Then h is p bundle-mergible [p b-bundle-
mergible] iff A* is onto and each bundle [b-bundle] X of length /= p for h, all paths
in X have the same initial [terminal] subpath of length [—p.

Proof. If h is p bundle-mergible, then h™ is onto because no two distinct paths in
G, are indistinguishable by h. Hence h* is onto (see § 1). The proof of the remainder
is straightforward. O

Remark 5.2. Let G, and G, be two strongly connected graphs with r(G,) =r(G,)
and let h be a homomorphism of G, into G,. Then h is O bundle-mergible [0
b-bundle-mergible] iff h is regular [b-regular].

Proof. Assume that h is 0 bundle-mergible. Then h* is onto by remark 5.1. Since
h is O bundle-mergible, it follows that for each point u of G,, {u} is a maximal
compatible set for h, and for each arc b with i(b) = ¢,(u), the arc a such that
i(a) = u and h(a) = b, is unique; such an arc a always exists because {u} is a complete
set for h by theorem 3.2. Thus h is regular. The converse is clear. O

The terminology of p bundle-mergible [p b-bundle-mergible] is based on remark
5.1. Another restatement of the property of being p bundle-mergible [p b-bundle-
mergible], is given as the following lemma. (This can be considered as a generalization
of [8, theorem 16.9}].)

LeMMA 5.3. Let G, and G, be two strongly connected graphs with r(G,)=r(G,)
and let h be a homomorphism of G, into G,. Let p be a non-negative integer. Then
h is p bundle-mergible [p b-bundle-mergible] iff h* is onto and for each point u of
G, and each path y of length at least p in G, with i(y) = ¢n(u) [t(y)=bn(u)],
Cu(u, ¥) [Cu(y, u)] is either empty or a maximal compatible [ b-compatible] set.

Proof. Assume that h is p bundle-mergible. By remark 5.1, h* is onto. Let u be a
point of G, and let y be a path of length /=p in G, with i(y) = ¢,(u). Suppose
that C(u, y) # . Let U be a maximal compatible set which contains «. Then by
corollary 3.3, C(U, y) is a maximal compatible set. Therefore it suffices to show
that C(u, y) =C(U, y).
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Clearly C(u, y) = C(U, y). Let v be an arbitrary element of C(U, y). Then there

exists x; € II(G;) such that
i(x))eU, t(x)=v, and h*(x)=y.
Since C(u, y) # &, there exists x, € [I(G,) such that i(x,) = u and h*(x,) = y. Clearly
X1, X € Bo(U, y). Since h is p bundle-mergible, all paths in B, (U, y) have the same
initial subpath of length /- p (remark 5.1). Hence
i(x)=i(x2) =u

so that ve C(y, y). Hence we have C(u, y) > C(U, y). Thus C(u, y) =C(U, y). The
proof of the converse is omitted (because this will not be used in this paper). [

LemMA 5.4. Let G, and G, be two strongly connected graphs with r(G,) =r(G,),
and let h be a homomorphism of G, into G,. If h is p bundle-mergible and q
b-bundle-mergible, then the induced regular homomorphism h of his 0 bundle-mergible
and p+q b-bundle-mergible.
Proof. Since R is regular, his0 bundle-mergible (remark 5.2). Let Z; and Z, be
paths in %, such that t(Z,) =t(Z,), h*(Z,) = h*(Z,), and Z, and Z, are of length
! with = p+gq. To show that h is p+ ¢ b-bundle mergible, we shall show that Z;
and Z, have the same terminal subpath of length ! —( p+q). To show this, it suffices
to prove that the initial subpaths of length p+q of Z, and Z,, say Z{"*? and Z{**9
respectively, have the same terminal endpoint, because h is regular.

Let U, =i(Z,) and let U,=i(Z,). Let y=h*(Z,) = h*(Z,) and write y=b, - - - b,
where b,,. .., b are arcs of G,. Then

Ch(Uh bl Tt bp+q) =t(z(1p+q)),
Ci(Uy, by - - - byrg) =t(ZFTD),
and
Cn(Uy, y) =t(Z,) =t(Z,) = Cyu(Uy, y).
Let ve C,(U,, y)=C,(U,, y). Then there are paths x; and x, in G, such that
i(x)e U, ix)el,, tx)=t(x;)=v, and h*(x;)=h*(x;)=y.
Let x{” and x5 be the initial subpaths of length q of x, and x,, respectively. Since
h is g b-bundle-mergible, x; and x, have the same terminal subpath of length | —g¢q
so that
t(x?) =t(x57).

