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Abstract

We provide a computation of the Cech cohomology of the pinwheel tiling using the Anderson—Putnam
complex. A border-forcing version of the pinwheel tiling is produced that allows an explicit construction
of the complex for the quotient of the continuous hull by the circle. The cohomology of the continuous
hull is given using a spectral sequence argument of Barge, Diamond, Hunton and Sadun.
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1. Introduction

A tiling of the plane is a collection of subsets of R?, called tiles, for which any
intersection of the interiors of two distinct tiles is empty and whose union is all of R?.
A tiling said to be aperiodic if it lacks translational periodicity. The most common
method of producing aperiodic tilings is to use a substitution rule: a method for
breaking each tile into smaller pieces, each of which is a scaled-down copy of one
of the original tiles, and then expanding so that each tile is congruent to one of the
original tiles.

One of the most enigmatic substitution tilings is the Conway—Radin pinwheel tiling,
described in the seminal paper [10]. The pinwheel tiling is composed of two tile types,
a 1-2-V/5 right triangle and its reflection. The substitution rule w inflates each tile by
a factor of V5 and decomposes the inflated triangle into five isometric copies of the
original triangles as follows:
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[2] Cohomology of the pinwheel tiling 163

There are two reasons why the pinwheel tiling has been so difficult to analyse. Tiles
in the pinwheel appear in an infinite number of distinct orientations and the pinwheel
tiling does not force its border. Heuristically, a substitution tiling is said to force
its border if specified finite patches of tiles always have the same collar of tiles.
Forcing the border has turned out to be essential for computing the cohomology of
tilings [1, 4, 12]. One of the primary goals of this paper is to provide a version of
the pinwheel tiling that forces its border, which we call the BFpinwheel tiling. To see
that tiles in the pinwheel tiling appear in an infinite number of distinct orientations we
observe that after two iterations of the pinwheel substitution there are two tiles that are
rotated against each other by the angle arctan(%), which is an irrational fraction of 27
so an induction argument shows that orientations of tiles are dense in the circle.

There is a compact topological space associated with the pinwheel tiling called
the continuous hull and denoted Q. The continuous hull is locally homeomorphic to
the product of a Cantor set, a circle, and a disc [5, 9, 11, 12, 14]. The substitution
rule w is a homeomorphism on the continuous hull [13] allowing the continuous hull
to be described as an inverse limit [1]. Using the inverse limit structure allows us
to compute the Cech cohomology of the continuous hull; the Cech cohomology of
the inverse limit is the direct limit of the Cech cohomology of the approximants,
making the cohomology quite computable. Computing the Cech cohomology groups
of the continuous hull has been the focus of a significant amount of research since
its introduction in [1]. Sadun’s book [12] gives an excellent introduction to the
cohomology of tiling spaces and provides deep insight into the meaning of the
cohomology groups for tilings.

In [4], Barge er al. give the first computation of the Cech cohomology of the
pinwheel tiling. Their computation uses Barge-Diamond collaring and a higher-
dimensional analogue of the Barge-Diamond complex [3] to compute the Cech
cohomology of the quotient of the continuous hull by the circle. In order to obtain
the Cech cohomology of the continuous hull the obvious approach is to use the
Gysin sequence to realise the continuous hull as a fibre bundle over the quotient.
Unfortunately the map from the continuous hull to the quotient of the continuous hull
by the circle is not an honest fibration; there are six smooth singular fibres. In the
quotient space these singular fibres correspond to cone singularities, specifically at the
points with 180° rotational symmetry. To overcome this problem the authors go back
to the spectral sequence used to derive the Gysin sequence and adjust for the singular
fibres. Torsion in the quotient of the continuous hull by the circle makes the spectral
sequence arguments extremely subtle.

In this note we compute the cohomology of the continuous hull of the pinwheel
tiling using Anderson and Putnam’s original approach. The first step is to produce
a border-forcing version of the pinwheel tiling, which we call the BFpinwheel. The
Anderson—Putnam complex of the BFpinwheel leads to the Cech cohomology of an
approximant. A direct limit computation gives the Cech cohomology of the quotient
of the continuous hull of the BFpinwheel by the circle. We are able to explicitly present
the generators of the Cech cohomology groups and attempt to provide all the details
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of the computation. To complete the calculation we identify the cone singularities in
the BFpinwheel and apply the spectral sequence arguments in [4].

