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ON AN OPTIMAL CONTROL PROBLEM FOR
A PARABOLIC INCLUSION

BUI AN TON

Let H, U be two real Hilbert spaces and let g be a proper lower semi-
continuous convex function from L*(0, T; H) into R*. For each t in [0, T1, let
¢(t,.) be a proper ls.c. convex function from H into R™ with effective domain
D(¢p(t,.)) and let & be a ls.c. convex function from a closed convex subset U of
Uinto L*(0, T; H) with

hu) = 7llull, + C

for all # in U. The constants 7 and C are positive.
The main purpose of this paper is to establish the existence of a solution of
the optimal control problem

0.1) inflg(y) + h(w) :y" € — dp(t, y)
+F(t,y) +Bu, 0<t<T,y0) =y,;u€Uye<c L0, T;H))

where B is a bounded linear mapping of U into L*(0, T; H) and & is an upper
semi-continuous set-valued mapping of L*(0, T; H) into the closed convex sub-
sets of LZ(O, T; H) with at most a linear growth in y. The existence is shown by
using an approximation scheme introduced recently by Barbu and Tiba [4], Barbu
and Neittaanmaki and Niemisto [5] for elliptic variational problems. Optimal con-
trol problems for differential inclusions of parabolic type involving continuous
convex multi-valued mappings have been considered by Makhmudov and Pshe-
michnyi [9].

Notations, the basic assumptions and the main result of the paper are given in
Section 1. The following differential inclusion is studied in Section 2

(0.2) y € —0pt,y) +F(, y) + Buon (0, T), y(0) = y,.

The proof of the main result of the paper is carried out in Section 3. Extre-
mality relations for an approximating problem are considered in Section 4.
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Applications to control problems for differential inclusions of parabolic type in
non-cylindrical domains are given in Section 5.

§1. Notations, assumptions and statement of the main result

For each tin [0, T1, let ¢(¢,.) be a proper lower semi-continuous (l.s.c.) con-

vex function from H into R* with effective domain
D(p(t,)) ={y:ys H,0< ¢(t, y) < oo}

and with 0 € D(g(t,.)).

The subdifferential d¢(t, x) of ¢(t, ) at x shall be written as (¢, x). It is
known that &/ (¢, x) is a maximal monotone set-valued mapping of H into H and
that D(d (¢, x)) is dense in D(¢p(¢,.)). Since 4 (¢,.) is maximal monotone in H,
the mapping I + A4/ (¢,.) is 1-1 and onto for each positive 4 and hence the Yosida
approximants ]; = (I+ 24 (t,))"" is well-defined.

The following results are known and can be found in Brezis [6] or in Wata-
nabe [10].

Lemva 1.1, For each t in [0, T1, let @(t,.) be a proper Ls.c. convex function
from H into R™ with effective domain D(¢(t,.)) in H. Then

1. For each t and each positive A, the Yosida approximant J ; 1s a single-valued
non-expansive mapping of H into H.

2. For cach t, A5() = 27'(I — J)) is a single-valued maximal monotone, Lips-
chitzean mapping of H into H with constant A7

3. For each t and each x, Asx € A (¢, J;x).

4. For all x in D(d (¢,.)):
Jix—xin H; Aix— mld(t, 2)] in H where mld(t, )] is the element of
A (¢, x) with minimal H-norm.

. 1
5. Let ¢,(t, ) = lnfyep(w{qo(t, y) + ﬁ“‘r - y”z} then: @,(t,.) is Frechet

differentiable and 0, (t, ) = Ajx.

We shall assume some continuity hypotheses on ¢.
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Assumption 1.1, Let # > 0 and t, be in [0, T). Then for each y, € D(p(t,,.)
with | y, || < 7, we assume that theve exists y(t) in D(p(t,.)) such that

Ly —y P <1k, B — k(&) (K, + oy, y).

2.0< QD(tr y(t)) < ﬁp(to, yo) + ‘ lr(t) - lr(to) l (Kr + §0(to’ .7/0)),

where K, is a non-negative constant and k,, [, ave two absolutely continuous functions
on [0, T1 with k,, I, in L*0, T).

Using Assumption 1.1, Yamada [11] has proved the following result.

LemMa 1.2, Let ¢ be as in Lemma 1.1 and suppose that Assumption 1.1 is satis-
fied. Let y(£) be an absolutely continuous function from [0, T1 into H. Then for each
positive A, @,(¢, y(§)) is absolutely continuous on [0, T and

| <% 0:(t, y<t)> - <Aiy(t), g; y(t))) | <100 | K, + ¢, 9)?

where K, is as in Assumption 11 and » = sup{| Jjy(s) F0<A<1;0<s, ¢
< T3,

A compactness assumption is needed in the paper.
ASSuMPTION 1.2, For each t i [0, T1 and each positive ¢, the set
X0 ={y:yecsH,0<Z olt,y) <¢
is compact in H.

