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1. Introduction. Beineke and Schwenk [1] have defined the bipartite Ramsey
number R(m, n), for integers m, n ( U m ^ n ) , to be the smallest integer p such that any
2-colouring of the edges of the complete bipartite graph Kpp forces the appearance of a
monochromatic Kmn. In [1] the following results are established:

R(l,n) = 2n-1 (1.1)

R(2,n)^4n-3 (1.2)

with equality if there is a Hadamard matrix of order 2(n — 1), n odd,

i?(2,4)=13 (1.3)

R(3, n)^8n-5 (1.4)

i?(3, n)2»8n-7 (1.5)

if there is a Hadamard matrix of order 4(n — 1),

11(3,3) = 17. (1.6)

On the basis of this evidence, Beineke and Schwenk formulated the conjecture

R(m, n) = 2 m (n - l ) + l. (1.7)

In the present note, we strengthen (1.4) to

U(3 ,n )«8n -7 , (1.8)

thus establishing equality in (1.5). In particular, we show that

U(3,4) = 25 (1.9)

HO, 5) = 33, (1.10)

thus solving two specific problems listed by Harary [5]. Further, we show that (1.7) is false
in general by providing a number of counter-examples.

An extension of the Beineke-Schwenk problem, which has been mentioned by Hales
and Jewett [4] and by Guy [3], is the determination of those ordered pairs (x, y) such that
in any 2-colouring of the edges of Kxy, some Kmn, with the m vertices a subset of the x
and the n vertices a subset of the y, is monochromatic. We write

(x, y) -> (m, n)

Glasgow Math. J. 19 (1978) 13-26.
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14 ROBERT W. IRVING

to denote the truth of the latter statement and

(x, y) -A (m, n)

to denote its falsity.
Guy [3] reports that S. Niven has determined some of those pairs (x, y) for which

(x, y) -> (m, n) in the cases (m, n) = (2,2), (2, 3), (2,4). In §4 of the present note, we shall
investigate some properties of the symbol ->, determine precisely those (x, y) for which
(x, y) -»(m, n) in the cases (m, n) = (2, 2), (2, 3), (2,4), and we solve most of the
corresponding problem for (m, n) = (3, 3).

The corresponding extremal problem, a special case of which was first posed by
Zarankiewicz [6], asks for the smallest integer Z = Z(x, y; m, n) such that any Z-edge
subgraph of Kxy contains Kmn with the m vertices a subset of the x and the n vertices a
subset of the y. It seems appropriate to refer to the numbers Z(x, y; m,n) as the
Zarankiewicz numbers. Upper and lower bounds for these numbers have been given, and
for small values of the parameters many exact values are known; see [3] for a comprehen-
sive summary of results and a list of references.

The connection between the Ramsey problem and the extremal problem is obvious
and is stated in the following proposition.

PROPOSITION 1.1. Z(x, y; m, n) =£ [|xy] implies (x, y) -» (m, n), where [p] denotes the
smallest integer not less than p.

Hence any method which gives an upper bound for Z(x, y;m, n) also yields informa-
tion about those (x, y) for which (x, y) -» (m, n), and in the special case x = y gives an
upper bound for R(m, n). We shall pursue this approach in §3.

2. An upper bound for R(3, n).

THEOREM 2.1. R(3, n ) « 8 n - 7 .

Proof. Let A, B denote the two (8n-7)-sets into which the vertex set of K"8n_7 8n_7 is
naturally partitioned. Suppose that the edges of K8n_7fin_7

 a r e coloured in two colours,
red and green, say. We have to show that there is either

(i) a subgraph K3n with the 3 vertices a subset of A and the n vertices a subset of B,
with all edges the same colour, henceforth referred to as a monochromatic K3 „, or

(ii) a subgraph KXn with the 3 vertices a subset of B and the n vertices a subset of A,
with all edges the same colour, henceforth referred to as a monochromatic Kn3.

