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INFLECTIONAL CONVEX SPACE CURVES 

TIBOR BISZTRICZKY 

Let >̂ be a regular closed C2 curve on a sphere S in Euclidean 
three-space. Let H(S)[H($) ] denote the convex hull of S[$]. For any 
point/? G H (S), let O(p) be the set of points of 0 whose osculating plane 
at each of these points passes through p. 

1. THEOREM ([8]). If 0 has no multiple points and p e H($), then 
\0(p) | = 3[4] when p is [is not] a vertex of 0. 

2. THEOREM ( [9] ). a) If the only self intersection point of O is a double 
point and p e / / ($ ) is not a vertex of Q>, then \0(p)\ = 2. 

b) Let 0 possess exactly n vertices. Then 
(1) \0(p) | g nforp G 7/(5) awd 
(2) j/7/ie osculating plane at each vertex of$> meets <D Û/ exactly one point, 

\0(p)\ = n if and only if p e //(<£>) is not vertex. 

It should be noted that Segre's proof of 1 required that $ be C3 and 
Weiner presented a simpler proof of this theorem in [9] with the 
assumption that $ is C2. Both proofs used the methods of classical 
differential geometry. 

In 1979, P. Scherk conjectured that 0 need not be spherical in 1 and 2 as 
long as <É> was contained in the boundary of its convex hull. With the 
restrictions that <É> meets any plane in a finite number of points and any 
line in at most two points, we obtain such a generalization of 1 and 2 a) in 
Theorem 21 and of 2 b) in Theorem 26. 

We remark that 1 and 2 imply that if $ has no multiple points then <ï> 
possesses at least four vertices. Similarly, 21 and 26 yield the Four-vertex 
Theorem 27. 

Finally, the central idea of the proofs of 21 and 26 is the projection of a 
space curve onto a particular plane curve. This technique of proving a 
Four-vertex theorem for non-spherical space curves is also to be found in 
[1] and [6]. However Mohrmann considered curves lying on an ovaloid 
(closed convex surface met by any line in at most two points) and Barner 
examined curves which are "streng-konvex" (through every pair of distinct 
points of the curve there is a plane not meeting the curve elsewhere). 
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1. Spherical curves. As a justification of our assumptions, we examine 
the purely geometric properties of a spherical curve $. 

Firstly, 0 does lie on the boundary of / / ( 0 ) and any line meets $ in at 
most two points. A space curve with these properties, we call convex. 

Let 0 be parametrized by a circle T\ that is, 0 : 7 —> S is a regular C~ 
function and $ is identified with 0(T). For p = <£>(/), let &\(t) denote the 
line through p in the direction of the tangent vector <J>'(0 and let <J>2(0 
denote the osculating plane of <I> at p. 

Let a be a plane through/?. If a n $ j ( 0 = {/?} then $ ' (0 ^ 0 and the 
continuity of $ imply that a cuts $ atp; that is, $ does not lie on one side 
of a near/?. If a n 02(/) = $ i ( 0 then the order of contact of a and 0 at/? 
is strictly less than the order of contact of $2(0 and $ at /?. Thus $ is 
closer to O2(0 t n a n a near/? and it follows that a supports 0 a//?; that is, $ 
lies on one side of a near/?. Finally, if a = 0 2 ( 0 and $ is not contained in 
a near/? then by definition, a supports $ at/? if and only if p is a vertex of 
0. 

We call a point of a curve, with the plane intersection property of a 
vertex of <&, an inflection point and a curve, with the plane intersection 
property of $, an inflectional curve. Thus we extend 1 and 2 to inflectional 
convex space curves. We use the methods of order or direct differential 
geometry (cf. [7] ) and for conformity with that theory, we argue in a real 
projective three-space P3. 

2. Directly differentiable curves. Let /?, q, . . . , L, M, . . . , and a, /?, . . . 
denote the points, lines and planes of P3 respectively. Let (/?, L, a, . . . ) 
denote the flat of P3 spanned by /?, L, a, . . . . We assume that P3 is 
topologized in the standard way. 

Let T c P3 be an oriented line. For t0 ¥= t\ in 7, let [/0, t\] and (r(), t\) 
denote respectively the closed and open oriented segments of Twith initial 
point t0 and terminal point t\. We put 

[*o, tx) = [*o, *i]\{*i} and (/o, tx] = [*0* *i]\{'o}. 

