Bull. Austral. Math. Soc. Vol. 54 (1996) [291-297]

ON THE GENUS OF SOME MODULAR CURVES OF LEVEL N CHANG HEON KIM AND JA KYUNG KOO

We estimate the genus of the modular curves $X_1(N)$.

INTRODUCTION

Let \mathfrak{h} be the complex upper half plane. Then $SL_2(\mathbb{Z})$ acts on \mathfrak{h} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = (az+b)/(cz+d)$. Let \mathfrak{h}^* be the union of \mathfrak{h} and $\mathbb{P}^1(\mathbb{Q})$, and let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$ $(=\Gamma(1))$, which is a Fuchsian group of the first kind and contains a principal congruence subgroup $\Gamma(N)$ for some positive integer N. Then the modular curve $\Gamma \setminus \mathfrak{h}^*$ is a projective closure of the affine curve $\Gamma \setminus \mathfrak{h}$, which we denote by X_{Γ} , with genus g_{Γ} . In this article, we shall determine the genus g(N) of the modular curve $X_1(N)$ $(=X_{\Gamma_1(N)})$ when $\Gamma = \Gamma_1(N)$ for $N = 1, 2, 3, \cdots$. Here, we denote by $\Gamma_1(N)$ the group of elements in $\Gamma(1)$ which are congruent to $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N$.

THEOREM 1. The genus g(N) of $X_1(N)$ is given by

$$g(N) = \begin{cases} 0, & \text{if } 1 \leqslant N \leqslant 4 \\ 1 + \frac{N^2}{24} \prod_{p|N} \left(1 - \frac{1}{p^2}\right) - \frac{1}{4} \sum_{d|N,d>0} \varphi(d)\varphi(\frac{N}{d}), & \text{otherwise} \end{cases}$$

where φ is the Euler's phi function.

We shall see later in §1 that g(N) = 0 only for the eleven cases $1 \le N \le 10$ and N = 12.

Throughout the article we adopt the following notation:

 $\overline{\Gamma} \text{ is the inhomogeneous congruence group } (=\Gamma/\pm I)$ $\Gamma_s \text{ is the isotropy group of } s$ $\Gamma(N) = \{\gamma \in SL_2(\mathbb{Z}) \mid \gamma \equiv I \mod N\}$ $\Gamma_0(N) \text{ is the Hecke subgroup } \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1) \mid c \equiv 0 \mod N \right\}$ $\sigma_0(N) \text{ is the number of positive divisors of } N.$

Received 8th November, 1995 Supported by KOSEF Research Grant 95-K3-0101 (RCAA).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

1. Proof

Let μ be the index of $\overline{\Gamma}_1(N)$ in $\overline{\Gamma}(1)$. Let ν_2 (respectively ν_3) be the number of $\overline{\Gamma}_1(N)$ -inequivalent elliptic points of order 2 (respectively order 3) and ν_{∞} be the number of $\overline{\Gamma}_1(N)$ -inequivalent cusps. It is well-known [1, p.68, 2, Chapter IV] or [3, Proposition 1.40] that

(*)
$$g = 1 + \frac{\mu}{12} - \frac{\nu_2}{4} - \frac{\nu_3}{3} - \frac{\nu_\infty}{2}$$

Thus, in order to estimate g it is enough to know the explicit values of μ, ν_2, ν_3 and ν_{∞} .

(i) **µ** :

For the congruence subgroup $\Gamma_0(N)$ of $\Gamma(1)$, we know [3, Proposition 1.43] that

(1.1)
$$[\overline{\Gamma}(1):\overline{\Gamma}_0(N)] = N \cdot \prod_{p|N} \left(1+\frac{1}{p}\right).$$

Note that $\Gamma_1(N)$ is the kernel of the surjective homomorphism f_N from $\Gamma_0(N)$ to $(\mathbb{Z}/N\mathbb{Z})^{\times}$ defined by $f_N\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = d \mod N$. This yields

$$[\Gamma_0(N):\Gamma_1(N)]=\varphi(N)=N\cdot\prod_{p\mid N}\left(1-\frac{1}{p}\right).$$

Since $-1 \in \Gamma_0(N)$ and $-1 \notin \Gamma_1(N)$ except for N = 1, 2,

(1.2)
$$[\overline{\Gamma}_{0}(N):\overline{\Gamma}_{1}(N)] = \begin{cases} N \cdot \prod_{p|N} \left(1 - \frac{1}{p}\right), & \text{if } N = 1, 2\\ \frac{N}{2} \cdot \prod_{p|N} \left(1 - \frac{1}{p}\right), & \text{otherwise.} \end{cases}$$