Let s=t(x{?)=t(x{"). Then C,(s, bys1 - - * byrq) is not empty because it contains
the terminal endpoint of the initial subpath of length p+q of x;. Since h is p
bundle-mergible, it follows from lemma 5.3 that Cy(s, b4, * - - b,+q) is a maximal
compatible set. Since U, and U, are compatible sets for h, so are C,(Uy, b, - - - b4 y)
and C,(Us, b, - - * b,+q). Moreover C, (U, by -+« by g) and C,(Uy, by - - - b,y ) con-
tain the maximal compatible set Cy(s, b+t * * * byy). Therefore

Ch(Uy, by~ Bpg) =Cul(8, byey * + * Bpig) =Ci(Us, by« -+ byoy).
Thus we have t(Z{P*9) =t(Z5*9). 5
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LEMMA 5.5. Let G, and G, be two strongly connected graphs with r(G,) =r(G,)
and let h be a homomorphism of G, into G,. If h is p bundle-mergible [p b-bundle-
mergible] for a non-negative integer p, then there exists an admissible ( p + 1) -block map
I (4,) > TI(G)
[f: 1P (E,) » I'Y(G,)] such that
Froo = heofo
[Froo = hoofo0 ?] and f. is one-to-one and onto [where o:(%,) > (%) is the shift).
Proof. Since h is p bundle-mergible, it follows from remark 5.1 that for each
ZeII?*Y(4,), all paths in B(Z) have the same initial subpath of length 1. (Recall
that B(Z) is the bundle of Z (cf. § 4).) Hence we can define a block map
f:IIP*(4,) > 1(Gy)
as follows. For each ZeII‘?*V(%,), f(Z) is the initial subpath of length 1 of the
paths in B(Z). It is straightforward to see that f is an admissible { p+ 1)-block map
and for ea~ch I'e Q(%,.), f-(T) is a unique bisequence which is contained in I'. Hence
we have ho(I') = ho( fo(T)) for each I'e Q(%,) and it suffices to show that for any
a € Q(G,), there exists a unique element I' of Q(%,) which contains a.

Let a € Q(G,). By lemma 4.3, there exists '€ (%) such that I’ contains a.
Suppose that I in Q(%,) contains a. Let ieZ. If p=0, then h is regular. Hence
each maximal compatible set for h consists of a single point of G,. Hence

(T) =i(a;) =i(T).
Assume that p=1. Since (I';_,) 3i(a;_p),
t(li-) =Ch(i(T'i—p), h*(eli—p,i—1])) > C(i(e;,), h*(eli—p,i—1])).
Since h is p bundle-mergible, it follows from lemma 5.3 that
Cu(ia;_p), h*(ali—p, i—1]))
is a maximal compatible set. Since t(I';_;) is a compatible set for h, we have
t(Fiy) = Cu(i(a;—p), h*(ali—p,i—1])).
For the same reason,
t(T'i-y) =Ch(i(ai-p), h*(eli—p, i—1]).
Hence we have
i(T) =t(Tiy) = (i) =i(T).
Since ﬁ(l‘,-) =h(a;) = };(FE) and A is a regular homomorphism, we have I';=T"].
Since i was arbitrary, we have ['=1", 0O
Recently, the author learned that in [11], Kitchens has a similar result to lemma 5.5.
Let G be a graph and let n be a non-negative integer. We consider the path graph
L(")(G) = (H(")(G), H("+1)(G), g(n))
of length n of G (cf. § 1). For each path x of length at least n in G, we define (x),

as follows. If x is of length n, then (x),=x, and if x=aq, * - - @, where [=zn+1 and
a,,...,a; are arcs of G, then

(X)n=(ar " @u1)(@2" " Qus2) " (A - @)
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Then if x is a path of length / = n in G, then (x),, is a path of length /—n in L'"(G).
Obviously, each path in L"(G) is written as (x), for some path x of length at least
n in G.

Let h be a homomorphism of a graph G, into a graph G,. Let n be a non-negative
integer. We define a mapping

h(")Z H(n+1)(Gl)’>H(n+l)(Gz)
by
h"™(x) = h*(x) x eI (G)).
Clearly A" is a homomorphism of L‘(G,) into L™(G,) and for each path x of
length at least n in G,

(R™Y*((x) ) = (B*(X))
One readily gets the following.

LEMMA 5.6. Let h be a homomorphism of a graph G, into a graph G,, and let n
and p be non-negative integers. If h is p bundle-mergible [p b-bundle-mergible], then
h™ is a p bundle-mergible [p b-bundle-mergible] homomorphism of L"™(G,) into
L™(Gy).

