Bull. Austral. Math. Soc.
Vol. 54 (1996) [291-297]

ON THE GENUS OF SOME MODULAR CURVES OF LEVEL N

Chang Heon Kim and Ja Kyung Koo

We estimate the genus of the modular curves $X_{1}(N)$.

Introduction

Let \mathfrak{h} be the complex upper half plane. Then $S L_{2}(\mathbb{Z})$ acts on \mathfrak{h} by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=$ $(a z+b) /(c z+d)$. Let \mathfrak{h}^{*} be the union of \mathfrak{h} and $\mathbb{P}^{\mathbf{1}}(\mathbb{Q})$, and let Γ be a congruence subgroup of $S L_{2}(\mathbb{Z})(=\Gamma(1))$, which is a Fuchsian group of the first kind and contains a principal congruence subgroup $\Gamma(N)$ for some positive integer N. Then the modular curve $\Gamma \backslash \mathfrak{h}^{*}$ is a projective closure of the affine curve $\Gamma \backslash \mathfrak{h}$, which we denote by X_{Γ}, with genus g_{Γ}. In this article, we shall determine the genus $g(N)$ of the modular curve $X_{1}(N)\left(=X_{\Gamma_{1}(N)}\right)$ when $\Gamma=\Gamma_{1}(N)$ for $N=1,2,3, \cdots$. Here, we denote by $\Gamma_{1}(N)$ the group of elements in $\Gamma(1)$ which are congruent to $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right) \bmod N$.

Theorem 1. The genus $g(N)$ of $X_{1}(N)$ is given by

$$
g(N)= \begin{cases}0, & \text { if } 1 \leqslant N \leqslant 4 \\ 1+\frac{N^{2}}{24} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)-\frac{1}{4} \sum_{d \mid N, d>0} \varphi(d) \varphi\left(\frac{N}{d}\right), & \text { otherwise }\end{cases}
$$

where φ is the Euler's phi function.
We shall see later in $\S 1$ that $g(N)=0$ only for the eleven cases $1 \leqslant N \leqslant 10$ and $N=12$.

Throughout the article we adopt the following notation:
$\bar{\Gamma}$ is the inhomogeneous congruence group $(=\Gamma / \pm I)$
Γ_{s} is the isotropy group of s
$\Gamma(N)=\left\{\gamma \in S L_{2}(\mathbb{Z}) \mid \gamma \equiv I \bmod N\right\}$
$\Gamma_{0}(N)$ is the Hecke subgroup $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1) \right\rvert\, c \cong 0 \bmod N\right\}$
$\sigma_{0}(N)$ is the number of positive divisors of N.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

1. Proof

Let μ be the index of $\bar{\Gamma}_{1}(N)$ in $\bar{\Gamma}(1)$. Let ν_{2} (respectively ν_{3}) be the number of $\bar{\Gamma}_{1}(N)$-inequivalent elliptic points of order 2 (respectively order 3) and ν_{∞} be the number of $\bar{\Gamma}_{1}(N)$-inequivalent cusps. It is well-known [1, p.68, 2, Chapter IV] or [3, Proposition 1.40] that

$$
\begin{equation*}
g=1+\frac{\mu}{12}-\frac{\nu_{2}}{4}-\frac{\nu_{3}}{3}-\frac{\nu_{\infty}}{2} \tag{}
\end{equation*}
$$

Thus, in order to estimate g it is enough to know the explicit values of μ, ν_{2}, ν_{3} and ν_{∞}.
(i) μ :

For the congruence subgroup $\Gamma_{0}(N)$ of $\Gamma(1)$, we know [3, Proposition 1.43] that

$$
\begin{equation*}
\left[\bar{\Gamma}(1): \bar{\Gamma}_{0}(N)\right]=N \cdot \prod_{p \mid N}\left(1+\frac{1}{p}\right) \tag{1.1}
\end{equation*}
$$

Note that $\Gamma_{1}(N)$ is the kernel of the surjective homomorphism f_{N} from $\Gamma_{0}(N)$ to $(\mathbb{Z} / N \mathbb{Z})^{\times}$defined by $f_{N}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=d \bmod N$. This yields

$$
\left[\Gamma_{0}(N): \Gamma_{1}(N)\right]=\varphi(N)=N \cdot \prod_{p \mid N}\left(1-\frac{1}{p}\right)
$$

