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Abstract. Solar coronal heating is a complex problem due to the variety of scales and physical
phenomena involved, and intricacy of “boundary conditions”. Lattice models and self-organized
criticality provide means to model phenomenologically some of the physics involved over a wide
range of scales, and reproduce certain statistical features of solar flares. Furthermore, these
models offer a basis for the study of Parker’s hypothesis of coronal heating by nanoflares. We
provide a short review of this approach pioneered by Lu & Hamilton (1991) and related more
recent works involving lattice models.
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1. Coronal heating and solar flares
The heating of solar corona still poses a number of fundamental questions about its

detailed mechanisms which are difficult to answer by theory and direct observations (see
Klimchuk 2006, Walsh & Ireland 2003 for recent reviews).

Parker (1988) proposed that the solar corona could be heated by the dissipation at
many small-scale tangential discontinuities arising spontaneously in the coronal magnetic
fields braided and twisted by random photospheric footpoint motions. These events are
related to a magnetic energy release, sudden changes of magnetic field topology, heating
of plasma and acceleration of particles to high energies. Parker has called this elementary
energy release events ‘nanoflares’. This idea stimulated the intensive search of observa-
tional signatures of microflares and nanoflares as well as many theoretical developments
on the contribution of small scales to energy dissipation in the solar corona.

Microflares, were first detected in soft X-rays in a balloon experiment by Lin et al.
1984. The development of new instrumentation allowed performing the multi-wave satel-
lite and ground based high-resolution observations of smaller-scale (about a thousand
of kms) lower energy phenomena. They were observed in active regions but also in the
quiet regions of the Sun and in coronal holes (Shimizu et al. 1994). Soft X-ray observa-
tions (Benz et al. 1997) and EUV observations (Harrison 1997) have revealed enhanced
emission and thus intense heating above the magnetic network borders. A similar phe-
nomenon that forms small X-ray jets at the limb was reported by Koutchmy et al. (1997).
Berghmans et al. (1998) and Benz et al. (1998) have found the heating impulsive events
exhibiting a lower level of fluctuations above the magnetic cell interiors. The number of
observed events increases with the sensitivity.

The distribution of solar flares intensities in soft X-rays or EUV, have been thoroughly
investigated for quite a long time being in particular important for the coronal heating
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problem (Hudson, 1991). An intriguing experimental fact is that the frequency distribu-
tions of solar flare energy, peak rate and several other characteristics exhibit power-law
dependencies (Lin et al. 1984, Datlowe et al. 1974, Dennis, 1985, Biesecker et al. 1994) in
quite large range of intensities covering several decades down to the smallest detectable
energies (Aschwanden et al. 2000). For regular flares that occur mainly in active regions,
Crosby et al. (1993) have found that the total energy in the flare electrons observed in
hard X-ray bremsstrahlung has distribution f(E) ∼ Eα with index α = −1.53 ± 0.02.
But the energy supplied by the flares in the active regions is not sufficient for the corona
heating. Recent space instruments demonstrate that for smaller energies PDF depen-
dence upon the energy has also a power law distribution. Krucker & Benz (1998) have
found from the Yohkoh/SXT in X-Ray and from SOHO/EUV observations the PDF de-
pendence upon the energy has a power law distribution in the energy range 1024 − 1026

ergs with the index about −2.59. Aschwanden et al. (2000) and Parnell & Jupp (2000)
from TRACE/EUV observations have found also power law with significantly different
value of this index −1.80. Found from distribution integral energy can be enough to
explain the coronal temperature under condition of the same dependencies on the un-
resolved yet nanoflares energy up to 3 × 1023 erg (Krucker & Benz 1998). Difference of
indexes however stress the question on which flaring energetic scales the heating mostly
happens.

The found power-laws suggests a certain scale-invariance between flares, and is also
compatible with Parker’s hypothesis that large flares could consist of a multitude of
nanoflares. Such a point of view therefore suggests an “organization” or cooperation
between flares. Such phenomena are difficult to approach theoretically or numerically
with traditional plasma physics models due to the very wide range of spatial and temporal
scales involved, which makes some coarse-grained description still necessary.