LeMMA 5.7. Let G, and G, be two strongly connected graphs with r(G,)=r(G,)
and let h be a homomorphism of G, into G,. Assume that h is p bundle-mergible [ p
b-bundle-mergible] for a non-negative integer p. Then any two distinct maximal
compatible [ b-compatible] sets for h'? are disjoint.

Proof. First we note that L'”(G,) and L‘?(G,) are strongly connected and

r(L'(Gy) = H(G1) =r(G2) = r(L'"(Gy)).

From lemma 5.6, h'” is p bundle-mergible. Let W be a maximal compatible set
for h'”. Then since h‘? is p bundle-mergible, it follows from lemma 5.3 that there
exists a point w e I1'”(G,) of L'”(G,) and a path s of length p in L'”(G,) such that

W =C,(w,s).
(There exists z € [I(L'”(G,)) such that
W =C,»(i(2), (h'P)*(2)).

We may assume that the length of z is not less than p. Let 2 be the terminal subpath
of length p of z. Then since A'? is p bundle-mergible, it follows from lemma 5.3 that

W =C,n(i(2), (h'P)*(2)).
Put w=i(2) and put s=(h‘”)*(%).)
There exists y e [1°”(G,) such that (y) »=s. It is straightforward to see that
Cur(w, s) ={xeIP(G,) | wx e 1*?(G,), h*(wx)=y}.

This implies that if x € W, then we can write W = B, ({i(x)}, h*(x)). Thus we conclude
that if W, and W, are maximal compatible sets for h'” and W, n W, # &, then
W, = W,. Hence any two distinct maximal compatible sets for h‘? are disjoint. O
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LEMMA 5.8. Let G, and G, be two strongly connected graphs and let h be a regular
homomorphism of G, into G,. If every two distinct maximal b-compatible sets for h
are disjoint, then the induced b-regular homomorphism h is biregular.

Proof. By proposition 4.1, it suffices to show that ks regular. Let U be any point
of 4, (i.c. any maximal b-compatible set for h). Let v=¢;(U) and let b be any
arc of G, going from v. Let u € U. Then, ¢,(u) = v. Since h is regular, there exists
an arc a of G, such that i(a) =u and h(a)=b. Let V be a maximal b-compatible
set for h which contains t(a). Let U'=C,(b, V) and let E = (B, (b, V), V). Then
by definition, E is an arc of %, going from U’ to V with ﬁ(E )=b. Since V 3t(a)
and h(a)=0b,
C.(b, V)3i(a)=u.

Hence U n U’ 3 u. Since U and U’ are maximal b-compatible sets and U n U’ # O,
it follows from the assumption of the lemma that U = U’. Thus E is an arc of A
going from U and R(E)=0b.
_ Assume that there exists an arc E’ of §, with E’'# E such that i(E') = U, and
R(E’) = b. Then there exists a maximal b-compatible set V' with V' # V such that
E'=(B,(b, V'), V). Since C,(b, V') =i(E’) = U, there exists an arc a’ of G, such
that

i(a’)=u, h(a’)=b, and t(a’)eV'.
Since V' and V are distinct maximal b-compatible sets for h, V' n V =(J so that
a’ # a. But this is impossible because h is regular. Thus E is a unique arc of 9,
with i(E) = U and A(E)=b. We have proved that ks regular. D

THEOREM 5.9. Let G, and G, be strongly connected graphs with r(G,) = r(G,), and
let h be a mergible homomorphism of G, into G,. Then there exist a strongly connected
graph H, an integer p=0, a biregular homomorphism g of H into L'”(G,) and an
isomorphism p: (Q(G,), o) - (Q(H), o) such that
heo= (th,p+l,1)00g00 p.
Proof. Let G3= %, and let g, = h. Then from proposition 4.1 and remark 4.2, G,
is a strongly connected graph with r(Gs) = r(G,), and h, is a regular homomorphism
of G, into G,. Since h is mergible, it follows from lemma 5.4 that h, is 0 bundle-
mergible and there exists a non-negative integer p such that h;, is p b-bundle-
mergible. Moreover, it follows from lemma 5.5 and theorem 1.5 that there exists
an isomorphism p’ of (Q(G5), o3) onto (U G,), o,) such that
(h)o=hp'.
Let G,=L'P(G,),let Gs=L'"(G,), and let h, = h{”. Then G, and Gs are strongly
connected graphs with
r(Ga) =1(Gs) = 1(G2) =1(G)
and h, is a homomorphism of G, into Gs. Since h; is 0 bundle-mergible and p
b-bundle-mergible, it follows from lemma 5.6 that h, is 0 bundle-mergible and p
b-bundle-mergible. Moreover, from lemma 5.7, any two distinct maximal b-compat-
ible sets for h, are disjoint. Let p, = (hg, p+1.1)w and let p, =(hg, p+1.1)w (cf. §1).
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Then p, is an isomorphism of (A(G,), o.) onto (U G;), 03) (and p, is an isomorphism
of (Q(Gs), os) onto (Q(G,), 0,)) and we have