2. A border-forcing version of the pinwheel tiling

In this section we produce a version of the pinwheel tiling that forces its border.
The first step is to pass to a kite-rectangle version of the pinwheel tiling and use this
version to produce the BFpinwheel.

A substitution tiling is said to force its border if, for every proto-tile, there is a
finite number of substitutions after which the pattern of tiles meeting the border of the
collection of substituted tiles is the same throughout the tiling. The notion of border
forcing was invented by Kellendonk in [7, page 24] (see also [12, Section 2.5]). While
the Penrose tiling forces its border, the pinwheel tiling does not. In [8, page 7], Putnam
and Kellendonk point out that any tiling with a finite number of local patterns can be
made to force the border by relabelling the proto-tiles, one for each distinct collar of
tiles that appears around any translate of a proto-tile. We use this method to produce a
version of the pinwheel tiling that forces it border. The reader is invited to jump ahead
to Appendix A to see the collared tiles immediately.

In [2], Baake et al. observed that, given a pinwheel tiling, one can remove every
hypotenuse to get a kite-rectangle version of the pinwheel tiling, which we will
call the KRpinwheel. They showed that the KRpinwheel tiling is mutually locally
derivable to the original pinwheel tiling, meaning that there is a homeomorphism
between the two continuous hulls and the homeomorphism can be determined locally
in every tiling. The following figure shows the local bijection from the pinwheel to
the KRpinwheel. The dots emphasise the decomposition, although the dots can be
completely determined by local patches.

o ~N— A4

The cost of going to the KRpinwheel tiling is that we now need two of the original
pinwheel substitutions in order to achieve the KRpinwheel substitution, which we also
denote by w.
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Using the KRpinwheel, we construct a border-forcing version of the pinwheel tiling,
which is achieved by producing a set of collared tiles. We will call this new version
the BFpinwheel tiling. A collared tile is a tile labelled by the pattern of its nearest
neighbours; that is, two tiles have distinct labels if they are different tiles or if there
are two different tiles sharing any edge or vertex with the tile. The BFpinwheel is
constructed by considering all possible collared tiles in the KRpinwheel. Labelling
the collared tiles gives 83 distinct tiles, 31 kites and 26 of each oriented rectangle. The
collared tiles appear in Appendix A. It is important to note that each tile is still an
isometric copy of one of the KRpinwheel tiles and the labelling merely specifies the
collar.

3. The Anderson—Putnam complex of the pinwheel tiling

In this section we compute the Cech cohomology of the quotient space Qg = Q/S'
for the BFpinwheel. Computing Cech cohomology for tilings with infinite rotational
symmetry is the topic of [12, Ch. 4] and we direct the reader there for further
information. For the pinwheel tiling, the quotient Q, has been studied by several
authors [4, 12, 14] and is equivalent to considering the subset of tilings in the
continuous hull with the tile containing the origin of R? in a fixed standard orientation.
The same holds true for the BFpinwheel, and we declare the orientations of the 83 tiles
in Appendix B to be in standard orientation.

Starting with the 83 tiles, a CW complex I'/S ! is defined by identifying edges and
vertices in two tiles whenever they are common to both tiles in any patch of tiles
appearing in a KRpinwheel tiling, and then arranging the tiles in standard orientation.
It will be useful to label the 83 tiles in terms of their tile type: the 31 kite tiles are
labelled K1, ..., K31, 26 left rectangle tiles by L1, ..., L26, and 26 right rectangle tiles
by R1,...,R26. After identification of vertices and edges we obtain 138 edges, labelled
el,...,es, and 73 vertices, labelled vi,...,v7;3. The CW complex I'/S! appears
in Appendix B. Note that Cech cohomology and singular cohomology agree on finite
CW complexes, so we compute with singular cohomology on the approximants.