Let (7(0 = (70, t\) be a neighbourhood of t in r . We set 

U~(t) = (70, /), t / + ( 0 = (/, r,) and t/ '(0 = ^ " ( 0 u ^ + ( 0 -

A curve T is a continuous map from Tinto P3. A line, denoted by T\(t), 
is the tangent of T at t if 

r,(o = îim <i\o, r(o > 

and a plane, denoted by F2(/), is the osculating plane of Y at / if 

r2(o ^ iim (r^o, r(o >. 
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For / G T, we also use the notation r 0 ( 0 = T(t) and T3(t) = P\ 11 Jt Q T 
is a segment, we call T/jr a subarc of T. For convenience, we identify T(T) 
with T and Y(Jt) with 17^. 

We note that contrary to the terminology in [9]; a point T(t) is simple if 
r ( / ) ^ T(s) for 5 G r \ { / } and a curve T is simple if it has no multiple 
(self-intersection) points. 

A {directly differentiable) space curve is a curve T with the property that 
T\(t) and T2(0 exist for each / G r and any plane meets T at a finite 
number of points. A (directly differ enti able) plane curve is a curve T with 
the property that T(T) is contained in a plane, T\(t) exists for each t G T 
and any line meets T at a finite number of points. 

3. Space curves. Let T(Jt) be a subarc of a space curve T:T —> P3. If 

k = sup \a n T(Jt) |, 
acP 3 

we say that the order of T ( ^ ) is k and write /c = ord T(Jt). Then the order 
of a point T(t), ord T(7), is the minimum order that a neighbourhood of 
T(t) may possess. Clearly ord T(t) ^ 3. We say that T(t) is ordinary if ord 
T(/) = 3, otherwise, T(t) is singular. We say that T(/) is elementary if there 
exist T(U~(t)) and r (£ /+(0) , both of order three. Finally, T(Jf) is 
ordinary [elementary] if each of its points is ordinary [elementary]. 

As a plane a meets T at a finite number of points, we note as in Section 
1 that a supports or cuts T at /. For / G T, let 

Si(t) = {a c P3|a n r / + 1 ( r ) = Tz(0 }, / = 0, 1, 2. 

It is known that either all a G £,(/) support r at t or all a G 5/(0 cut T at 
/. We thus assign a characteristic (#o(0> ^i(0^ #2(0 ) t 0 ^ (0 [denoted by 
T(t) = (a0(t)y a\{t), 02(0)] by taking ^ ( / ) = 1 or 2 and requiring that 
0o(O+ • • • + #/(0 be even if and only if a G Sj(t) supports T at t\ i = 0, 
1, 2. If r ( 0 = (1, 1, 1) [ I \ 0 = (1, 1, 2) ], we say that T(0 is a regular 
[inflection] point. Then a subarc is regular [inflectional] if each of its points 
is a regular [regular or inflection] point. 

Finally, T is an even [odd] curve if any plane of P3 cuts T at an even 
[odd] number of points. Since T is closed in P3

y T is trivially odd or 
even. 

Let Y(Ji) be an open subarc of order three. It is well known that Y(Jt) 
is regular, T2(0 n Y(Ji) = {T(t)} for t G Jt and both Yx{t) and T2(0 
depend continuously on t G Jt. Hence an elementary space curve 
possesses continuous tangents and osculating planes. We also note the 
following properties of an elementary space curve T; cf. [7]: 

3. A regular point is ordinary. 
4. For any;? G P3 and T(t) G T, there is an U\t) such that/? £ T2(s) 

for s G t/'(0-
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5. If T is inflectional, then T possesses an even [odd] number of 
inflections if T is even [odd]. 

4. Plane curves. Let T:T-^ fi be a plane curve. By replacing "planes in 
P 3 " with "lines in /?" in Section 3; we define the order of a subarc (point), 
ordinary and elementary points (subarcs) and even (odd) curves. (A line L c 
fi supports [cuts] T at t if T lies [does not lie] on one side of L near r ( / ) ). 
Thus a point T(t) is ordinary if ord T(t) = 2 and elementary if there exist 
T(U~(t) ) and T(U+(t) ), both of order two.) 

Let 

S(t) = {L c fi\L n r,(0 = {ixo}}. 