By (1.1) and (1.2),

$$\mu = [\overline{\Gamma}(1) : \overline{\Gamma}_1(N)] = \begin{cases} 1, & \text{if } N = 1 \\ 3, & \text{if } N = 2 \\ \frac{N^2}{2} \cdot \prod_{p \mid N} \left(1 - \frac{1}{p^2} \right), & \text{otherwise} \end{cases}$$

(ii) ν_2 and ν_3 :

Recall that $\gamma \in \Gamma(1)$ is an elliptic element if and only if $|tr(\gamma)| < 2$. If $\gamma \in \Gamma_1(N)$, then $\gamma \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N$. Hence, $tr(\gamma)$ lies in $2 + N\mathbb{Z}$. Thus $\Gamma_1(N)$ has no elliptic element unless N = 1, 2, 3. If N = 1, $\Gamma_1(1) = \Gamma(1)$ so that $\nu_2 = \nu_3 = 1$. If N = 2, $\Gamma_1(2) = \Gamma_0(2)$ and hence, by [3, Proposition 1.43], $\nu_2 = 1$ and $\nu_3 = 0$. If N = 3, then $\overline{\Gamma}_1(3) = \overline{\Gamma}_0(3)$. Again, by the same argument, $\nu_2 = 0$ and $\nu_3 = 1$. We summarise the above by

$$u_2 = \left\{ egin{array}{ll} 1, \mbox{ if } N=1,2 \ 0, \mbox{ otherwise} \end{array}
ight.$$

and

$$u_3 = \begin{cases}
1, & \text{if } N = 1, 3 \\
0, & \text{otherwise.}
\end{cases}$$

(iii) ν_{∞} :

First, we consider all pairs

(1.3) $\{c,d\}$ of positive integers satisfying $(c,d) = 1, d \mid N, 0 < c \leq N/d$ (or c in any set of representatives for $\mathbb{Z} \mod (N/d)$).

For each pair $\{c, d\}$, take a and b so that ad - bc = 1 and fix them. Then the elements $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfying (1.3) form a set of representatives for $\Gamma_0(N)\setminus\Gamma(1)$. Also, the number of double cosets in $\Gamma_0(N)\setminus\Gamma(1)/\Gamma_s$ for any fixed cusp s gives the number of $\Gamma_0(N)$ -inequivalent cusps. Take s to be 0. Then we see that it is the number of pairs $\{c, d\}$ satisfying (1.3) modulo the equivalence \sim defined by $\{c, d\} \sim \{c', d'\}$ if $\begin{pmatrix} * & * \\ c' & d' \end{pmatrix} = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix}$ for some $m \in \mathbb{Z}$. From the last equality, we come up with d = d' and c' = c + dm. Therefore, for fixed d

(1.4) there are exactly $\varphi((d, N/d))$ inequivalent pairs.

Now choose a pair $\{c, d\}$ satisfying (1.3) and $\xi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ from $\Gamma(1)$. Put s = b/d. Then $\xi \cdot 0 = s$. We want to estimate the index $[\overline{\Gamma}_0(N)_s : \overline{\Gamma}_1(N)_s]$. Suppose that $\pm \xi^{-1}\Gamma_0(N)_s \xi = \left\{\pm \begin{pmatrix} 1 & 0 \\ h_1 & 1 \end{pmatrix}^n\right\}_{n \in \mathbb{Z}}$ for some $h_1 > 0$ and $\pm \xi^{-1}\Gamma_1(N)_s \xi = \left\{\pm \begin{pmatrix} 1 & 0 \\ h_2 & 1 \end{pmatrix}^n\right\}_{n \in \mathbb{Z}}$ for some $h_2 > 0$. Recall that h_1 (respectively h_2) is the smallest positive integer h such that

(1.5)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ h & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} 1+bdh & -b^2h \\ d^2h & 1-bdh \end{pmatrix} \in \pm \Gamma_0(N)$$

(respectively $\pm \Gamma_1(N)$).

If $\binom{a}{c} \binom{1}{d} \binom{1}{d} \binom{a}{c} \binom{a}{d}^{-1}$ belongs to $-\Gamma_1(N)$, then by taking the trace we have $2 = -2 \mod N$; hence N divides 4, that is, N = 1, 2, 4. In what follows, we assume that $N \neq 1, 2, 4$. The cases N = 1, 2, 4 will be dealt with separately. By (1.5), h_1 is the smallest positive integer h such that $d^2h \equiv 0 \mod N$ and h_2 is the smallest positive integer h such that

$$(1.6) d^2h \equiv 0 \equiv bdh \mod N.$$

Clearly, $h_1 = N/(d^2, N)$. Let h'_1 be the smallest positive integer such that $bdh' \equiv 0 \mod N$. Since $d \mid N$, we are forced to get