To use Anderson and Putnam’s machinery we have from [12, Section 4.4] that

Qy=Q/S' =1lim@T/S' «T/S' «T/S'--)
with the map induced by the substitution on I'/S! (see [12, Section 4.3] for an elegant
description of how the substitution induces a map on I'/S!). Since cohomology is

contravariant, inverse limits of space turn into direct limits of groups. Thus, we will
compute the Cech cohomology of Q via

H'(Qo) = lim(H'(T/S "), A?) (3.1

where A} denotes the map induced by the substitution on the singular cohomology
group H'(I').
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To compute the integer cohomology of I'/S! we begin by defining the cochain
complex. Let C?% €' and C? denote the functions from the vertices, edges, and
tiles into the group of integers, respectively. The coboundary maps ¢° : C° — C!
and ¢' : C' — C? are defined using the dual of the homology boundary maps. More
precisely, we define a matrix for the homology boundary maps that gives rise to the
coboundary maps in cohomology by taking the transpose of the matrix'. The cochain
complex is given in the diagram below which is used to compute the cohomology
groups of I'/S!:

0 1 2
Lot et Do
77 g 57w
By definition, the cohomology group H(I'/S') = ker(¢6°). The kernel is generated
by the function that assigns the value one to every vertex, and we obtain H(I'/S ') = Z.
The computation of the remainder of the cohomology groups is more complicated.
We have H'(I'/S!) = ker(6")/Im(6°). For 1 <i < 138, in an abuse of notation, let ¢;
denote the function in C! which assigns 1 to the edge ¢; and O to all other edges; that
is, the point mass function in C' associated to the edge e;. Our computations show that
the group H'(I'/S ') is generated by the class represented by the function

fii=—ej+e3—e;+eg—ejgt+este;—egterg—exteytent+ess
te36 — €33 t €42 — €45 — €49 + €51 + €58 + €61 t+ €63 + €65 + €70 — €74 — €78
+e79 —ego — ey + €83 — g4 — €5 — €90 + €95 — €99 + €101 t €106 — €109 T €125.
(3.2)

Thus, we have H'(T'/S!) = Z.

The computation of H*(I'/S ') = ker(6%)/ Im(6") is more involved. Let t1,..., fg3
denote the point mass functions in C? associated to the corresponding tile in
K1,...,K31, L1,...,L26, R1,...,R26 in order. For example, ¢}, assigns the value
1 to tile K12 and O to all other tiles. Similarly, #s5¢ is the point mass function associated
with tile L25. Our computations show that the group H*(I'/S ') is generated by classes
represented by the 19 functions g; € C? described below in (3.3). For j=1,...,19,
denote the entries of the vectors in Appendix C by y;; fori=1,...,83 and let

83
i=1

The classes of H*(I'/S ') are represented by g; + Im(5").

We obtain H*(I'/S ') = Z!8 @ Z,, where the generator of Z, is represented by the
function g19. More specifically, the generator of Z; is ts9 — 2t¢4 + Im(6') where 59 and
t¢4 are the point mass functions associated with tiles R2 and R7 respectively.

I The substitution and boundary matrices are available upon request.
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We have proved the following proposition.

ProposiTion 3.1. Let T'/S ! be the Anderson—Putnam complex of the KRpinwheel tiling
described in Appendix B. The integer cohomology groups are given by

H'T/sY =17z,
H\(T/SYHY =7,
H*T/SYH =278 7.

The next step is to compute the Cech cohomology of Qg using the inverse limit
construction in Equation (3.1). We state the main result of this section.

Turorem 3.2 (cf. [4, Section 7]). Let Qy be the quotient Q/S" for the KRpinwheel
tiling. The Cech cohomology groups of Qq are given by

H(Qo) = Z,
H'(Qo) = Z,
H Q) = Z[ L0 Z[i 0 7’ @ L.

We will prove Theorem 3.2 using a sequence of lemmas.
Levma 3.3. Let Qg be the quotient Q/S" for the KRpinwheel tiling. Then H(Qp) = Z.

Proor. The induced matrix A} is the identity on the generator of H(I'/S').
Therefore,

H°(Qo) = lim(H(T/S "), A}) = lim(Z, id) = Z. o

Levma 3.4. Let Qg be the quotient Q/S ! for the KRpinwheel tiling. Then HY Q) = Z.