For a vertex set {vu v2, • • • ,ur}g A(resp. B), define stR(vuv2>.. .,vr) =
{ueB(resp. A): edges uvu uv2, • • •, uvr all red}, stG(vuv2,... ,vr) = {ueB(res\). A):
edges uvu uv2,... ,uvr all green}.

Case (i). No vertex of K8n_78n_7 has as many as 4 n - 2 incident edges of any one
colour.

Denote by R the red-coloured subgraph of ^8n_7>8n_7 and assume, without loss of
generality, that there are more red edges than green edges. Let A = Aj U A2 and B =
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A BIPARTITE RAMSEY PROBLEM 15

Bl\JB2 where A^,BX consist of vertices of degree An — 3 in R and A2,B2 consist of
vertices of degree 4 n - 4 in R.

Label the vertices in A ux, u2, • • •, »8n-7> with dR{u^ dR{u2)^ ... s= dR(u8n_7), and
the vertices in B vx, v2,..., U8B_7, with dniv^dj^v^ ... ^dR(van_7), where dR(u),
dR(v) denote the degrees in R of the vertices u, v. Then A\ = {u,, u 2 , . . . , u4n_3}s Aj,
B', ={«!, v2,..., u4l,_3}£.Bi. We claim that there is a vertex u of A\ such that

\stR(u)nB\\^n + l. (2.1)

For otherwise, number of red edges between A\ and B\^n(4n-3). Therefore, number
of red edges between A', and B\B'15=(3n-3)(4n-3). Therefore, number of red edges
between A\A'i and B\B'l^(n — l)(4n — 3). Therefore, number of green edges between
A\A\ and B\B',3=(12n-13)(n-l). Now we count the members of the set S = {u, v, v',
D":ueA\A;, v, v', v"eB\B[, uv, uv', uv" all green}. Since |A\A',| = 4n -4 , and since
\S\ will be minimised when the vertices of A\A\ all have green degree as nearly equal as
possible, we find

• (

(12n-13)(n-lX
4 n - 4

where the generalised binomial coefficient (3) is defined by (j) = gx(x-l)(x-2) for all
x € U. Hence

= (n — 1). number of such triples v, v', v",

and so there is a green Kn3. So (2.1) is established.
Now (2.1) implies that the number of red paths of length 2 originating at u is at least

(n + l)(4n-4) + (3n-4)(4n-5) = 16n2-31n + 16 and, since (2n-2)(8n -8) =
16n2-32n + 16, either there is a vertex u'eA such that |stR(u, u')\»2n, or there are n
vertices uit> ui2, . . . ,« ,_eA such that |stR(u, uj()| s= In — 1 (7 = 1, 2 , . . . , n). In the first
case, the number of red edges connecting members of stR(u, u') to members of A\{u, u'}
is at least 2n(4n-6)>(n- l ) (8n-9) and so there is a u"e A such that |stR(u, u', u")\^n
and we have a red K3n.

In the second case, the number of red edges connecting members of stR(u, M(I) to
members of A\{u, u,,} is at least

(2n - l ) (4n -6 )>(n - l ) (8n -9 ) (n>3)

so that the same conclusion holds provided n > 3. If n = 3, then either the number of red
edges connecting members of stR(u, u,.) to members of A\{u, ufj} is greater than

(2n-l)(4n-6) , for some/,
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16 ROBERT W. IRVING

in which case the same argument works again, or each of Mfi, uh,..., ui( is red adjacent to
each of the 5 vertices of stR(u)D(A\A'1) which, of course, gives a red K33 at once.

Case (ii). There is a vertex ult say of A, with at least An — 2 incident edges of the
same colour, say red.

Denote the vertices of B red-joined to u, by vu v2,..., u4n_2, Define

u, is red} (J = 1,2, . . . , 4n -2 ) ,

7) = {w e A \ M} :edge wvt is green} (z = 1,2,. . . , 4n -2) .

Hence

- S (i = l ,2 4n -2 ) . (2.2)

Case (ii) (a). |T1| + |T2| + . . . + |T4 B_2 |>4(n- l ) (4n- l ) .
The number of quadruples {w, Th 7], Tk} with 1 *£ i < j < k =£ An - 2, w e 7]; n 7} n Tk,

is at least

= (n - 1 ) . number of such triples Th 7j, Tk.