(1.7)
$$h'_1 = \frac{N/d}{(b, N/d)}.$$

Then $h_2 = l.c.m(h_1, h'_1)$. Observe that $(d^2, N) = (d, N) \cdot ((d, N), N/(d, N)) = d \cdot (d, N/d)$ because N is divisible by d. Using this we are able to rewrite h_1 as

(1.8)
$$h_1 = \frac{N}{(d^2, N)} = \frac{N}{d \cdot (d, N/d)} = \frac{N}{d} \cdot \frac{1}{(d, N/d)}.$$

Since (b, N/b) | b, (d, N/d) | d and (b, d) = 1, by (1.7) and (1.8) we have $h_2 = l.c.m.(h_1, h'_1) = N/d$. Thus

(1.9)
$$[\overline{\Gamma}_0(N)_s : \overline{\Gamma}_1(N)_s] = [\pm \xi^{-1} \Gamma_0(N)_s \xi : \pm \xi^{-1} \Gamma_1(N)_s \xi]$$
$$= [h_1 \mathbb{Z} : h_2 \mathbb{Z}] = \frac{h_2}{h_1}$$
$$= \frac{N/d}{N/d \cdot 1/(d, N/d)} = (d, N/d).$$

Now consider the natural projection $p : \overline{\Gamma}_1(N) \setminus \mathfrak{h}^* \to \overline{\Gamma}_0(N) \setminus \mathfrak{h}^*$. Let $p^{-1}(s) = \{s_1, \ldots, s_h\}$ and let e_k be the ramification index of p at s_k . Then by [3, Proposition 1.37], $e_k = [\overline{\Gamma}_0(N)_{s_k} : \overline{\Gamma}_1(N)_{s_k}]$ for $k = 1, \ldots, h$. Furthermore, $\overline{\Gamma}_1(N) \triangleleft \overline{\Gamma}_0(N)$ implies that $e_1 = \cdots = e_h$ and

(1.10)
$$[\overline{\Gamma}_0(N):\overline{\Gamma}_1(N)] = e_1h = (d, N/d) \cdot h$$

by (1.9). Here h is the number of elements of $p^{-1}(s)$ which is equal to the number of those in $p^{-1}(b/d)$ depending only on d. By (1.4), given d, there are $\varphi((d, N/d))$

 $\overline{\Gamma}_0(N)$ -inequivalent cusps with the same d. Therefore, we have

$$\begin{split} \nu_{\infty} &= \sum_{d|N} \varphi((d, N/d))h \\ &= \sum_{d|N} \varphi((d, N/d))(d, N/d)^{-1} \varphi(N)/2 \text{ by (1.10)} \\ &= \sum_{d|N} \frac{\varphi(d)\varphi(N/d)}{\varphi(d \cdot (N/d))} \frac{\varphi(N)}{2} \text{ using the fact that } \varphi(n_1)\varphi(n_2) = \varphi(n_1n_2) \frac{\varphi((n_1, n_2))}{(n_1, n_2)} \\ &= \frac{1}{2} \sum_{d|N} \varphi(d)\varphi(N/d). \end{split}$$

Next, we deal with the cases N = 1, 2, 4. If N = 1, $\Gamma_1(1) = \Gamma(1)$; hence $\nu_{\infty} = 1$. If N = 2, $\Gamma_1(2) = \Gamma_0(2)$, and so by [3, Proposition 1.43], $\nu_{\infty} = 2$. If N = 4, $\overline{\Gamma}_1(4) = \overline{\Gamma}_0(4)$, and again by the same Proposition 1.43 in [3], $\nu_{\infty} = 3$. In summary,

$$\nu_{\infty} = \begin{cases} 1, & \text{if } N = 1 \\ 2, & \text{if } N = 2 \\ 3, & \text{if } N = 4 \\ \frac{1}{2} \sum_{d \mid N} \varphi(d) \varphi(N/d), & \text{otherwise} \end{cases}$$

Substituting (i), (ii) and (iii) into the formula (*), we get the theorem.

PROPOSITION 2. For N > 20, g(N) > 1.

PROOF: It follows from Theorem 1 that $g(N) = 1 + (N^2/24) \prod_{p|N} (1 - 1/p^2) - (1/4) \sum_{d|N, d>0} \varphi(d)\varphi(N/d)$. Notice that $N \cdot \prod_{p|N} (1 - 1/p) = \varphi(N)$ and $\varphi(d)\varphi(N/d) = \varphi(N) \cdot (\varphi((d, N/d)))/((d, N/d)) \leqslant \varphi(N)$. Then $g(N) \ge 1 + (1/24) \left(N \cdot \prod_{p|N} (1 + 1/p) \cdot \varphi(N) - 6\sigma_0(N) \cdot \varphi(N)\right)$. We will show that for N > 20

(1.11)
$$N \cdot \prod_{p|N} \left(1 + \frac{1}{p}\right) \ge 6 \cdot \sigma_0(N),$$

where the equality holds if and only if N is square-free. Put $q(N) = \left(N \cdot \prod_{p \mid N} \left(1 + \frac{1}{p}\right)\right) / (\sigma_0(N))$ and $f_p(k) = \left(p^k + p^{k-1}\right) / (k+1)$. We must show $q(N) \ge 6$. Then for $k \ge 1$,

$$rac{d}{dk}f_p(k) = rac{ig(p^k+p^{k-1}ig)((\log p)(k+1)-1)}{ig(k+1ig)^2} > 0$$

indicates that

(1.12)
$$f_p(k_1) < f_p(k_2)$$
 for $k_1 < k_2$.