Since $-1 \in \Gamma_{0}(N)$ and $-1 \notin \Gamma_{1}(N)$ except for $N=1,2$,

$$
\left[\bar{\Gamma}_{0}(N): \bar{\Gamma}_{1}(N)\right]= \begin{cases}N \cdot \prod_{p \mid N}\left(1-\frac{1}{p}\right), & \text { if } N=1,2 \tag{1.2}\\ \frac{N}{2} \cdot \prod_{p \mid N}\left(1-\frac{1}{p}\right), & \text { otherwise }\end{cases}
$$

By (1.1) and (1.2),

$$
\mu=\left[\bar{\Gamma}(1): \bar{\Gamma}_{1}(N)\right]= \begin{cases}1, & \text { if } N=1 \\ 3, & \text { if } N=2 \\ \frac{N^{2}}{2} \cdot \prod_{p\rceil N}\left(1-\frac{1}{p^{2}}\right), & \text { otherwise }\end{cases}
$$

(ii) ν_{2} and ν_{3} :

Recall that $\gamma \in \Gamma(1)$ is an elliptic element if and only if $|\operatorname{tr}(\gamma)|<2$. If $\gamma \in \Gamma_{1}(N)$, then $\gamma \equiv\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right) \bmod N$. Hence, $\operatorname{tr}(\gamma)$ lies in $2+N \mathbb{Z}$. Thus $\Gamma_{1}(N)$ has no elliptic
element unless $N=1,2,3$. If $N=1, \Gamma_{1}(1)=\Gamma(1)$ so that $\nu_{2}=\nu_{3}=1$. If $N=2$, $\Gamma_{1}(2)=\Gamma_{0}(2)$ and hence, by [3, Proposition 1.43], $\nu_{2}=1$ and $\nu_{3}=0$. If $N=3$, then $\bar{\Gamma}_{1}(3)=\bar{\Gamma}_{0}(3)$. Again, by the same argument, $\nu_{2}=0$ and $\nu_{3}=1$. We summarise the above by

$$
\nu_{2}=\left\{\begin{array}{l}
1, \text { if } N=1,2 \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
\nu_{3}= \begin{cases}1, & \text { if } N=1,3 \\ 0, \text { otherwise }\end{cases}
$$

(iii) ν_{∞} :

First, we consider all pairs
(1.3) $\{c, d\}$ of positive integers satisfying $(c, d)=1, d \mid N, 0<c \leqslant N / d$ (or c in any set of representatives for $\mathbb{Z} \bmod (N / d)$).

For each pair $\{c, d\}$, take a and b so that $a d-b c=1$ and fix them. Then the elements $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfying (1.3) form a set of representatives for $\Gamma_{0}(N) \backslash \Gamma(1)$. Also, the number of double cosets in $\Gamma_{0}(N) \backslash \Gamma(1) / \Gamma_{s}$ for any fixed cusp s gives the number of $\Gamma_{0}(N)$-inequivalent cusps. Take s to be 0 . Then we see that it is the number of pairs $\{c, d\}$ satisfying (1.3) modulo the equivalence \sim defined by $\{c, d\} \sim\left\{c^{\prime}, d^{\prime}\right\}$ if $\left(\begin{array}{cc}* & * \\ c^{\prime} & d^{\prime}\end{array}\right)=\left(\begin{array}{ll}* & * \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ m & 1\end{array}\right)$ for some $m \in \mathbb{Z}$. From the last equality, we come up with $d=d^{\prime}$ and $c^{\prime}=c+d m$. Therefore, for fixed d
there are exactly $\varphi((d, N / d))$ inequivalent pairs.
Now choose a pair $\{c, d\}$ satisfying (1.3) and $\xi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ from $\Gamma(1)$. Put $s=b / d$. Then $\xi \cdot 0=s$. We want to estimate the index $\left[\bar{\Gamma}_{0}(N)_{s}: \bar{\Gamma}_{1}(N)_{s}\right]$. Suppose that $\pm \xi^{-1} \Gamma_{0}(N)_{s} \xi=\left\{ \pm\left(\begin{array}{cc}1 & 0 \\ h_{1} & 1\end{array}\right)^{n}\right\}_{n \in \mathbb{Z}}$ for some $h_{1}>0$ and $\pm \xi^{-1} \Gamma_{1}(N)_{\Delta} \xi=$ $\left\{ \pm\left(\begin{array}{cc}1 & 0 \\ h_{2} & 1\end{array}\right)^{n}\right\}_{n \in \mathbb{Z}}$ for some $h_{2}>0$. Recall that h_{1} (respectively h_{2}) is the smallest positive integer h such that