_ p2(h2)o = (h1)ewp1 .
Let H=¢, and let g= h,. Then, by proposition 4.1, H is a strongly connected
graph and g is a homomorphism of H into Gs. Since h, is regular (because h, is 0
bundle-mergible (remark 5.2)) and any two distinct maximal b-compatible sets for
h, are disjoint, it follows from lemma 5.8 that g is biregular. Since A, is p b-bundle-
mergible, it follows from lemma 5.5 and theorem 1.5 that there exists an isomorphism
p" of (Q(H), o) onto (2(G,), a,) such that

8= (h2)wp".
Thus we have
hep'p1P" = P28co-
Put p=(p’p1p")"". Then p is an isomorphism of (U G,), o) onto (X H), o) and
we have

hao=(th,p+1,1)oogoop' D

6. Characterizations of constant-to-one and onto global maps

In[8, § 9-§ 12] Hedlund describes the properties of inverses of onto endomorphisms
of full shift dynamical systems. With minor modifications in the statements and the
proofs, many of them are extended to onto global maps of homomorphisms between
strongly connected graphs whose adjacency matrices have the same characteristic
value. (Extensions of them to onto endomorphisms of irreducible subshifts of finite
type were pointed out by Coven and Paul [3], and extensions of them to finite-to-one
and onto homomorphisms between TPPD sofic systems were mentioned in {4].)
Many of Hedlund’s discussions on a block map f: A” > A, where A is a non-empty
finite set of symbols and n is a positive integer, and the mapping fo: 2 4 > 4 defined
by

(fola))i=flaiaisy - - @iny) acQ(A),iel,

can be interpreted naturally as discussions on the homomorphism h; of
L" Y (Gy(A)) into Go(A) defined by hs(x)=f(x), xe A", and its global map (/).
(Cf. § 1. Note that L""V(G,(A)) has point set A""! and arc set A". Hence, for
example, ‘totally (n—1)-separated’ in [8] for bisequences in 0, corresponds to
‘point-separated’ defined below for bisequences in Q(L""V(Gy(A))).) These dis-
cussions on h; and (hf)« can straightforwardly be extended to any homomorphism
h of a strongly connected graph G, into a strongly connected graph G, with
r(G,) =r(G,), and hy.

Let G be a graph. Two bisequences a, 8 € Q(G) are point-separated if i(«;) # i(B;)
forall ieZ.

The following lemma is proved in the same way as [8, lemma 16.7].

LemMA 6.1. Let G, and G, be graphs and let h be a homomorphism of G, into G,.
If for each B € ho(Q(G,)), any two distinct members of h' (8) are point-separated,
then h is mergible.
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Let G be a strongly connected graph. A bisequence « € Q(G) is positively transitive
[negatively transitive] if for each positive integer [ and each x € [1'”(G), there exists
ieZ with =0 [ie Z with i=<—I+1] such that
ali,i+I-1]=x

A bisequence a € Q(G) is bilaterally transitive if « is both positively transitive and
negatively transitive.

The result of L. R. Welch and A. M. Gleason given as theorems 11.1 and 11.2
of [8], can straightforwardly be extended to the following theorem; a similar
extension in a more general setting was stated in [5].

THEOREM 6.2. Let G, and G, be strongly connected graphs with r(G,) = r(G,), and
let h be a homomorphism of G, into G, with h* onto. Then there exists a positive
integer m(h) such that if B € Q(G,) is bilaterally transitive, then

k= () =m(h).
Furthermore, for each B € Q(G,),
|h< (B)|= m(h)
and the set hy' (B) contains m(h) members which are mutually point-separated.

Now we reach our first goal.

THEOREM 6.3. Let G, and G, be strongly connected graphs and let h be a homomorph-
ism of G, into G,. Then the following statements are equivalent.

(1) hy is constant-to-one and onto.

(2) r(G,)=r(G,) and for each B € Q(G,), any two distinct members in h' (B)
are point-separated.

(3) r(G,)=r(G,) and h is mergible.

(4) h* is onto and h is mergible.