Hence there exist v, v', v"eB such that |stG(i), v', v")\^n and we have a green Kn3.
Case (ii) (b). |S1| + |S2| + .. . + |S4 B_2 |>4(n-l)(4n-3).
We first show that, if any vertex of A belongs to as many as 2n of the sets St, then

either a red K3n or a green ^ 3 is present. For, if u2 e Sx fl S2 n . . . D S2n say, then, if
there is to be no red K3n, each of the 8n - 9 vertices of A \{M15 U2} can belong to at most

2n
n - 1 of the sets SS = 1,2,. . . , 2n). Hence the sets $ (i = 1,2,. . . , In) satisfy X | $ | «

i = l
2n

8n2-15n + 9. By (2.2), we have I |Tj |^8n2-n-9, so that the number of quadruples
i = l

{w, T,, Tj, Tk} with 1 ^ i < j < k =£ 2n, w e Tf n T, n Tk, is at least

(8n-9 ) ( " j > ( n - 1)( " j = ( n - 1 ) . number of such triples % Tj, Tk.

Hence a green ^ 3 is present.
On the other hand, if among the 4 (n - l ) (4n-3) + l (or more) pairs (u,Si), ueSfS

A, no M appears more than 2 M - 1 times, then at least 4 n - 3 of the vertices of A, say
u2, u3,..., u4n_2, appear exactly 2 n - l times in such pairs. Therefore some Sh say S1,
contains at least 2n -1 of the vertices u2, u3,..., u4rt_2, say u2, u 3 , . . . , u2n. The remain-
ing 2 n - 2 appearances of each of u2, u 3 , . . . , u2n are distributed among 4 n - 3 of the sets
Sj and so the number of triples

{Uj, Uj, Sk}
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A BIPARTITE RAMSEY PROBLEM 17

2=£i</=s:2n, u,, u;.eSfc, 2«fc«s4n-2, is at least

( 2 n - 2 ) L j + (2n-2)(n ]> (n -2 ) ( " j = (n-2). number of such pairs u,, u,.

Hence some pair appears in S, and n — 1 of the other S, and, together with ult this yields a
red KXn.

Case (ii) (c). |T1| + |T2| + . . . + |T4n_2| = 4 (n- l ) (4n- l ) , 15x1 + 1521 + .. . + |54B_2| =
4(n-l)(4n-3) .

By the argument of Case (ii) (a), we deduce at once that the only case needing
consideration is when 4 n - 4 of the vertices of A \ { M J , say u2, u3 , . . . , u4n_3, lie in 2n of
the sets Tf and the remainder, M4n_2,..., «8n_7, lie in 2n -1 of the sets Tt. These
incidences yield (4n—4)(2n)-subsets and (4n—4)(2n-l)-subsets of a (4n-2)-set and, if
we can show that some triple occurs in n of these subsets, we will have established the
existence of a green K^3.

If this is not the case, then a simple count of triples reveals that every triple belongs
to exactly n — 1 of the subsets. Consider a fixed element and suppose that this element
belongs to x of the (2n)-subsets and y of the (2n - l)-subsets. Then, by counting triples
containing this element, we obtain the equation

(2n-l\ (2n-2
A 2 ) + A 2

i.e.

(2n-l)x + (2n-3)y = (2n-2)(4n-3).

This equation has solutions x = n, y = 3n — 2, and x = 3n — 3, y = n - l so that, if we
suppose that p of the elements yield the first solution and q the second solution, we
obtain

n-3) = (4n-4).2n

(n-l) = (4n-4) . (2n- l )

p+q = 4 n - 2

giving p = 2n-2 , q-2n.
Hence there is an element e which lies in n of the (2n)-sets and (3M-2) of the

(2n — l)-sets. So the number of pairs (c, /) with e, f lying together in the same set is

n(2n- l ) + (3n-2)(2n-2) = 8n 2 -8n+4>(4n-3) (2n- l )

so that there is a fixed element / which lies together with e in at least 2n of the sets. The
number of triples (e, f, g) with e, f, g lying together in the same set is at least 2n(2n - 3) >
(4n — 4)(n — 1) so that there is a fixed g which lies together with e and / in at least n of the
sets.