2. Self-organized criticality and solar flares
2.1. Self-organized criticality

Bak, Tang & Wiesenfeld (1987) (hereafter BTW) have introduced Self-Organized Crit-
icality (SOC) as a unifying mechanism providing scale-invariant fluctuations in many
non-equilibrium (driven) complex systems. In analogy with critical phase transitions,
SOC systems develop a state with long-range correlations (power-law decaying correla-
tion functions), but without requiring the fine tuning of an external parameter such as
the temperature. Certain general ingredients are common to many systems exhibiting
SOC, and even though the precise necessary conditions for SOC are not fully understood
(Jensen 1998; Sornette 2000):
• a large number of ‘elements’ or ‘degrees of freedom’,
• the evolution of each degree of freedom is prescribed by the interactions with its

neighbors rather than by its own intrinsic dynamics,
• the interaction mechanism involves a small number of elements (such as nearest

neighbors) and is non-linear (often threshold-dependent),
• the system is weakly perturbed (driven) on a time scale much greater than that of

the relaxation mechanism,
• (possibly) the relaxation mechanism is conservative.

Under such conditions SOC establishes as a state where the slow perturbations imposed to
the system can trigger responses of arbitrary size (avalanches in the sandpile analogy orig-
inally used by BTW) whose observable parameters (e.g. size or duration) obey power-law
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statistics indicative of scale-invariance. Thanks to the slow driving of the system, the sys-
tem’s responses are usually well separated in time and exhibit ‘bursty’ time series.

2.2. The Lu and Hamilton model

Lu & Hamilton (1991) have pointed out interesting parallels between solar flares and
SOC (see also Lu et al. 1993 and Lu 1995). Solar flares are localized and bursty energy
release events in response to slow external stressing (footpoint motion by photospheric
convection). In the spirit of Parker’s conjecture, they can be described as an ensemble
of many elementary small-scale dissipative events (nanoflares), possibly locally triggered
one by another in analogy to an avalanche. These relaxation events occur on time scales
much smaller than the buildup of the unstable situation which they originate from, and
are believed to depend on a threshold. And finally, solar-flare peak-fluxes (count rate), in-
tegrated fluxes and duration follow power-law statistics with scaling factors independent
of features such as the solar cycle or active region considered.

Elaborating on this parallel, Lu & Hamilton (1991) and Lu et al. (1993) (hereafter
LH) have proposed a 3D model of solar flares quite similar to the BTW sandpile model.
A comprehensive review of this (and related) model is given by Charbonneau et al.
(2001), and we shall give here only a much briefer account. The model is defined on a
cubic lattice, representing a part of the solar corona of linear size comparable to that
of an active region. To each cell or lattice node is attributed a quantity Fi, akin to an
average magnetic field inside the cell (following Charbonneau et al. (2001), we simplify
the original model using a scalar Fi). At every ‘time step’, a perturbation is added at a
random location on the lattice, which is small compared to the instability threshold and
whose average is positive so that the source tends to slowly increase the total field in the
system. A site is considered unstable when the field ‘curvature’ exceeds a threshold

δi = Fi −
1
6

∑

nn

Fnn > δc (2.1)

where nn denotes the 6 nearest neighbors and δc > 0 is a threshold value. This instability
criteria makes the difference between Lu and Hamilton’s model and the BTW sandpile,
being not a discrete version of a gradient but rather of a second order differential opera-
tor. The difference in coupling mechanisms result into power-laws with different indices,
making the LH and BTW model fall into different ‘universality classes’ Edney et al.
(1998).