Again either all L <E S(t) support T at / or all L <E S(t) cut T at / and 

r ( 0 ES (aç)(t\ax(t)) 

where at(t) = 1 or 2 and a$(t) [aç>(t) + a\(t)]is even if and only if L <E 
S(t) [T\(t) ] supports T at t. Thus T possesses four types of points: (1, 1), 
regular; (1, 2), inflection; (2, 1) cusp; and (2, 2), Z?etf/c. We define regular 
and inflectional subarcs as in Section 3 and again note that an ordinary 
point is regular. 

The index, ind T(Jf), of a subarc Y(Jt) is the minimum number of 
points of Y(Jt) which can lie on any line of fi. Thus ind T > 0 if T is odd. 
A pointp is strong if there exist s ^ t in T such that/? = T(s) = T(t) and 
ind T[s, t] = 0; in addition,/? is doubly strong if p = T(s) = T(t), ind T[s, 
/] = 0 and/? G T(t, s) imply that ind T[/, s] > 0. 

Let n\(T), n2(T), n3(T) and s(T) be the number of inflections, cusps, 
beaks and strong points of T respectively. We note the following 
properties of a plane curve T. 

6. If TO, t) is regular and simple then ind T[s, t] = 0. ( [2], 3.14) 
7. Let T(s, t) be regular and simple. If T(s) ¥= T(t) and 

(T(s), T(t) > n T(s, 0 = <D, 

then ord T<>, /) = 2. ([2], 3.13) 
8. If T is odd then n(T) = nx(T) + n2(T) + n3(T) ^ 1. ( [4], pp. 1-7) 
9. If T is a simple odd inflectional curve then n\(T) = 3. ( [5] ) 
10. Let T be an even elementary curve such that ind T > 0 and every 

strong point is doubly strong. Then 

nx(T) + 2n2(T) + n3(T) + 2s(T) g 4. 

( [2], 3.2 and [3], 3) 

5. Projection. Let T: T —» P3 be a space curve, Z? a point and /? a plane; Z? 
£ £. For t <= 7, let 
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11. r?(o 
(b, T,(t) > n p , if b £ T,(t) 

r,+1(0 n /? , if/? e r,-(0; / = 0, 1. 

(«o(0, fli(O) if b « r2(0 
(flo(0, «i(0 + a2(0 ) if 6 e r2(0\r,(o 
(flo(0 + «](?), a2(0 ) if b G r,(/)\r(r) 
(ai(0, «2(0 ) if 6 = r(o. 

Then (cf. [7] ) the map Yh:T-> fi such that r* (0 = TQ(0 , t e 7, is a 
plane curve with T^r), the tangent of Yh at r. We call Yh the projection of Y 
from b on ft. Furthermore if 

r( / ) = (a0(t), fl,(0, a2(t) ) and T*(0 = (ah
0(t), a\{t) ) for / <E 7, 

then mod 2 

12. (4(0,^(0) = 

13. If T is inflectional and b <£ i X ( 0 \ r ( 0 for / e T then Yh is 
inflectional. 

14. If T is inflectional then 1^(0 is non-regular only if b e T2(0-
15. If T(0 is elementary then Yh{t) is elementary. ( [7], 5.2.2) 
We note that though in the preceding we assumed that b £ /?, the 

results 12 to 15 are in fact independent of /?. 

6. Inflectional convex space curves. Let &t be a compact subset of P3 

disjoint from a plane fi in P3. Then $ is a bounded subset of the affine 
space A3 = P3\fi and we denote by H(3$), the convex hull of 0t in A3. 

Let fi a P3 and T : r - ^ /I3 be a space curve with 5 = H(Y) in ^43. Then 
T is convex if T lies on the boundary d(B) of B and |L Pi T| = 2 for any 
line L. In this section, we assume that 

16. T is an inflectional convex space curve with continuous Yj(i = 1 , 2 ) 
and possessing at most one double point as a multiple point. 