This completes the proof in all possible cases.

COROLLARY 2.2. R(3, n) = 8 n - 7 if there is a Hadamard matrix of order 4(n- l ) .
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18 ROBERT W. IRVING

This follows at once from the theorem and from the result (1.5) of Beineke and
Schwenk. In particular, the known Hadamard matrices of orders 12 and 16 establish

11(3, 5) = 33.

3. Upper bounds for the Zarankiewicz numbers. Henceforth we assume that
suffices are ordered, i.e. we say that KaJ> is a subgraph of K^y if and only if the a vertices
are a subset of the x and the b vertices a subset of the y.

Our upper bound method for the Zarankiewicz numbers is based on the following
lemma.

LEMMA 3.1. Suppose that, in a subgraph of Kxy, the number of copies of Kab is at least
a. Then

(i) the number of copies of Kac (b < c) in the subgraph is at least

m i n• V ' (d\wn 1 I
d, j = i \C/

where the d< 11 =£ i: =£ I 11 are non-negative integers subject to
\ \a) I

o

(ii) The number of copies of Kcb (a < c) in the subgraph is at least

where the dt 11 =£ i =£ I 11 are non-negative integers subject to
\ \bl I

Proof, (i) Let A, B denote respectively the x-vertex set and the y-vertex set. Let

dt 11 =s i *£ I )) denote the number of vertices of B joined by an edge to each of the
\ \al I

vertices in the j t h a-subset of A. Then the number of copies of Kab is

(v
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A BIPARTITE RAMSEY PROBLEM 19

But then the number of copies of Kac is

(ii) Similar.
In order to establish an upper bound for Z(x, y; m,n) for particular values of the

parameters, Lemma 3.1 may be applied several times to a p-edge subgraph of Kxy and for
suitable successive choices of a, b and c, it may be possible to prove that the number of
copies of Kmn 3= 1, so establishing Z(x, y; m,n)^p.

We have been unable to determine, in the general case, the optimal sequence of
choices of a, b, c in the lemma. However, in the special case x = y, best results appear to
be obtained by counting successively subgraphs Kl2, K32, K3A,...,Kmm_lt Kmn if m is
o d d , o r K2A, K2t3, K4_3,..., Km%m^, Kmn if m is even.

We illustrate the method for Z(48,48; 4,4) and, in so doing, provide a counter-
example to the conjecture (1.7) of Beineke and Schwenk.

THEOREM 3.2. Z(48,48; 4,4)«1148.

Proof. Consider a 1148-edge subgraph of K48AS. In Lemma 3.1(i), take a = b = l,
48 / ^ \ ' 48 / ^ \

c =2. Then the number of copies of KX2» £ I ' , subject to I I ' s* 1148. Hence the
i = i \ 2 / ,=i VI/

/24\ /23\
number of copies of A"1-2^44l l + 4l 1 = 13 156.

Now in Lemma 3.1(ii) take o = 1, 6 = 2, c = 3. The number of copies of K32&*
1128 / ^ \ 1128 / ^ \

X I 'I , subject to X I ' > 13156. Hence the number of copies of K3<2^
i=i \3 / i = i \ 1 /

748( J + 380( j = 227 260.

Now, in Lemma 3.1(i), take a = 3, b = 2, c = 4. The number of copies of K3A^
17296 / ^ \ 17296 / ^ \

X I ' , subject to X I ' 3*227 260. Hence the number of copies of K3A»
i-i \4/ i=i \ 2 /

10 8 6 0 ^ + 6436^) = 195 080.