The relaxation then consists of redistributing part of the field in cell i to its neighbors

Fi → Fi −
6
7
δc, Fnn → Fnn +

1
7
δc. (2.2)

As long as there are unstable sites on the lattice, the source is switched off (the relax-
ation being supposed to be much faster than the source’s perturbation), and all unstable
sites are relaxed simultaneously. The relaxation iteration is repeated until no more un-
stable sites are present on the grid, and the source is switched on again. The relaxation
process of eq. 2.2 conserves

∑
i F on the lattice. Therefore, the field can only be lost

at boundaries, depending on boundary conditions whose importance in maintaining a
global curvature over the lattice was pointed out by Galsgaard (1996). Nevertheless, the
relaxation mechanism decreases E =

∑
i F 2, which corresponds to magnetic energy if B

is interpreted as a magnetic field. On the other hand, Lu et al. (1993) have noted that
interpreting F as a vector potential A such that B = ∇×A has the advantage of ensuring
that ∇·B = 0, allows to interpret the driving as twisting magnetic field lines rather than
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increasing the magnetic field locally in the corona and the relaxation condition of eq. 2.1
as depending on a current.

Lu et al. (1993) have found that this simple model produces power-law frequency distri-
butions ranging over a few decades of various parameters associated to the ‘avalanches’,
and that these power-laws do not depend on the chosen threshold value, small modifica-
tions of the relaxation rule nor grid size for large enough grids.

2.3. Comparison with solar flare observations

Models such as the one described in the previous paragraph being much less compu-
tationally demanding than more traditional ones allow to make reliable statistics over
many flare-like relaxation events. However, comparison of these statistics with X-ray and
EUV observations of flare and microflares is far from being straightforward. As discussed
by Lu et al. (1993) and Georgoulis et al. (2001), this comparison requires for instance
to translate the model output into physical spatial/temporal scales and quantities such
as dissipated energy, and then to relate these quantities to the measured X-ray or EUV
fluxes. This involves hypotheses and non-trivial transformations which may affect the
shape of the frequency distributions (McIntosh et al. 2002, Aschwanden & Parnell 2002,
Battaglia et al. 2005).

Nevertheless, relating in a simple way the dissipated energy E from the model to an
equivalent luminosity, Lu et al. (1993) have found good agreement between frequency dis-
tributions from their model and X-ray flare observations for peak luminosity, integrated
luminosity and duration. They even argued that the exponential decay of the observed
distributions for the most luminous flares can be modeled by a finite-size grid effect and
thus can be attributed to the finite size of active regions.

These results, together with the empirical arguments that flare satisfy many of the con-
ditions met by SOC models, give strongly support the view of solar flares are relaxation
events of a self-organized system (the solar corona). This would suggest in particular that
solar flare statistics do not depend sensibly on the detailed microphysics involved in flares
nor on the driving mechanism which leads to unstable configurations. It also suggests
solar flares are very difficult to predict, since flares of arbitrary sizes might randomly be
triggered by small (possibly unobservable) perturbations.

However, this leaves a number of questions opened. First, the model is based on em-
pirical rules which are difficult to justify physically (e.g., how to interpret eq. 2.1 if F
is a magnetic field, or how to interpret F 2 as an energy if F is a vector potential). This
question is particularly important if we want to predict the scales down to which SOC
operates or is modified and build SOC-like models of coronal heating by nanoflares. One
may also ask how compatible is the weak disorder of a SOC system regularly swept by
avalanches with the long-lived structures observed in the corona. Second, it was noticed
by Wheatland et al. (1998) and Boffetta et al. (1999) that conventional avalanche models
have an exponential (Poissonian) distribution of waiting-times between events, which is
at variance with the observed waiting time distribution for solar flares which have a long
power-law like tail (Pearce et al. 1993, Crosby et al. 1998, Wheatland et al. (1998), Lepreti
et al. (2001)). Moreover, it was noted by McIntosh et al. (2002) that the projected flaring
area in the LH model has a frequency distribution flatter then observations. These two
points have triggered a large body of work which we shall now briefly (and incompletely)
summarize.
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3. Lattice models and solar flare phenomenology
3.1. Fields, lattices and model interpretations

The magnetic or vector potential fields used by Lu et al. (1993) seem to be the natural
variables for such models, given the importance of the magnetic field topology. In this
context, it is natural to investigate the ‘continuum’ limit of these models and compare
them with known partial differential equations from plasma physics.