(5) There is a strongly connected graph H, an integer p=0, a biregular
homomorphism g of H into L'"(G,), and an isomorphism p: (Q(G,), o,) > (Q(H), o)
such that ho=(hg, p+1.1)w08x0pP-

Proof. By proposition 1.3 and theorem 6.2, (1) implies (2). By lemma 6.1, (2)
implies (3). By theorem 5.9, (3) implies (5). By proposition 2.2, (5) implies (1). If
h is mergible, then no two distinct paths in G, are indistinguishable by h. Hence
(3) and (4) are equivalent. O

Thus we have a structure result for constant-to-one and onto homomorphisms of
irreducible subshifts of finite type.

CoroLLARY 6.4. Let G, and G, be strongly connected graphs and let
7: (Q(Gy), 1) > (UG,, o) be a homomorphism. Then = is constant-to-one and
onto iff there exists a strongly connected graph H, an integer p=0, a biregular
homomorphism g of H into L' (G,), and an isomorphism p: (Q(G,), o) » (Q(H), o)
such that

m= (th,p+l,l )80 P.

Proof. This follows from theorem 6.3 and corollary 1.6 O
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We remark that there exists a finite procedure to determine whether (4) of theorem
6.3 holds or not for a given homomorphism between strongly connected graphs.
We also remark that we can obtain completely analogous results to theorems 16.1
(a theorem of O. S. Rothaus) and 16.11 in [8] for homomorphisms of irreducible
subshifts of finite type, a part of which was stated in [5] without proof.

Let G be a graph and let «, B € (G). We say that a and B are totally 0-separated
if « and B are point-separated. For a positive integer p, « and B are totally p-separated
if

a[i,i+p—11=B[i,i+p—1] forall ieZ.
For other terminology see [8].

THEOREM 6.5. Let G, and G, be strongly connected graphs with r(G,) = r(G,). Let
p be a positive integer. Let f: T1'P(G,)»1'"(G,) be an admissible p-block map.
Then the following statements are equivalent.

(1) f is constant-to-one.

(2) f is open and onto.

(3) fo has a cross-section.

(4) For each BeS(G,), any two distinct members of f2'(B) are totally
(p—1)-separated.

Proof. Using the equivalence of (1) and (2) of theorem 6.3 and straightforwardly
modifying a part of the discussions in § 16 of [8] (see lemmas and theorems from
16.2 to 16.6 and their proofs together with a theorem of E. A. Michael), we first
have the theorem for p=1. The general case can obviously be reduced to this. [

COROLLARY 6.6. Let G, and G, be two strongly connected graphs with r(G,) = r(G,)
and let 7:(Q(G)), 01) > (U G>), 0,) be a homomorphism. The following statements
are equivalent.

(1) = is constant-to-one.

(2) = is open and onto.

(3) = has a cross-section.

(4) For each B € Q(G,), any two distinct members of =~ '(8) are separated.

Proof. This is proved using theorems 6.5 and 1.5 in the same way as [8, theorem
16.11]. O

Furthermore, we remark that the following generalization of [15, theorem 2] is
obtained in the same way as in [15].

THEOREM 6.7. Let G,, G, and G5 be strongly connected graphs with r(G,) = r(G,) =
r(G;). Let m:(QGy), 1) > (UG,),0;) and m,:(UG,), 0;) > (QUGs), 03) be
homomorphisms. Then if w,, is constant-to-one, each of m, and m, is constant-to-one.

7. Constant-to-one extensions of irreducible subshifts of finite type

In this section, we determine, up to topological conjugacy, the subshifts of finite
type which are constant-to-one extensions of a given irreducible subshift of finite
type. We say that (Q(G,), 0,) is a constant-to-one extension of (Q(G,), o) if there
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exists a constant-to-one homomorphism of (Q(G,),o;) onto (UG,),o,). If
(U Gy), o) is a constant-to-one extension of (2(G,), o,) and (Q(G,), o,) isirreduc-
ible (i.e. G, is strongly connected), ((G,), o;) is not necessarily irreducible (i.e.
G, is not necessarily strongly connected). But we do have proposition 7.1 below.

A graph G'=(P', A', {') is a subgraph of a graph G=(P,A,{)if PcP,A'c A,
and {'(a) ={(a) for all ae A’. A maximal strongly connected subgraph of a graph
G is called a component of G.

ProrosITION 7.1. Let G, be a graph whose components are G,,," - -, G,,,, and let
G, be a strongly connected graph. Let there exist a constant-to-one homomorphism
7 of (QUG,), oy) onto (UG,), 0,). Then G, is the union of Gy, ..., Gy, that is,
there exists no path in G, going from a point of G,; to a point of G,; for any distinct
i,j with 1=<i, j<m. Moreover, m;=w|Q(Gy;) is constant-to-one and onto for i=
1,...,m

To prove proposition 7.1, we shall use the following lemma.