We note that /? n Y = 0 implies that T is even. Let Y(t) e T. Since T(0 
e 3(5), there is a supporting plane 77(0 of B through Y(t). Since T is 
inflectional and ir(t) also supports Y at /, we have T](0 c ^(0- Clearly B 
is contained in one of the two closed half-spaces of P3 bounded by fi and 
77(0-

17. LEMMA. Let Y(t) e T. Then 
1. //(77(0 n T) = 77(0 H 5, 
2. r ( 0 £ mW(0(77(0 n B), 
3. (T(r), I » > n (77(0 n B) = ^ for Y(r) * Y(s) in Y\ir(t) 

and 
4. L,(0 supports TT(0 H B in ir(t). 
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Proof. 1. Immediate since B = H(T). 
2. Immediate since T n int B = $ and 5 is a convex body. 
3. Let the line L = (T(r), T(s) ) meet ir(t) n B at the point/? and set L* 

= L Pi B. Since one of /?, T(r) and T(^) lies in intz*L* and <n(t), 7r(r) and 
7r(s) are supporting planes of B; ir{t) n L* = {/?} implies that say TO) <E 
intL*L* and hence L c TT{S). 

Since |L n T\ ^ 2, /? £ T. Then 

\ir{s) n r | < oo and H(ir(s) n T) = TT(J) n 5 

imply that/? lies in the relative interior of a line segment in ir(s) n B. But 
then 

Y(s) G i n t ^ ) ^ ) n 5 ) ; 

a contradiction. 
4. Suppose that 

r , ( / ) H int7r(0(77(0 n 5 ) * <D 

and choose a point b G r\(7r(7) U T2(t) ). Then clearly /? ¥= T(s) for 5 near 
/ in T. Let T^ be the projection of T from b on 77(7). Then 

r,(o = r?(o = iim <r*(o, r ^ ) > 

and by 14, T^(/) is regular. Since 7r(/) PI B is a polygon, 

r?(0 n mt^K/) n 5) * $ 
clearly implies that 

r/?(.) G int^OKO n 5) 
for s near /. But then Tb(s) = (b, T(s) > n TT(/) and 6 G r\v7(/) contradict 
17.3. 

18. LEMMA. The set ext 5 of the extreme points of B is equal to T. 

Proof Since p G ext B provided p does not lie in the relative interior of 
any line segment contained in B and T is convex, the claim follows by 17.1 
and 17.2. 

Let Th be the projection of T from b on /?, b G B. 

19. LEMMA. Let b G B\T. 

1. Then Tb is even, ind Th > 0, sfT^) ^ s(T) = 1 #/7<i every strong point 
of T w doubly strong. 

2. If n(Th) < 00 (c/ 8) //zew T^ is elementary. 

Proof 1. Since b £ V, every intersection of T with a plane a through b is 
projected into an intersection of Th with a Pi /?. As T is even and b G 
H(T), this implies that T^ is even and ind Th > 0. 
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Let Th(r) = Th(s) for r ± s in T. Then b £ Y implies that 

(6, Y(r) > = (ft, r(5) ). 

If T(r) ± r(5) then T = ext 5 yields that 6 lies in the relative interior of 
(T(r), T(s) ) f l £ , and thus any plane through b meets both T[r, 5] and 
T[s, r]. Therefore 

ind Th[r, s] • ind Th[s, r] > 0 

and r V ) is not strong. Up = Y(r) = Y(s) then/? ¥= Y(t) for / e 7 \{r , s} 
from 16. Thus Th(r) is the only possible strong point of Yh and the 
preceding readily yields that Yh(r) is then doubly strong. 

2. Let / e T. Since è £ T, there is an a through b and an U(t) such 
that 

a H r ( £ / ( 0 ) = O. 

By 16, we may assume that T(U(t) ) is simple. Then a Pi T(£/(0 ) = 0 and 
T = ext B imply that 

b £ (Y(r), T(» ) for {r, s} c £/(/) 

and thus Tft (£/(/) ) is simple. 
Let n(Yb) < 00. Then we may assume that Yh(U~(t)) U T^IT^ / ) ) is 

regular. Let r e £/"(*) and L = (Yh(t), Th(r) >. Since 

\(b, T(/), r ( r ) ) n T| < 00, 

\L n Tb\ < 00 and there is an r' e [r, /) such that 

T V ) e L and L n T V , 0 = $. 

Thus ord T^r', /) = 2 by 7. Similarly, there is an s' G £/+(0 such that 

ord r ^ / , ^') = 2 

and thus Tb(/) is elementary. 

20. LEMMA. Let b = T(t). 

1. 77ze/7 T^ is odd [even] if b is a simple [double] point. 
2. If Y is simple and Y\(t) n Y = {Y(t) } then Yh is simple. 