The continuum limit of the Lu & Hamilton and comparable models was investigated
by Vassiliadis et al. (1998), Isliker et al. (1998), Liu et al. (2002). This leads to a nonlin-
ear hyperdiffusion equation which was argued by Liu et al. (2002) to be compatible with
MHD turbulent diffusivity. This view of lattice models taken as discrete version of partial
differential (MHD) equations was take further by Isliker et al. (2000), Isliker et al. (2001)
who have constructed an avalanche-like lattice model compatible with MHD equations.
Einaudi & Velli (1999) have constructed a 2D model based on externally forced reduced
MHD (RMHD) equations. This approach was extend by Buchlin et al. (2003) who stud-
ied impulsive events in a magnetic loop modeled by a set of such lattices exchanging
information through Alfvén-like fluctuations.

While taking the continuum limit, Vassiliadis et al. (1998) nevertheless associate their
2D cells to magnetic flux tubes and note that cellular automata (such as the original
BTW sandpile) and similar lattice models are intrinsically discrete and deal with finite
’macroscopic’ variables (see also the discussions in Lu et al. 1993, Einaudi & Velli 1999).
Clearly illustrating this view, Zirker & Cleveland (1993) consider as a variable the in-
ternal torsion of the flux tubes. Vlahos et al. (1995), Georgoulis & Vlahos (1996) use a
scalar magnetic field representing an average in each cell, and it was shown by Edney
et al. (1998) that scalar and vector versions of the LH-type models yield similar results.
Longcope & Noonan (2000) choose for variable currents which propagate in the grid.
Krasnoselskikh et al. (2002) consider average magnetic fields in each cell of a 2D lat-
tice and self-consistently computed currents on the cell borders satisfying Kirchoff’s law
(see also Vlahos et al. 1995, Vassiliadis et al. 1998). Although not based on a lattice,
the model of Hugues et al. (2003) consider a set of randomly moving magnetic loops.
Hamon et al. (2002) use the Olami-Feder-Christensen SOC model for earthquakes whose
variable is simply the stored energy in each cell (see also de Arcangelis et al. 2006 for
parallels between solar flare and earthquake statistics). MacKinnon et al. (1996) use a
model inspired by the Forest-Fire SOC model, and deliberately do not specify the nature
of the variable.

3.2. Coupling between elements and energy dissipation

Although energy dissipation in most models is associated to the dissipation of current
sheets in the spirit of Parker’s nanoflare model, this may not appear explicitly in the
relaxation mechanisms, depending in particular on the model interpretation. Relaxation
mechanisms take many different forms. For instance Vlahos et al. (1995) and Georgoulis
& Vlahos (1996) consider anisotropic variants of the LH instability criteria, based on
the magnetic field difference between 2 neighboring cells and redistribute the dissipated
field on all neighboring cells. This results in steeper power-laws than in the isotropic
case. MacKinnon & Macpherson (1997) have considered a non-local variant of the LH
model, where the relaxation mechanism can affect another site at a random location on
the lattice possibly via high-energy particles accelerated on the reconnection site. This
also results in different flare statistics. Krasnoselskikh et al. (2002) and Podladchikova
et al. (2002) totally dissipate currents which exceed a threshold value, and consider an
additional requirement that magnetic fields in adjacent cells have opposite directions
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forming an X-point like topology. This extra requirement also affects relaxation events
statistics.

When currents can be explicitly calculated in the model, the dissipated energy is gen-
erally calculated as the sum of the squared dissipated currents. When the magnetic field
is the main variable, the dissipated energy is calculated as the change in total magnetic
energy. It is usually from this dissipated energy that statistics for comparison with solar
flare observations are built. Anastasiadis et al. (2004) increase the sophistication of their
cellular automata model by discussing particle acceleration during the energy dissipation
process and the radiation they produce.

3.3. Driving methods
Some variants of the source were proposed, and considerable freedom is left by our
ignorance of its properties.