Proor. The induced matrix Aj is the identity map on the generator f; + Im 80 of
HY('/S "), where f; is described in (3.2). Therefore,

H'(Q) = lim(H'(T'/S "), A?) = lim(Z, id) = Z. O
The group H2(€Y) is the most difficult to compute.

Lemma 3.5. Let Qq be the quotient Q/S ' for the KRpinwheel tiling. Then H*(Qp) =
Z %] Z3 0 Z° @ Z,.
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Proor. We have H*(I/S') = Z'* ® Z,. We write A} : HX('/S') - H*T/S') as a
matrix with respect to the 19 generators g; of H*(I'/S) introduced in (3.3):

25 0 0 0 O 0 0 0 0 00 0 00000O0O
0 3 0 0 O 0 0 0 0 00O 0 00000O0CO
0 O 3 0 O 0 0 0 0 00 0 00000O0OO
0 0 O 1 0 0 0 0 0 00 0 00000O0O
o o o0 0 1 0 0 0 0 00 0 00000O0O
0o 0o O 0 o0 1 0 0 0 00 0 00000O0O
0o o o0 0 o0 0 0 0 0 00 0 00000O0O
0o 0o 0O 0 o 0 0 0 0O OO 0 00000O0CO
0o 0 O 0 o0 0 0 0 0O 00O 0 00000O0O

00 0 0000O0OO

b
N 3%
Il
(=
o
(e)
=
=
(=
=
(=
o

0 O 0 0 O 0 0O 0 0 00 0 0O0OOOOQOO

0o o o0 0 O 0 0 0 0 00 0 00000O0O

0 O 0 0 O 0 0 0 0 00 0 0O00OOOCOOO

612 25 -150 0 O 0 110 0 =110 00 -110 0100000

102 50 250 O O 0 110 0 -110 00 -110 01 0000 O

567 100 1050 275 =275 825 110 0 -11000 -110010000 0

382 =50 300 O 550 -2200 110 0 -11000 -1100100000

216 25 =150 0 O 0 -2200 220 00 220 0000010

0 O 0 0 O 0 0O 0 0 00 0O 000OO0OOOT1
where the last coordinate is the generator of Z,. We compute the direct limit

H*(Q) = lim (H*(I), 43).
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The following vectors generate the image A5 H 2r/shy:

25 0 0
0 3 0
0 0 3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
O [.] O0{,] O
0 0 0
0 0 0
0 0 0
0 0 0
=510 | 25 400
—45 75 1200
=230 [=75] | 450
0 0 0
0 0 0

0

S O O O O O o o o o o —= o o

275

0

|
BOOOOOOOOOO'—‘OOOO
(9]

550
0
0

825

S O O O O O o o o~ o o o o o

—2200

0
0

We can rewrite the matrix for A in terms of these vectors:

25 0

0 3

0 0

0 0

B = 0 0
0 0
15300 75
5400 75

0 0

where the matrix B is the unique homomorphism from H?
H*T/SY/ ker(A%) given by B(g + ker(A%)) = A3g + ker(A3). Thus

-450
-450

S O W o

0

0

0

SO O O O o = O O

S O O O = O O O O

=)

S O O = O O O O

SO O = O O O O O©o ©

S = O O O O o o ©

S O = = == O OO0 0O 0O O o0 o o o o o oo

- O O O O O O o O

SO — O O O O O O OO oo o oo o o o oo

lim (Hz(r/s h).A3) = lim (H*(T/S")/ ker(A3), B).
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Using the generating set for A;HZ(F/S 1) above, we have HX(T'/S!)/ ker(A%) =
A3H*(T/S") = Z® @ Z,. Observe that the homomorphism B is the identity on the
fourth, fifth and sixth coordinates of Z® and on Z,. Thus, H*(Q) is the direct sum
of Z3 & Z, and liin(ZS, M) where