Proof 1. Let L c ft cut Yb at « points of T. Again we note that if b ¥= 
Y(r) then L cuts Yh at r if and only if (b, L) cuts Y at r. 

If Y(t) is simple, we choose L so that T^O £ L. Then (è, L> cuts T at « 
points of r \ { f } and by 11, 

<z>, L> n r ^ o = {r(o}. 

Since Y(t) = (1, 1, 1) or Y(t) = (1, 1, 2), </>, L> cuts Y at f. Thus (/?, L> 
cuts r altogether at n + 1 points and since Y is even, AÏ is odd. 
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If T(t) = T(t'), t ^ t\ we choose L so that 

L n {r*(0, Tb(f) } = $. 

As in the preceding, (b, L) cuts r at n points of r \{f , /'} as well as at / 
and t'. Thus « 4- 2 is even. 

2. Let r be simple and T{(t) D T = {T(t) }. Then the convexity of T 
implies that Th(r) * Tb(s) for r ¥> s in T\{t} and 11 implies that Th(t) ¥= 
Th(r) for r e T\{t}. 

21. THEOREM. Le/ T:!1 —» P3 Z>e an inflectional convex space curve with 
continuous Tj(i = 1 , 2 ) and possessing at most one double point as a multiple 
point. Let 

b e B = H(T), 5* = U (r{(t) 0 B) and 
t<ET 

o(b) = { / e r i i G r2(o}. 

1. Ifb e B\B* then \0(b) | è 4[2] wAe/2 T w [« not] simple. 
2. 7/6 G 5* f/ie/2 |0(ft) | =" 2[l] when T [is not] simple. 
3. Let b e 5* = R 
a) 7/T w 5/wpfe rÂw |0(6) | ^ 3[4] w/ie« è w [is not] an inflection. 
b) 7/T is not simple and b is not an inflection then \0(b)\ = 2. 

Proof. Since T is inflectional, 14 implies that Th(t) is non-regular only if 
b G r2( /) . Hence \0(b) | ^ n(Tb) and we may assume that n(Tb) < oo. 

1. Let b G B\B*. Since T Q B*9 Tb is an even elementary curve such 
that ind Tb > 0, s(Tb) ^ s(T) ^ 1 and every strong point is doubly strong 
by 19. Since b £ T}(t) for * e T, Tb is inflectional by 13. Thus 

wi(r*) + 2s(Tb) ^ 4 

by 10 and 

| 0 ( è ) | â 4 - 2$(r*) g 2 

by the preceding. Since ^(T^) = 1 only if T is not simple, the claim 
follows. 

2. Let 6 <E 2?*. Then |0(Z>)| ^ 1 and we may assume that T is simple. If 
b £ T then s(T) = 0, 19 and 10 imply that 

nx(T
b) + 2«2(rft) 4- n3(T

b) ^ 4. 

Hence \0(b)\ ^ «(T6) =• 2. 
Let b = T(t) e T. Then we may assume that b £ T\(r) for r <E r \ { 7 ) 

and hence Tb is inflectional by 13. By 20.1, Tb is an odd curve. If Ti(/) n T 
= {T(0 } then T^ is simple by 20.2 and 

|0(Ô)I s *(r*) = *,(r*) ^ 3 
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by 9. Let \T{(t) n T\ ^ 1. Then T^t) meets T at exactly one point T(r) ¥= 
T(t) and by 11, Tb(r) = Tb(t) is the only multiple point of Th. Since Tb is 
odd, one of the subarcs Tb[r, t] and Tb[t, r], say Tb[r, /], must also be odd. 
Hence 

ind r*[r, /] > 0. 

Since Tb(r, t) is simple, 6 implies that Tb(r, t) contains a non-regular point 
Tb(s). Thus b = T(t) e r2( j) by 14 and \0(b)\ ^ 2. 

3. We note that B* = T implies that 

|T2(r) O T| = 1 for r e T. 

Hence b = T{t) and 13 imply that Tb is inflectional. If T is simple then Tb 

is simple and odd by 20. Hence 

\0(b)\ ^ n(Tb) = n^T17) ^ 3 

by 9. If in addition, b = T(t) = (1, 1, 1), then Tb(t) = (1, 1) by 12 and 

\0(b)\ ^ 1 + nx{T) â 4. 

If T is not simple then \0(b)\ ^ 2 when b is a double point. If b= T(t) is 
simple and regular then again 

Tb(t) = (1, 1) and \0(b)\ S 1 + nx(T
b). 