Finally, in Lemma 3.1(ii), take a = 3, b = c = 4. The number of copies of K4A^
194580 /^X 194 580 /^X

X I ' , subject to X I '2*195 080. Hence the number of copies of KAA^
i=i \4 / i=i \3 /

COROLLARY 3.3. l?(4,4)=£48.

Proof'. Z(48,48; 4,4)*£ 1148< 1152 = g . 48 .48]. The result is an immediate conse-
quence of Proposition 1.1.
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20 ROBERT W. IRVING

Note that, when m = n = 4, conjecture (1.7) states that R{4,4) = 49.
Similar arguments to that of the proof of Theorem 3.2 have been used to construct

the following table of upper bounds for the bipartite Ramsey numbers R(m, n). A table of
values of /(m, n) = 2 m ( n - l ) + l is included for purposes of comparison.

m
4
5
6
7

48 65
115

82
149
257

98
182
328
566

m
4
5
6
7

49 65
129

81
161
321

97
193
385
769

Upper bounds for R(m, n) f(m, n) = 2m(n -1) +1

4. The pairs (x, y) for which (x, y) —* (m, n). Given a pair of integers (m, n),
1 =£m*£n, we define the critical set for (m, n), denoted by Cmn to be the smallest set

{(*!, yi), (*2> y2), - - • . (*p, yP)>

with the property that (x, y) ->(m, n) <£> there exists i (1 =£ i =£ p) such that x^xh y 3= yf.
It is clear that, for each pair (m, n), the critical set C^n is well-defined, and its

determination is equivalent to the determination of precisely those (x, y) for which
(x, y) -> (m, n).

Trivially, we have Clr i = {(l,2n-1)} for all nssl . We now record, in a series of
lemmas, some properties of the symbol -» and of the sets Cmn, which will enable us to
determine C2j2> C2t3, C2A and to come close to determining C33.

LEMMA 4.1

(x\ y')-»(m, n) if x's=x and y '^y
(m',n') if m'km and n'^n

(ii) (x, y) + (m, n) * { ^ ^ . ? ,^ HI (x y)A(m , n ) if m^m and

Proo/. These are immediate consequences of the meaning of the symbol ->.

LEMMA 4.2. (x, y)e Cm>m O (y, x)s Cm>m.

Proo/. This is an immediate consequence of the definition of Cm m.

For the next lemma, we require some of the terminology of design theory. A t-
(b, v, r, k, \)-design is a collection of b fc-subsets of a w-set such that every element of the
u-set belongs to r of the fc-subsets and such that every (-subset of the u-set is contained in
exactly A of the fc-subsets. Clearly, the collection of b (v - fc)-subsets of the u-set, which
are the complements of the original fc-subsets, forms a t-(b, v,b-r,v-k, A')-design, with

A' = Al I /1 I, called the complement of the original design. If, in the case fc = \v, the

design is isomorphic to its complement, then the design is called self-complementary.
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LEMMA 4.3. (i) / / there exists an m - (y, x, - , - , n -1 j-design, then (x, y) -/* (m, n).

(ii) / / there exists an (n -1 ) - (x, y,\x,|y, x( 2_ ) I ( _ I j-design with the proper-

ties (a) no m blocks have n points in common, (b) ifm>2 the design is self-complementary,

then (x, y)-A (m, n).

Proo/. (i) We have to colour the edges of Kxy using two colours in such a way that no
Kmn is monochromatic. Let M b e a y X x incidence matrix of the design. Label the rows
of M with the vertices of the y-set and the columns of M with the vertices of the x-set,
and let M be the y x x adjacency matrix for the subgraph of colour 1. Suppose that some
subgraph K^n has all of its edges colour 1. Then some n rows of M have ones in m
common positions, i.e. some n blocks of the design contain the same m elements—a
contradiction.

If all other edges are given colour 2, then the fact that the complementary design has
the same parameters as the original implies that no Kmn has all of its edges colour 2.

(ii) As in (i), we use an x x y incidence matrix for the design as an x x y adjacency
matrix for the subgraph of colour 1. Then no subgraph K^n can have all of its edges
colour 1, otherwise some m blocks of the design have n elements in common—a
contradiction.