$$
\left(\begin{array}{ll}
a & b \tag{1.5}\\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
h & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1+b d h & -b^{2} h \\
d^{2} h & 1-b d h
\end{array}\right) \in \pm \Gamma_{0}(N)
$$

$$
\text { (respectively } \pm \Gamma_{1}(N) \text {). }
$$

If $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ h & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}$ belongs to $-\Gamma_{1}(N)$, then by taking the trace we have $2=-2 \bmod N$; hence N divides 4 , that is, $N=1,2,4$. In what follows, we assume that $N \neq 1,2,4$. The cases $N=1,2,4$ will be dealt with separately. By (1.5), h_{1} is the smallest positive integer h such that $d^{2} h \equiv 0 \bmod N$ and h_{2} is the smallest positive integer h such that

$$
\begin{equation*}
d^{2} h \equiv 0 \equiv b d h \quad \bmod N \tag{1.6}
\end{equation*}
$$

Clearly, $h_{1}=N /\left(d^{2}, N\right)$. Let h_{1}^{\prime} be the smallest positive integer such that $b d h^{\prime} \equiv 0$ $\bmod N$. Since $d \mid N$, we are forced to get

$$
\begin{equation*}
h_{1}^{\prime}=\frac{N / d}{(b, N / d)} \tag{1.7}
\end{equation*}
$$

Then $h_{2}=$ l.c.m $\left(h_{1}, h_{1}^{\prime}\right)$. Observe that $\left(d^{2}, N\right)=(d, N) \cdot((d, N), N /(d, N))=d$. ($d, N / d$) because N is divisible by d. Using this we are able to rewrite h_{1} as

$$
\begin{equation*}
h_{1}=\frac{N}{\left(d^{2}, N\right)}=\frac{N}{d \cdot(d, N / d)}=\frac{N}{d} \cdot \frac{1}{(d, N / d)} . \tag{1.8}
\end{equation*}
$$

Since $(b, N / b)|b,(d, N / d)| d$ and $(b, d)=1$, by (1.7) and (1.8) we have $h_{2}=$ l.c.m. $\left(h_{1}, h_{1}^{\prime}\right)=N / d$. Thus

$$
\begin{align*}
{\left[\bar{\Gamma}_{0}(N)_{s}: \bar{\Gamma}_{1}(N)_{s}\right] } & =\left[\pm \xi^{-1} \Gamma_{0}(N)_{s} \xi: \pm \xi^{-1} \Gamma_{1}(N)_{s} \xi\right] \tag{1.9}\\
& =\left[h_{1} \mathbb{Z}: h_{2} \mathbb{Z}\right]=\frac{h_{2}}{h_{1}} \\
& =\frac{N / d}{N / d \cdot 1 /(d, N / d)}=(d, N / d)
\end{align*}
$$

Now consider the natural projection $p: \bar{\Gamma}_{1}(N) \backslash \mathfrak{h}^{*} \rightarrow \bar{\Gamma}_{0}(N) \backslash \mathfrak{h}^{*}$. Let $p^{-1}(s)=$ $\left\{s_{1}, \ldots s_{h}\right\}$ and let e_{k} be the ramification index of p at s_{k}. Then by [3, Proposition 1.37], $e_{k}=\left[\bar{\Gamma}_{0}(N)_{s_{k}}: \bar{\Gamma}_{1}(N)_{s_{k}}\right]$ for $k=1, \ldots, h$. Furthermore, $\bar{\Gamma}_{1}(N) \triangleleft \bar{\Gamma}_{0}(N)$ implies that $e_{1}=\cdots=e_{h}$ and

$$
\begin{equation*}
\left[\bar{\Gamma}_{0}(N): \bar{\Gamma}_{1}(N)\right]=e_{1} h=(d, N / d) \cdot h \tag{1.10}
\end{equation*}
$$