Since Tb is odd by 20.1, nl(T
b) ^ 1 by 8 and \0(b)\ ^ 2. 

We observe that 21 is a generalization of 1 and 2a) since B* = Y when T 
is spherical. It is also clear that T need not be spherical. For example: let 
C be a non-degenerate quadric cone with vertex v and let T c C\{v} be a 
space curve meeting any line through v in at most two points. 

7. A four-vertex theorem. Unless stated otherwise, we assume that T.T 
—» P3 is an elementary inflectional space curve with exactly n inflections, 
/? n T - $ and B = H(T). Then n is even by 5. 

Let / e T. Since |T2(0 n T| < oo, there is an U\t) = [/"(*) U [/+(*) 
such that 

r2(/> n r(i/(/)) = *. 
Let Bt [Bt ] be the connected component of B\T2(t) which contains 

r(t/-(0)[r(f/+(0)].Thus 
B = B~ U 5 + U (T2(0 n B) and 

5," n £ + = $ if T(0 = (1, 1, 1) and 

B'= Br if T(0 = (1, 1,2). 
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Let b G B and / G T. Set 

4 = {t Œ T\b Œ T2(t) or T(t) = (1, 1 ,2)}, 

T; = {t G 7 \ 7 > G 5"} and Tf= {t G L \ 7 > G /?j}. 

We call an element of ih, T^ and T^ a fc° point, b~ point and Z?+ /?o//i/ 
respectively. Clearly the three sets are mutually disjoint and 

T = rt U TV u T£ 

22. LEMMA. .For & G B, T^ and T^ are open in T, Th is closed in L, 

cl 7 7 = 77U th and cl 7£" = T^U 7^. 

Proof. Since T contains only « inflections and r 2 is continuous, 7), is 
closed in T. 

If / £ 7), then T(/) is ordinary by 3 and there exists an L(7) such 
that 

ord T(U(t)) = 3. 

By 4, we may assume that b £ T2(s) for 5 G [/'(/) and thus 

f/(0 c Th U ?£ 

Since ord I \£ / (0 ) = 3, r 2 <» meets T(U(t) ) exactly at T(s) for 5 G U(t) 
and therefore i?~ and B^ depend continuously on s G U(t). But then 6 G 
7?r [i?r ] clearly implies that b ^ Bs [Bs ] for s near f. 

COROLLARY. IfT(r, s) s regular and b £ T2(t) for t G (r. S) then either 
(r, s) c 77 or (r, s) C 7^+. 

Proof. This is immediate since (r, s) is connected, 7^ and 7^" are open in 
T and (r, s ) c 7£~ U LJ. 

23. LEMMA. Le/ è G T2(t) n £; T(0 = (1, 1, 1). 77ZÉ?H f/zere exists a U(t) 
such that 

U~(t) c T£ and U+(t) c 7^ 

Proof Since T(/) is elementary, there is a U(t) such that 

r 2 ( 0 O T(U'(t)) = O 

and 

ord r<L/"(7n = ord m / + f m = 3. 

By 4, we may assume that neither b nor 1(f) lie on r2(s) tor s G U\Î). Let 
T^ be the projection of V from b on /}. By 15, Tb(t) is elementary and hence 
we may also assume that 

ord TD(U~(t) ) = ord T°(U^(t) ) = 2. 
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Let s G U~(t) = (r, /) . Since ord T(r, 0 = 3 and T(t) £ T2(s), we 
obtain that 

r2(5) n r(r, *] = {T(s)}. 

Hence T(r, s) c # 7 , r<>, /) c jB/and s e 7 ^ . By 22 Corollary, f/"(/) 
c TYU) and hence we may assume that b ¥^ T(t). 

Since b <£ T2(s) and Tfs) = (1, 1, 1), T is supported by the plane 

as = (b, Tx(s) > * r2(j) 

at 5. Hence Th is supported by the line Tx(s) = fi D as at s. Since 

o r d r f t ( l / " ( 0 ) - 2, 

this implies that 

i?(s) n r*(i/-(0) = {rV)> 
and therefore 

a5 O r (£ /" ( / ) ) = {T(s)}. 

Let Z?5 denote the connected component of B\as containing 
T(U~(t) )\T(s). Then we observe that 

T(r, 5) c B~n Bs and r(s, 0 c B+n Bs. 