Also it is easy to see that

(1.13)
$$f_{p_1}(k) < f_{p_2}(k)$$
 for $p_1 < p_2$.

For $1 \leq k \leq 5$, f_p has the following values:

k	f_2	f_3	f_5	f ₇	f_{11}
1	1.5	2	3	4	6
2	2	4	10	$18\frac{2}{3}$	44
3	3	9	37.5	98	363
4	4.8	21.6	150	548.8	3194.4
5	8	54	625	$3201\frac{1}{3}$	29282

Let $N = p_1^{k_1} \cdots p_r^{k_r}$ be the prime factorisation. Then $q(N) = f_{p_1}(k_1) \cdots f_{p_r}(k_r)$. Let r(N) be the number of distinct primes dividing N. If $r(N) \ge 3$,

 $q(N) \ge f_2(1)f_3(1)f_5(1) = 9 > 6$ by (1.12), (1.13) and the table.

If r(N) = 1 or 2, we can check the inequality as follows:

- (i) $r(N) = 2, 2 \nmid N: q(N) > f_3(1)f_5(1) = 6.$
- (ii) $r(N) = 2, 2^3 | N$: Since r(N) = 2, there exists an odd prime p dividing N. Then $q(N) \ge f_2(3)f_3(1) = 6$. In this case, N is not square-free and so we have strict inequality in (1.11).
- (iii) $r(N) = 2, 2 \mid N, (15, N) = 1$: Since r(N) = 2 and $3 \nmid N, 5 \nmid N$, there exists an odd prime $p \ge 7$ dividing N. Then $q(N) > f_2(1)f_7(1) = 6$.

(iv)
$$r(N) = 2, 2^2 | |N, 3^2| N : q(N) \ge f_2(2)f_3(2) > 6.$$

- (v) $r(N) = 2, 2^2 | |N, 5^2| N : q(N) \ge f_2(2)f_5(2) > 6.$
- (vi) $r(N) = 2, 2 | N, 3^3 | N: q(N) \ge f_2(1)f_3(3) > 6.$
- (vii) $r(N) = 2, 2 | N, 5^2 | N : q(N) \ge f_2(1) f_5(2) > 6.$
- (viii) r(N) = 1, $N = p^k$, $p \ge 11$: $q(N) > f_{11}(1) \ge 6$.
- (ix) r(N) = 1, $N = 7^k$, $k \ge 2$: $q(N) \ge f_7(2) > 6$.
- (x) $r(N) = 1, N = 5^k, k \ge 2: q(N) \ge f_5(2) > 6.$
- (xi) $r(N) = 1, N = 3^k, k \ge 3: q(N) \ge f_3(3) > 6.$
- (xii) $r(N) = 1, N = 2^k, k \ge 5: q(N) \ge f_2(5) > 6.$

This completes the proof.

0

296

N	μ	ν_{∞}	ν_2	ν_3	g	
1	1	1	1	1	0	
2	3	2	1	0	0	
3	4	2	0	1	0	
4	6	3	0	0	0	
5	12	4	0	0	0	
6	12	4	0	0	0	
7	24	6	0	0	0	
8	24	6	0	0	0	
9	36	8	0	0	0	
10	36	8	0	0	0	
11	60	10	0	0	1	
12	48	10	0	0	0	
13	84	12	0	0	2	
14	72	12	0	0	1	
15	96	16	0	0	1	
16	96	14	0	0	2	
17	144	16	0	0	5	
18	108	14	0	0	3	
19	180	18	0	0	7	
20	144	20	0	0	3	

For $N \leq 20$, Theorem 1 gives the following table :

REMARK. From this table and Proposition 2, we conclude that g(N) = 0 if and only if N = 1, ..., 10 and 12.

References

- [1] R. Rankin, Modular forms and functions (Cambridge, Cambridge University press, 1977).
- [2] B. Schoeneberg, *Elliptic modular functions* (Springer-Verlag, Berlin, Heidelberg, New York, 1973).
- [3] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan 11 (Princeton, Tokyo, 1971).

Department of Mathematics Korea Advanced Institute of Science and Technology Taejon 305-701 Korea