The same is true in colour 2 if the design is self-complementary. When m = 2, the
same is true in colour 2 whether or not the design is self-complementary, since if 2 blocks
of the complement have intersection size 3= n then the corresponding 2 blocks of the
original also have intersection size > n.

LEMMA 4.4. (i) (x, y)eCm n implies x3=2m-l , ys»2n- l .

(b)

(a) (2{m - l )(2 n
n~ *) , 2n) ^ (m, n).

(b)

Proof, (i) If x ̂  2m - 2 then, for any y, the edges of K^ can be coloured in 2 colours
so that no one of the x vertices has more than m - 1 incident edges of each colour.
Similarly if y*£2n-2.

,»w ^ m / „ , ^ / 2 m - l \ „ . . . . / 2 m - l \ A J .
(u)(a) There is an m - l 2 ( n - l ) ( 1, 2m, ( n - l ) l ), m, n - 1 l-design

consisting of every m-set of the 2 m-set repeated n —1 times. Result follows by Lemma

(b) Let s = 2 (n- l ) ( 1 + 1 and consider any 2-colouring of the edges of
\ m /
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K2m_ls. Each of the s vertices defines a subset of the (2m-l)-set of size m or greater,

each member of which is joined to it in the same colour. In 2(n -1)1 1 + 1 such

subsets, some m-subset appears 2 n - l times and hence n times in the same colour, and

this yields a monochromatic Kmn. Hence (2m -1,2{n -1)( j +1 j -> (m, n). How-

ever, f 2 m - 2 , ? . ( n - l ) ( 2 m " 1 ] + l U ( m , n ) by (i) and ( 2 m - 1 , 2 ( n - l ) ( 2 m ~ ) W
\ \ m ) I \ \ m //

(m,n) by (ii)(a) and Lemma 4.1(ii). Hence(2m-1,2(n- l ) ( m ) + l )eC m r i .

(iii)(a) There is a self-complementary ( n - l ) - l 2 ( m - l ) ( I, 2n, (m-1)
\ \ n I

I ), n , (m-l) (« + l) (-design consisting of all the n-subsets of a 2n-set repeated
\ n I I
m — 1 times and in this design no m blocks have n points in common. The result follows
by Lemma 4.3(ii).

(b) This follows by an argument analogous to that of (ii)(b) above.

LEMMA 4.5. Cm,n ={xu y,), (x2, y 2 ) , . . . , (xp, yp)} with 2 m - 1 = x , < x 2 < . . .<Xp =

2 ( m - l ) ( ) + l if and only if (i) (xj; y;)-»(m, ") (/= 1 ,2 , . . . , p), and (ii) (xj+,
\ n I

Proof. If (x, y) is such that x ^ ^ y ^ y , for some j (1 =£ i ̂  p), then (x, y) -» (m, n), by
Lemma 4.1(i).

Suppose (x, y) -» (m, n). We have to show x 2* xi; y > y; for some i (1 ^ i =£ p). We can
assume x ^ x ^ X p and so there is an i (l=£j=£p-l) such that xi

:«x<x1+1. It suffices to
show ys= y,-. Suppose, on the contrary, that y<yf. Then, since (x;+ 1- l , y , - l ) - ^ (m, n),
we have (x, y; -1 ) -A (m, n), since x s£ xi+i - 1 , and so (x, y) -A (m, n) since y =s yf - 1 . This
is a contradiction and the result follows.

LEMMA 4.6. (i) If (2x +1,2y +1) -A (2, n), then there is a collection Su S 2 , . . . , Sx+1 of
(x + 1) y-subsets of a (2y + l)-set such that 1$ nS, |=£n--2 for any i,j ( l « i < / « x + l) .

(ii) / / (2x + l,2y + l ) ^ ( 3 , n), then there is a collection Su S 2 , . . . , Sx+1 of (x + 1)
y-subsets of a (2y + \)-set such that, for any i,j,k (1 =s i < j < k =£ x + 1 )

I s; n sy|+|s, nsk|+|sy n sk|-|s, ns, n sk|« n + y-2.