by (1.9). Here h is the number of elements of $p^{-1}(s)$ which is equal to the number of those in $p^{-1}(b / d)$ depending only on d. By (1.4), given d, there are $\varphi((d, N / d))$
$\bar{\Gamma}_{0}(N)$-inequivalent cusps with the same d. Therefore, we have

$$
\begin{aligned}
\nu_{\infty} & =\sum_{d \mid N} \varphi((d, N / d)) h \\
& =\sum_{d \mid N} \varphi((d, N / d))(d, N / d)^{-1} \varphi(N) / 2 \text { by (1.10) } \\
& =\sum_{d \mid N} \frac{\varphi(d) \varphi(N / d)}{\varphi(d \cdot(N / d))} \frac{\varphi(N)}{2} \text { using the fact that } \varphi\left(n_{1}\right) \varphi\left(n_{2}\right)=\varphi\left(n_{1} n_{2}\right) \frac{\varphi\left(\left(n_{1}, n_{2}\right)\right)}{\left(n_{1}, n_{2}\right)} \\
& =\frac{1}{2} \sum_{d \mid N} \varphi(d) \varphi(N / d) .
\end{aligned}
$$

Next, we deal with the cases $N=1,2,4$. If $N=1, \Gamma_{1}(1)=\Gamma(1)$; hence $\nu_{\infty}=1$. If $N=2, \Gamma_{1}(2)=\Gamma_{0}(2)$, and so by [3, Proposition 1.43], $\nu_{\infty}=2$. If $N=4$, $\bar{\Gamma}_{1}(4)=\bar{\Gamma}_{0}(4)$, and again by the same Proposition 1.43 in [3], $\nu_{\infty}=3$. In summary,

$$
\nu_{\infty}= \begin{cases}1, & \text { if } N=1 \\ 2, & \text { if } N=2 \\ 3, & \text { if } N=4 \\ \frac{1}{2} \sum_{d \mid N} \varphi(d) \varphi(N / d), & \text { otherwise }\end{cases}
$$

Substituting (i), (ii) and (iii) into the formula (*), we get the theorem.
Proposition 2. For $N>20, g(N)>1$.
Proof: It follows from Theorem 1 that $g(N)=1+\left(N^{2} / 24\right) \prod_{p \mid N}\left(1-1 / p^{2}\right)-$ $(1 / 4) \sum_{d \mid N, d>0} \varphi(d) \varphi(N / d)$. Notice that $N \cdot \prod_{p \mid N}(1-1 / p)=\varphi(N)$ and $\varphi(d) \varphi(N / d)=$ $\varphi(N) \cdot(\varphi((d, N / d))) /((d, N / d)) \leqslant \varphi(N)$. Then $g(N) \geqslant 1+(1 / 24)\left(N \cdot \prod_{p \mid N}(1+1 / p) \cdot \varphi\right.$ $\left.(N)-6 \sigma_{0}(N) \cdot \varphi(N)\right)$. We will show that for $N>20$

$$
\begin{equation*}
N \cdot \prod_{p \mid N}\left(1+\frac{1}{p}\right) \geqslant 6 \cdot \sigma_{0}(N) \tag{1.11}
\end{equation*}
$$

where the equality holds if and only if N is square-free. Put $q(N)=\left(N \cdot \prod_{p \mid N}\left(1+\frac{1}{p}\right)\right) /$ $\left(\sigma_{0}(N)\right)$ and $f_{p}(k)=\left(p^{k}+p^{k-1}\right) /(k+1)$. We must show $q(N) \geqslant 6$. Then for $k \geqslant 1$,

$$
\frac{d}{d k} f_{p}(k)=\frac{\left(p^{k}+p^{k-1}\right)((\log p)(k+1)-1)}{(k+1)^{2}}>0
$$

indicates that

$$
\begin{equation*}
f_{p}\left(k_{1}\right)<f_{p}\left(k_{2}\right) \quad \text { for } \quad k_{1}<k_{2} \tag{1.12}
\end{equation*}
$$

Also it is easy to see that

$$
\begin{equation*}
f_{p_{1}}(k)<f_{p_{2}}(k) \quad \text { for } \quad p_{1}<p_{2} \tag{1.13}
\end{equation*}
$$