LeEMMA 7.2. Let G, be a graph, let G, be a strongly connected graph and let h be a
homomorphism of G, into G, with h, finite-to-one and onto. Let B Q(G,) be
bilaterally transitive and let @ € h' (B). Then a € Q(G,;) for some component G,; of
G,.

Proof. Assume that a is not contained in Q(G;y;) for any component G,; of G,.
Then there exist components G, and G;, of G, and s, t€ Z such that

OY(Gy)3a;  forall j<s,
IY(Gy)se; forall j>¢,

but neither II(G,,) nor II(G;,) contains afs, t]. Let
h=h|I'Y(G,, and h=h|II'"V(G,)).

Then h; and h; are homomorphisms of G, into G, and of Gy, into G, respectively.
Since B is negatively transitive, (h;)* is onto, and also since B is positively transitive,
(h)* is onto. Since h,, is finite-to-one, so are both of (M)« and (A;)«. Hence both
of (h:)w and (k) are uniformly finite-to-one and onto.

It is known [4, p. 175]) that the inverses of a negatively [positively] transitive
point (bisequence) through a finite-to-one and onto homomorphism between
irreducible subshifts of finite type are also negatively [positively] transitive. Therefore
since B is negatively transitive, a is negatively transitive in G,,. (Consider a
bisequence a’€ Q(G,) such that aj=a; for all j<s and apply the above fact to
(h)o(a’).) Similarly, since B is positively transitive, « is positively transitive in G,,.

There exists x, € [1(Gy,) such that C,, (h¥(x,), t(x,)) is a maximal b-compatible
set for h,. Since «a is negatively transitive in Gy, there exist 5,, s,€Z with s, <5, <
such that afs,, s,]= x,. (By corollary 3.3, we may assume that the length of x, is
greater than 0.) Also, there exists x,€Il(G;,) such that C, (i(x,), h*(x,)) is a
maximal compatible set for h;. Since a is positively transitive in Gy, there exist
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t;, 1, € Z with t=t; <1, such that a[t,, t,]= x,. Let
U= Chk(B[sla 5], t(ay)) and V=C,(i(a), B, 12]).
By the above, U is a maximal b-compatible set for h;, and V is a maximal compatible
set for h,. Since B is positively transitive, there exists t3€ Z with ;> £, such that
t(B,) =i(Bs).
Let y =B[s,, t:]. Then i(y) =t(y). For each j=0, let
U= Chk(}’j, U) and V;=C,(V,B[,+1, 13]y%).
Then by corollary 3.3, U; is a maximal b-compatible set for h, and V; is a maximal
compatible set for h. Hence, U; # J and V; # J for all j=0. Therefore, there exists
a € Q(G,) such that
a[s,+1,6,—1]=a[s,+1,4,—1],

als,—j(ts—s;+1), s;]€ Bhk(yjﬁ[sb 521, {t(as,)}) for all j=0,
and

alty, t;+j(ts—s;+1)]e By, ({i(ay)}, Bl 13]y’) for all j=0.,,
Let B = hw(d). Then clearly B is a periodic bisequence of period t;—s;+1 with
Bls1, t:]=y. Clearly a is not periodic. But

ho(a’™ ™" V(&)=  forall jeZ

where o is the shift on Q(G,;). Hence hy' (B~) is infinite, which is a contradiction.
Thus a € Q(G,;) for some component G,; of G,. O

Proof of proposition 7.1. By corollary 1.6, there exist positive integers p, q, p=gq,
and a homomorphism k of L'*~V(G,) into G, such that
T= hoo(hGl,p,q);l-
Clearly h., is constant-to-one and onto. Put H = L?"V(G,) and put H; = L’*"(G,,)
for i=1,..., m Then it is easy to see that H,,..., H,, are all the components of
H. Let
h=hlI'"(H,) fori=1,...,m.

Then clearly, h; is a homomorphism of H; into G, with (h;) finite-to-one.