Proo/. (i) Suppose that the edges of K"2x+i,2y+i have been coloured using 2 colours so
that no K2n is monochromatic. Adjacency in one colour to the (2x +1) vertices yields at
least x + 1 subsets, each of size at most y, of the (2y + l)-vertex set. Denote these subsets
by Tu T2,..., Tx+V Then for any i, / (1 «s j </ss JC +1), we have

|T i nT / |^ |T i | + |7;.| + n - 2 y - 2 . (4.1)
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For otherwise, denoting the complement of Tk in the (2y+ l)-vertex set by T'k, we find

;| = 2y +1 -IT; u T;|

-{\Ti\ + \Ti\-\TinTj\} (4.2)

and so a monochromatic K2,„ is present. Now to each T( we adjoin arbitrary vertices of
the (2y + l)-vertex set (if necessary) to form a y-set. Such adjunction preserves inequality
(4.1) and leads to y-sets Su S 2 , . . . , Sx+1 with the stated property,

(ii) The proof is similar, using the relation

|Tk|-|TinT,|-|TlnTk

in place of (4.2).
We are now in a position to determine C2>2, C2<3 and C2-4 completely.

THEOREM 4.7. C2,2 = {(3,7), (5,5), (7,3)}.

Proof. (3,7), (7, 3)€ C ^ by Lemma 4.4, which also shows that (4, 6), (6,4) -A (2,2).
An easy application of Lemma 3.1 shows that Z(5,5; 2,2)=£l3, so that (5,5)-» (2,2).
The result follows from Lemma 4.5.

THEOREM 4.8. C2,3 = {(3,13), (5,11), (7,9), (15,7), (21,5)}.

Proof. Lemma 4.4 gives (3,13), (21, 5)e C23 and (4,12), (20,6)-A (2,3). By Lemma
4.5, it remains to show (6,10), (14,8)^(2,3) and (5.11), (7,9), (15,7)^(2,3). The
existence of a 2 — (10,6,5,3,2)-design [2], together with Lemma 4.3(i), establishes
(6,10)^(2,3).

Also there exists a 3-(14, 8,7,4, l)-design [2]. This is a Hadamard 3-design and,
being the extension of a symmetric 2-design, any two blocks intersect in at most 2 points.
Therefore, by Lemma 4.3(ii), (14,8) -A (2,3).

Simple applications of Lemma 3.1 can be made to yield Z(5,11; 2,3)^28 and
Z(15,7;2,3)^53, so that (5,11), (15,7)-» (2,3).

Finally, to show that (7,9)-» (2,3), we need a slightly different argument based on
Lemma 4.6(i). Suppose (7,9) -A (2,3). Then there is a set of four 4-subsets Su S2, S3, S4

of a 9-set, no 2 of which intersect in more than 1 point. So the size of the set X = {x, S;, S,}
/4 \with lss /</s£4, xeSfflSy, is at most L ) = 6. But the number of pairs {x,St} with

I=£i=s4, xeSt, is 16 and, since there are only 9 choices available for x, it follows that
|X|s=7, a contradiction.
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THEOREM 4.9. C2>4 = {(3,19), (5,15), (9,13), (23,11), (37,9), (71,7)}.

Proof. Lemma 4.4 gives (3,19), (71,7)-• (2,4) and (4,18), (70,8)^(2,4). By
Lemma 4.5, it remains to show (8.14), (22,12), (36,10) -/* (2,4) and (5,15), (9,13),
(23,11), (37,9)-> (2,4). The existence of a 2-(14, 8, 7, 4, 3)-design [2], together with
Lemma 4.3(i), establishes (8,14) ^ (2,4). There exists a 3-(22, 12, 11, 6, 2)-design [2]
which is a Hadamard design and so the extension of a symmetric 2-design. Hence any 2
blocks intersect in at most 3 points and, by Lemma 4.3(ii), (22,12)-A (2,4). Also there
exists a 3 —(36, 10, 18, 5, 3)-design in which no 2 blocks have 4 points in common (see
Appendix for details), so that Lemma 4.3(ii) implies (36,10) -A (2,4).