For $1 \leqslant k \leqslant 5, f_{p}$ has the following values:

k	f_{2}	f_{3}	f_{5}	f_{7}	f_{11}
1	1.5	2	3	4	6
2	2	4	10	$18 \frac{2}{3}$	44
3	3	9	37.5	98	363
4	4.8	21.6	150	548.8	3194.4
5	8	54	625	$3201 \frac{1}{3}$	29282

Let $N=p_{1}^{k_{1}} \cdots p_{\boldsymbol{r}}^{k_{r}}$ be the prime factorisation. Then $q(N)=f_{p_{1}}\left(k_{1}\right) \cdots f_{p_{r}}\left(k_{r}\right)$. Let $r(N)$ be the number of distinct primes dividing N. If $r(N) \geqslant 3$,

$$
q(N) \geqslant f_{2}(1) f_{3}(1) f_{5}(1)=9>6 \quad \text { by }(1.12),(1.13) \text { and the table. }
$$

If $\boldsymbol{r}(N)=1$ or 2 , we can check the inequality as follows:
(i) $r(N)=2,2\} N: q(N)>f_{3}(1) f_{5}(1)=6$.
(ii) $\quad r(N)=2,2^{3} \mid N$: Since $r(N)=2$, there exists an odd prime p dividing N. Then $q(N) \geqslant f_{2}(3) f_{3}(1)=6$. In this case, N is not square-free and so we have strict inequality in (1.11).
(iii) $\quad r(N)=2,2 \mid N,(15, N)=1$: Since $r(N)=2$ and $3 \nmid N, 5 \nmid N$, there exists an odd prime $p \geqslant 7$ dividing N. Then $q(N)>f_{2}(1) f_{7}(1)=6$.
(iv) $\quad r(N)=2,2^{2}| | N, 3^{2} \mid N: q(N) \geqslant f_{2}(2) f_{3}(2)>6$.
(v) $\quad r(N)=2,2^{2}| | N, 5^{2} \mid N: q(N) \geqslant f_{2}(2) f_{5}(2)>6$.
(vi) $\quad r(N)=2,2| | N, 3^{3} \mid N: q(N) \geqslant f_{2}(1) f_{3}(3)>6$.
(vii) $\quad r(N)=2,2| | N, 5^{2} \mid N: q(N) \geqslant f_{2}(1) f_{5}(2)>6$.
(viii) $\quad r(N)=1, N=p^{k}, p \geqslant 11: q(N)>f_{11}(1) \geqslant 6$.
(ix) $\quad r(N)=1, N=7^{k}, k \geqslant 2: q(N) \geqslant f_{7}(2)>6$.
(x) $\quad r(N)=1, N=5^{k}, k \geqslant 2: q(N) \geqslant f_{5}(2)>6$.
(xi) $\quad r(N)=1, N=3^{k}, k \geqslant 3: q(N) \geqslant f_{3}(3)>6$.
(xii) $\quad r(N)=1, N=2^{k}, k \geqslant 5: q(N) \geqslant f_{2}(5)>6$.

This completes the proof.

For $N \leqslant 20$, Theorem 1 gives the following table :

N	μ	$\boldsymbol{\nu}_{\infty}$	ν_{2}	$\boldsymbol{\nu}_{3}$	g
1	1	1	1	1	0
2	3	2	1	0	0
3	4	2	0	1	0
4	6	3	0	0	0
5	12	4	0	0	0
6	12	4	0	0	0
7	24	6	0	0	0
8	24	6	0	0	0
9	36	8	0	0	0
10	36	8	0	0	0
11	60	10	0	0	1
12	48	10	0	0	0
13	84	12	0	0	2
14	72	12	0	0	1
15	96	16	0	0	1
16	96	14	0	0	2
17	144	16	0	0	5
18	108	14	0	0	3
19	180	18	0	0	7
20	144	20	0	0	3

Remark. From this table and Proposition 2, we conclude that $g(N)=0$ if and only if $N=1, \ldots, 10$ and 12 .

References

[1] R. Rankin, Modular forms and functions (Cambridge, Cambridge University press, 1977).
[2] B. Schoeneberg, Elliptic modular functions (Springer-Verlag, Berlin, Heidelberg, New York, 1973).
[3] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan 11 (Princeton, Tokyo, 1971).

Department of Mathematics
Korea Advanced Institute of Science and Technology
Taejon 305-701
Korea

[^0]: Received 8th November, 1995
 Supported by KOSEF Research Grant 95-K3-0101 (RCAA).