25 0 0 00
0 3 0 00
M:=| 0 0 30 0].
15300 75 -450 1 O
5400 75 -450 0 1

The eigenvectors of M are (2,0, 0, 1275, 450), (0,6,1,0,0) and (0, 2,0,75,75)
with eigenvalues 25, 3 and 3, respectively. The quotient of Z> by the corresponding
eigenspaces is isomorphic to Z? and the quotient is generated by the classes of
(0,0,0,1,0) and (0,0,0,0, 1). We have the short exact sequence

057257720, (3.4)

where Z? is the direct sum of the eigenspaces with eigenvalues 25,3 and 3. Since
(0,0,0,1,0) and (0,0,0,0, 1) are eigenvectors of M both with eigenvalue 1, M is the
identity map on the quotient Z>. Taking direct limits of (3.4) gives the short exact
sequence

0 Z[5]® Z[3)° - im(Z°, M) - 2% - 0.

Since the quotient is free the sequence splits, and we have lim(Z°, M) = Z[zl—s] @
Z[%]2 @ Z2. Hence

H Qo) = lim(Z°, M) 0 Z* © Z, = Z[ £ | ® Z[1 1 © Z° © Zy. O

4. Cech cohomology of the pinwheel tiling

Beginning with the integer Cech cohomology of Qy, the integer Cech cohomology
of Q was computed in [4, Section 7]. There are two steps in the computation: the
first is to identify cone singularities, and the second is to use a spectral sequence
argument coming from the definition of the Gysin sequence. The second part of Barge
et al’s computation was extremely difficult, and we briefly outline the steps in the
calculation. Using the results of [4, Section 7], we give the integer Cech cohomology
of the pinwheel tiling.

We begin by identifying the cone singularities. In the pinwheel tiling, cone
singularities correspond to pinwheel tilings with 180° symmetry. Rotational symmetry
is preserved under substitution, so we can identify cone singularities by finding
periodic points under the substitution of 180° symmetric patches of collared tiles.
From Appendix A we find the following patches with 180° symmetry and vertices
at the centre of rotation that are periodic under the substitution:
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123 R23 L7 R7
V70 V71
L23 R23 Vi7 VR7
oo Ao Ay Ag Ag
70——V71 Vii——V70 VL7T——VR7 VR1I—VL7
R22 122 K14
V65
122 R22 K31
V23
Ao K31
V V
65——V65 K14
Ag
V33——V23

Placing the vertex of rotation at the origin of R? and substituting an infinite number of
times leads to a tiling of the plane with 180° symmetry [12, Theorem 1.4]. Therefore,
there are six cone singularities. We note that there are four additional patches with
180° symmetry (using tiles L3, L26, R3, and R26); however, the vertex at the centre of
rotation is not periodic under the substitution, so they do not contribute to the number
of cone singularities.

We now briefly outline the spectral sequence argument in [4, Section 7] used to
compute H*(Q). The Gysin sequence [6, page 177] is used to compute the cohomology
of an S !-fibre bundle over the base space from the cohomology of the base space.
Unfortunately, due to the presence of cone singularities, the map Q — € is not quite
a fibration. However, the spectral sequence used to prove the Gysin sequence can
be adjusted to account for these cone singularities. In [4], the authors show that
the generators of the cone singularities account for five linearly independent torsion
elements contributing a Zg term to H2(Q). The relevant results of [4] are summarised
in the following theorem.

THeEOREM 4.1 (Barge, Diamond, Hunton and Sadun [4, Section 7 and Theorem 12]).
Suppose that Q is the continuous hull of the pinwheel tiling and Qo = Q/S'. Given
H*(Q) and the cone singularities corresponding to tilings with 180°-rotational
symmetry. The integer Cech cohomology groups are given by

H(Q) = H(Q) = Z,
H' Q) =HQy)oeH Q) =287,
HYQ)=E} @ Eyy = Z[ %10 Z[3 0 Z° 0 Z3,
H(Q) = H Qo) = ZI3] 8 Z3 P © Z° © Z,,
where the terms E‘l’f’l =7 Zg and E;,,o = Z[%] @ Z[%]2 ® 7> come from the spectral

sequence E* which adjusts for the cone singularities and the torsion in H*(Qy).
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Appendix A. The collared tiles
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Appendix B. The labelled tiles
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Appendix C. The vectors generating H*(I'/S")
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