Let B be a bilaterally transitive bisequence in {0(G,). Then, by lemma 7.2, each
a € Q(H) such that h.(a) =B, is contained in some Q(H;),1<i=m. Let

(i, ..., ip={ill=i=m, Q(H)nhs (B)*T}.
Assume that there exists a’€ Q(H) such that o' €Q(H;)u---UQ(H,). Let
v=h(a’). Since B is bilaterally transitive, hz_‘ is onto and so is (h;)o for
j=1,---, 1 Hence (h;)x is finite-to-one and onto for j=1,..., I By theorem 6.2,
()< (B =](h) ' (¥)]

for j=1,...,1 Hence
i i
[t B)]= T Ah)SB)<1+ X |t)2=[h< ()

which is a contradiction because h. is constant-to-one and onto. Therefore
QH)v---VH,)=Q(H). This implies that {i,...,i}={1,...,m},
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QH)=Q(H,)v" - UQ(H,) and (h;)- is finite-to-one and onto for i=1,..., m.
Hence for each B' e Q(G,),

Wzt (8] = % ()28,

and by theorem 6.2,
I(h) (B =|(h)' (B,

i=1,..., m Therefore, since h, is constant-to-one, each (h;). must be constant-to-
one.

Since Q(H)=Q(H))u: - OQ(H,), UG)=QUG )y - vQ(G,,,). Hence
there is no path in G, going from a point of G; to a point of G,; for any distinct
i,j with 1=1i, j< m. Since

™= (hi)oo(hG“,p.q );ol,

a; is constant-to-one and onto. |

The following is the main theorem of this paper. In view of proposition 2.3, it
determines constructively, up to topolological conjugacy, the subshifts of finite type
which are constant-to-one extensions of a given irreducible subshift of finite type.

THEOREM 7.3. Let G, be a graph and G, a strongly connected graph. Then
(U G,), ay) is a constant-to-one extension of (Q(G,), o,) iff there is a biregular
extension H of L'”(G,) for some integer p=0 such that (Q(G,), o,) is topologically
conjugate to (M(H), o).

Proof. Assume that there is a constant-to-one homomorphism 7 of (Q(G,), a;)
onto (2(G,), 0,). Then from proposition 7.1, G, is the union of its components
Gi1s ..., Gy, and 7] Q(G,;) is constant-to-one and onto for i=1,..., m. Put

m=m|Q(Gy;) fori=1,...,m.

It follows from corollary 6.4 that for each i=1,..., m, there exists a strongly
connected graph H,, an integer p; =0, and a biregular homomorphism g; of H; into
L'?’(G,) such that (Q(H,), ¢}) and (Q(G,;), o1;) are topologically conjugate. Let
p=max{p,,...,pn}. Consider the homomorphism g{* 7 of L*7P)(H)) into
LP7P)(LP(G,)), (see the paragraph before lemma 5.6). It is easy to see that g{# =%’
is biregular. Therefore, since L'?(G,) is isomorphic to L'*~7 (L'?’(G,)), L'»~P'(H;)
is a biregular extension of L'”(G,). It follows that (Q(L'"~"’(H,)), o/) is topologi-
cally conjugate to (Q(G,,), oy;) for i=1,..., m. Let H be the union of the graphs
L'’"P(H,),i=1,..., m. Then, by the above, (U H), o) is topologically conjugate
to (Q2(G,), ;). Moreover, since H is the union of its components each of which is
a biregular extension of L'”(G,), H is a biregular extension of L'”(G,).

The converse is clear from proposition 2.2. O

There is a remarkable spectral property of matrices concerning topological conjugacy
of subshifts of finite type. It follows directly from the well-known theorem of
Williams, [21], (characterizing topological conjugacy of subshifts of finite type by
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‘strong shift equivalence’ of matrices defining the subshifts), and a result of Flanders
(see [9, p. 1061) that if two subshifts of finite type (A(G,), 74) and (QAU(Gy, a5) ate
topologically conjugate, then the elementary divisors not divisible by A of M(G,)
and those of M(G,) are the same, where A is the indeterminate. (See also [19].)
But the converse of this does not hold by example 3 of [21].

Asstated in § 1, there are also remarkable spectral properties of matrices concern-
ing finite-to-one extensions of subshifts of finite type. In [17], the author showed
that for two subshifts of finite type (QUG,), o;) and (QG,), o5), if there is a
finite-to-one homomorphism of (Q(G,), o) onto (Q(G-), o,), then the characteris-
tic polynomial of M(G,) divides the characteristic polynomial of M(G,;), mod
powers of A. Furthermore, Kitchens, [10], showed that if (A (G,), o) and ((G>), o)
are irredicible subshifts of finite type and there is a finite-to-one homomorphism
of (QU(G,), ay) onto (2(G,), o,), then the block of the Jordan form of M(G,) with
non-zero eigenvalues is a principal submatrix of the Jordan form of M(G,). In [10],
Kitchens also showed that the converse does not hold. The following theorem is a
result along the above lines.