Suppose that s, and hence U~(t), is contained in T^. Let 7r(s) be the 
supporting plane of B at s. Then T^s) c ir(s) and since T(s) == (1, 1, 1), 
7T(S) =£ T2(s). The convex set B* lies in the closed half-space of P3 

bounded by T2(s) and 7T(S) which contains T(s, t). If as is also a supporting 
plane of B at T(s), then clearly 

B+ c Bs = B\as. 

Otherwise, b e B~ implies that the preceding half-space is contained in 
the closed half-space of P3 bounded by as and TT(S) which contains T(s, t). 
But then again 2?5

+ c Bs. 
Let s tend to t in U~(t). Since T2(s), T^s) and T ^ s ) all depend 

continuously on s, b e T2(0 implies that both T2(s) and as tend to T2(/). 
Then the definition of Bs and T(r, s) c Bs yield that 2?5 tends to 2?r~~. Since 
T(0 = (1, 1, 1) we note that 5+tends to B$ B? ¥* $ and £ r

+n 5," = $. 
But then B^cz i?5 and the preceding imply that 

B? n Bi = B? * $; 

a contradiction. 
Therefore U~(t) c 7^ and by a similar argument, £/+(0 c 7^ 

24. LEMMA. Le/ r(r0, fi) be regular. Then 

T2(r) n T2(>) n B = <t>for r =£ s in [t0, t\]. 
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Proof. Suppose that there exist r < s (r preceding s) in (70, t\) such that 
there is a point 

b G T2(r) n r 2 0 ) n B. 

By 4, it follows that there are only a finite number of points / G (70, t\) 
such that b G T2(t) and hence we may assume that b £ T2(t) for t G (r, s). 
Then (r, s) c T^ or (r, s) c T^ by 22 Corollary. But 23 implies that there 
exist 

U+{r) c (r, s) n Tb and £ T » c (r, s) n 7^+; 

a contradiction. 
The lemma now readily follows by the preceding and the continuity of 

T2 if r(/0) or T(t\) are inflections. 

25. LEMMA. Let T(t0, t\) be regular such that T(tj) is an inflection and 

v2(tl) n r = {ixo}, / = o, l. 
Let b G #\{T(7o), T(t\) }. Then there is exactly one s G (tç, t\) such that b 
e T2(s). 

Proof By 24, there is at most one s G (f0, ^i) such that b G T2(s). 
Since B = //(T), |r2(f/) n T| = 1 clearly implies that T2(tl) is a 

supporting plane of B and hence 

/?,; = < = £ \ r 2 ( 0 ; 1 = 0 , 1 . 

Let s G (f0, /1). Since T2(s) n T[/0, *i] = {T^) } by 24, we obtain that 

T[/0, J ) c B~ and T(>, fj c B + 

By the continuity of T2(s), it follows that 

# / tends to £ ~ 

as s tends to t0 and 

5 7 tends to B* 

as i- tends to t\. Thus & £ T2(/0) U r2(^i) yields that Z> G Z?V [#5 ] for s 
near /0[^] in (70, /]). But then 

(*o, r,) c jy , (*0, *,) c 7*+ 

and 22 Corollary imply that b G T ^ S ) for some s G (/0, /}). 

26. THEOREM. Le/ T:T —» P Z>e a« elementary convex space curve with 
exactly n inflections. Let b ^ B = H(T) and O(b) = {t G T|/? G T2(7) }. 
Then 

1. | 0 ( è ) | ^ « and 
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2. if the osculating plane at each inflection point does not meet T 
elsewhere, 

\0(b) 
if b is not an inflection 

1 if b is a simple inflection. 

Proof. Let T(t\\ T(t2), . . . , T(t„) be the inflection points of T; tx < t2 

< . . . < tn < t\. Then T(th tt+\) is regular, 

r = ura^/+1) / = l 

and by 24, \0(b) | ^ n. 
Let |r2(/z) O T| = 1 for each /'. If b is not an inflection then \0(b)\ = n 

by 25. If b = T(ti) is simple then 

0(b) n [ti-uti+x] = {tt} 

by 24 and 

0(b) n (tl + ! , / ,-_,) = w - 2 

by 25. 

THEOREM. A simple elementary inflectional convex space curve possesses 
at least four inflections. 

Proof Apply 21 and 26. 
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