On the other hand, an application of Lemma 3.1 can be used to show Z(5,15; 2,4)=s
53 and so (5,15)-* (2,4). The three remaining results are each proved by application of
Lemma 4.6(i).

Suppose (9,13) -/* (2,4). Then, by Lemma 4.6(i), there is a collection of 5 6-subsets
Si,. •., S5 of a 13-set, no 2 intersecting in more than 2 points. So the size of the set

1 s= j</s£5, xeSt nSjt is at most 2L I = 20. But the number of pairs

{x, S,}

1 «£ i«s 5, x £ 5,, is 30 and, since there are only 13 choices available for x, we deduce that

|X| & 4 ( j + 9 ( ] = 21—a contradiction.

Suppose (23,11)^(2,4). Then, by Lemma 4.6(i), there is a collection of 12
5-subsets Su S2, • • •, S12 of an 11-set, no 2 intersecting in more than 2 points. So the size
of the set

X = {x,Si;S,.}

/12\
1 s£ j </ss 12, x e S; (15,, is at most 21 I = 132. But the number of pairs

1 ̂  i =£ 12, x e S,, is 60 and, since there are only 11 choices available for x, we deduce that

|X|3*5( j + 6( ] = 135—a contradiction.

Finally, suppose (37,9) -A (2,4). Then, by Lemma 4.6(i), there -is a collection of 19
4-subsets Sj, S2, • • •, Sl9 of a 9-set, no 2 intersecting in more than 2 points. Clearly, some
element is in at least 9 of these subsets and, of these 9, some further fixed element is in at
least 4. To make up these 4 4-subsets, we require 4 mutually-disjoint 2-subsets of a 7-
set—impossible.
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CONJECTURE 4.10. C33 = {(5,41), (7,29), (9,23), (13,17), (17,13), (23,9), (29,7),
(41,5)}.

Partial proof. Lemma 4.4 gives (5,41), (41,5)eC3,3 and (6,40), (40,6) •¥* (3,3). The
symmetric nature of C3 3 is a consequence of Lemma 4.2. By Lemma 4.5, it remains to
show (8,28), (12,22), (16,16) ^ (3,3) and (7,29), (9,23), (13,17) -> (3,3). The existence
of a 3-(28, 8, 14, 4, 2)-design and a 3-(22, 12, 11, 6, 2)-design [2], together with
Lemma 5.3(i), establishes (8,28) -A (3,3) and (12,22)-A (3,3). Beineke and Schwenk [1]
have shown (16,16) •¥* (3,3).

On the other hand, an application of Lemma 3.1 gives Z(7,29; 3,3)^102 and so
(7,29) -» (3, 3). To show (9,23) -» (3,3), we require a complicated application of Lemma
4.6(ii), the details of which we omit.

The only part of the conjecture which we have been unable to prove is the assertion
(13,17)^(3,3).

Three further conjectures worthy of mention are the following:

CONJECTURE 4.11
(i) (2n + l ,4n -3 ) -» (2 ,n )
(ii) (4n + l ,8n-7) ->(3 ,n)

(Hi) C2,5 = {3,25), (5,21), (7,19), (11,17), (31,15), (83,13), (133,11), (253,9)}.

Finally, we might ask if it is ever possible for an even number to appear as a member
of a pair in a critical set, in any case for a critical set of the form C2>n.

Appendix. We list the blocks of a 3-(36, 10, 18, 5, 3)-design, on the point set
{ 0 , 1 , . . . , 9}, in which no 2 blocks have 4 common points.

12
12
12
12
12
12

345
368
379
478
460
569

12
12
13
13
13
13

570
890
489
567
470
580

13 690
14 568
14 590
14 679
15 789
16 780

23
23
23
23
23
24

467
490
589
560
780
579

24 580
24 689
25 678
26 790
34 569
34 578

34 680
35 790
36 789
45 670
47 890
56 890
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