THEOREM 7.4. Let G, and G, be strongly connected graphs. If there exists a constant-
to-one homomorphism of (U G,), o;) onto (U G>), 7,), then the elementary divisors
not divisible by A of M(G,) is contained in the elementary divisors of M(G,).

Proof. The result follows from theorem 7.3, proposition 2.5, the spectral property
of matrices concerning topological conjugacy stated above, and the fact that
(Q(G,), 03) and (UL (G,)), o%) are topologically conjugate. O
Marcus [13] proved that for any strongly connected graph G with r(G) = n, where n
is a positive integer, there is a strongly connected graph G’ such that each row sum
of M(G') is n, each column sum of M(G’) is n, and (Q(G’), ¢’) is topologically
conjugate to (U(G), o). It is easy to see that G' is a biregular extension of Gy(A)
where A is the set of n symbols. (See [16, lemma 1]. As for Gy(A), see §1.)
Therefore, by proposition 2.2, every irreducible subshift of finite type (Q(G), o)
with r(G) = n is a constant-to-one extension of the full shift system on n symbols.
Since r(G)=n for every subshift of finite type (2(G), o) which is a finite-to-one
extension of the full shift system on n symbols, we conclude that every irreducible
subshift of finite type which is a finite-to-one extension of a full shift system, is also
a constant-to-one extension of the full shift system. The question arises of whether
every irreducible subshift of finite type which is a finite-to-one extension of an
irreducible subshift of finite type, is also a constant-to-one extension of the irreduc-
ible subshift of finite type. The following example shows that the answer is negative.
Let G, and G, be graphs with

M(G))= and M(Gz)=(1 1).

2 0

_ 0 = O
O OO =
e = OO
(=
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Clearly G, and G, are strongly connected. Since M(G;)R = RM(G;) where

S = m =
-0 O O

it follows from proposition 2.4 that there is a regular homomorphism of G, into
G,. Hence (Q(G,), a,) is a finite-to-one extension of (Q(G,), o). But the elemen-
tary divisors of M(G,) are A —2, A — 1, and (A + 1)?, whereas the elementary divisors
of M(G,) are A—2 and A +1. Therefore, by theorem 7.4, (Q(G,), 0y) is not a
constant-to-one extension of (Q(G,), o,). (Note also that both (Q(G,),o,) and
(2 G,), ;) are constant-to-one extensions of the full shift system on 2 symbols.)

The converse of theorem 7.4 does not hold. An example of Kitchens {10] shows
that if G, and G, are strongly connected graphs such that the elementary divisors
of M(G,) contains the elementary divisors of M(G,), (QA(G,), o) is not necessarily
even an extension of (Q(G,), 7>).

Question. Does the converse of theorem 7.4 hold under the condition that
(Q(Gy), ay) is a finite-to-one extension of (Q(G,), 0,)?

8. Concluding remarks
Finally, to show that there are other applications of induced regular homomorphisms
and induced b-regular homomorphisms, we state some results omitting proofs.

Let G, and G, be strongly connected graphs with r(G,) = r(G,) and let h be a
homomorphism of G, into G, with h* onto. Let m(h) be as in theorem 6.2. One
can prove that

m(k)=m(k) = m(h)
and if v is any point of G,, m(h) equals the maximum number of mutually disjoint
maximal b-compatible [compatible] sets for h [for h]containedin ¢ ;'(v) [in o7 (v)].
One can also prove that m(h)=1if Un V#& (|[Un V|=1) for any maximal
compatible set U for h and any maximal b-compatible set V for h with ¢,(U)=
on(V).

Let h be a regular [b-regular] homomorphism of a graph G, into a graph G,.
Let p be a non-negative integer. Then h is said to be p definite if for any x,,
x, € 1'P(G,), h*(x,) = h*(x,) implies t(x,) =t(x,) [i(x;) =i(x,)], and A is said to be
definite if h is p definite for some non-negative integer p.

A definite regular homomorphism is considered to be a generalization of the state
transition diagram of a finite automaton having a definite table, which was introduced
in [20]. The properties of definite tables and a practical decision procedure for
definiteness of tables presented in [20], can straightforwardly be extended to definite
regular [b-regular] homomorphisms of graphs.

Let G, and G, be strongly connected graphs with r(G,) =r(G,), and let h be a
homomorphism of G, into G, with h* onto. Then one can show that the induced
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regular [b-regular] homomorphism A [A]of his p definite iff 4 is p b-bundle-mergible
[ p bundle-mergible] and m(h) = 1. (Cf. [14, theorem 5].) Therefore a criterion for
bijectivity of h. can be obtained, that is, h, is one-to-one and onto iff both h and
h are definite.
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