Georgoulis & Vlahos (1996) distribute the driver magnitude as a power-law, and show
that this can result in ‘double power-law’ flare distributions which are steeper at lower
energies and hence would better correspond to a nanoflare-heated corona. Einaudi &
Velli (1999) drive their model with large scale vortices, similarly to turbulent cascade
models which assume energy injection at large scales. A number of small-scale drivers
were considered by Krasnoselskikh et al. (2002), Podladchikova et al. (2002), which were
found to result in different large-scale structures but similar properties of the dissipated
energy.

Most importantly, the driver was found to be a key element in the waiting-time statis-
tics problem. Norman et al. (2001) use a non-stationary in time source, which allow them
to find a distribution of the waiting-time between flares nearly in power-law. Similar re-
sults are obtained by Sánchez et al. (2002) with a ‘running sandpile’ model which uses a
slow source correlated in time, allowing for overlapping avalanches. Hamon et al. (2002)
achieve this result by driving their model at a finite (non-vanishing) rate, which as they
argue breaks its SOC behavior and brings it on the ‘edge of SOC’. Podladchikova et al.
(2003a) find long power-law tails in the distribution of waiting times in their model when
driven by a turbulent-like source with a power-law k-spectrum. Fragos et al. (2004) use
a source modeled by a percolation process.

4. Conclusion
Lu & Hamilton (1991) and Lu et al. (1993) have opened a modeling approach to solar

flares based on self-organized criticality (SOC) and an analogy with Parker’s nanoflare
hypothesis. The success of the model in reproducing certain solar flare statistics as well as
its shortcomings have stimulated the appearance of number of similar lattice or cellular
automata models. These models allow to change easily the physical elements they include,
and allow detailed statistical study still beyond reach of theory or traditional numerical
simulations.

These models where able to reproduce the most remarkable statistical properties of
flares and microflares, including the power-law tails of the flare waiting time distribution
which were used by Boffetta et al. (1999) as an argument against SOC-based models.
However, to our knowledge there is no single model which is able to recover simultane-
ously all known flare statistics. It is also worth noting that comparison with experimental
data may not be straightforward. For instance, direct comparison of model outputs and
observations may require complex transformations which could modify flare statistics
(e.g. McIntosh et al. 2002, Aschwanden & Parnell 2002, Battaglia et al. 2005). Further-
more, there is some disparity in observed frequency distributions (see Achwanden &
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Parnell 2002 and references therein). This is in part due to the difficulty of separating
events from the coronal ’background’, difficulty which is increasing for smaller events
such as micro- and nano-flares. The importance of event selection technique in particular
for the waiting-time distributions was discussed by Wheatland et al. (1998), Lepreti et al.
(2001), Buchlin et al. (2005), Paczuski et al. (2005). Further discrepancy might also be
attributed to fitting techniques, making desirable the use of more systematic techniques
(e.g. Podladchikova et al. 2003).

After Lu & Hamilton, some of the lattice models have to various degrees departed
from the pure SOC concept. This was partly motivated by the need to connect purely
empirical models to more physics-based models, connection which should manifest itself
at smaller scales. Providing a finer description of small-scales is particularly important in
extrapolating flare and micro-flare behavior down to nano-flare scales in order to study
Parker’s nanoflare heating idea. SOC may be less relevant at these scales than it could be
at larger ones. It was for instance suggested that only relatively large flares (class M and
above) might exhibit SOC by Bershadskii & Sreenivasan (2003). Another departure from
pure SOC consist in considering specific properties of the source motivated to provide
non-Poissonian waiting-time statistics. This suggest that some of the events statistics
do not result from pure self-organization but reflect in part properties of the driving
mechanism, as could be for example the case in Earth’s magnetotail dynamics (Chapman
& Watkins 2001 and references therein).

The phenomenological lattice models described in this review certainly do not provide
complete model for coronal heating or solar flare statistics, and are clearly not the only
possible approach to these problems (for a general discussion see Sornette 2002, and
Klimchuk 2006, Walsh & Ireland 2003 for coronal heating). They nevertheless have met
considerable successes, and provide a rich and extensible framework for statistical studies
of impulsive in the solar corona which has not yet been fully explored.
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