We shall consider set-valued mappings % (¢, x) of LZ(O, T ; H) into the sub-
sets of L0, T ; H) satisfying the following assumption.

AssumpTION [.3.

1. % is an upper semi-continuous (u.s.c) sel-valued mapping of L’, T; H)
into the subsets of L0, T: H).
2. For ecach and each x, F(t, ) is a closed convex subset of L*(0, T; H).

3. There exists C such that

sup{l 7, o [F: ft, 2)) € Ft, )} < CA+ |z
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for all x in H and almost all t in [0, T].
In Section 3, we shall consider the optimal control problem
2 -1 T *
(1.1) inf{g(y) +h) + 1 llvllzerm ¢ f lot, y) + o (¢, v) — (y, v)]dt:
0

Y EFt, Y +Bu—v,0<t<T,y0) =y,e<n;uc€Uy,ve< L0, T;H)]
where go*, the conjugate function of ¢, is given by

go*(t, V) = SUP,epl (X, v) — @, D)].

It will be shown that the set of solutions {g., u, v.} of (1.1) is compact in

L0, T; H) X Uy X (L0, T; H)) on for each 7 and e. The limit of {y., u., v}
as € — 0, is a solution of the problem
(1.2) inf(g(y) + h(w) + 0l o0 r.m:
ye—dit,y +Ft, y +Bu, 0<t< T, y0) = y,;
u€U ye L0, T; H),veE dt, y)}.

The main result of the paper is the following theorem.

THEOREM 1.1. Let @(t,.) be a proper Ls.c. convex function from its effective do-
main D(@(t,.)) © H into R", satisfying Assumption 1.1 and suppose that

olt,y) =clyl’

Jorally in D(@(t,.)) and all t € [0, T].

Let F be an w.s.c. set-valued mapping of L (0, T; H) into the closed convex sub-
sets of LX0, T; H) verifying Assumption 1.3. Suppose that Assumption 1.2 is satis-
fied and let y, be in D(@(t,.)). Then

1. For each  and ¢, the set {y:, uZ, 1):} of solutions of (1.1) is compact in
L0, T; H) X Uyee X (L0, T5 HD) e

2. Every limit point {y", u", v"} of the set {yf, u,, v_f} as € — 0, is a solution

of (1.2).

3. The set {y", u"} is compact in L0, T; H) X Useax and every limit point of
the set as p 1 0, is a solution of (0.1).
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§2. The differential inclusion

(2.1) y€—dt,y +F&, y + Buon (0, T), y0) = y,.

Under slightly different hypotheses, the existence of a solution of the differen-
tial inclusion (2.1) has been established in [8] using Attouch and Damlamian [1],
Yamada [11] results together with the Schauder fixed point theorem.

First we shall consider the initial-value problem

(2.2) y + sy €F(t,y) + Buon (0, T), y(0) =y,

LemMMA 2.1. Let ¢ be as in Theovem 1.1 and suppose that Assumptions 1.1-1.2
are verified. Let f be a continuous single-valued wmapping of LZ(O, T; H) into
L0, T ; H) with

lfee, o F<ca+lzPp

for all x in H and for almost all t in (0, T). Then for any y, in D(¢(0,.)) and any u
in U, there exists y, in L0, T; H) withy’ € L*(0, T; H) such that

(23) y,; + A;yl Zf(ty y,l) + BM on (0’ T)9 y/l(o) = yO'

Moreover

(2.4) I y; Iliz(o,r;y) + “ A;% ”12,2«),1;11) +supy<, <79 (£, y) < M(1+ (§7 "?/ + ¢(0, ¥))

where M is independent of A, y,, U.
Proof. Since A; is Lipschitzean with constant /1_1, the existence of a solution
of (2.3) is a consequence of Peano’s theorem.
From (2.3) we get
DYy P < cly,@F +1Bul +
dt Yl = Ya ) ” ” Bu ” 1)
and
;o PR FUVR L 3
(y;, Ay + “ Ay, ” =9 " Ay, ” + 4 "f(l, ) " + 4 " Bu ” .

Applying Lemma 1.2 and we have

d 1
dt (Dz(t, ?/1) + p) ” A;yx ”2 <
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1 2 ¢ 2
i ) I+ i—ll Ay, I+ 1 Bulf + (K, + 0, y)) (110 | + %l K 1).

Since
cl iz lP < o, i) < ¢,(t, 2)

we obtain by taking into account our hypotheses on f

d d 1
a0y + Iy, I + 1 I Ay, IP
< Bulf + (K, + ¢,(t, y) + DA LO |+ KO + CA+ ¢, y).

Thus,
1 e
(2.5) 0ty 1,0) + 1y, |+ 7 [ 143, Fas <
t
0,0, 3) + 1 Bulf + M+ M [ 0,6, 4,50 ds,
where M is independent of A, y, and of «.

The Gronwall lemma gives

0 (t, g, (D)
< 0,00, y) + | Bulf + M,
<0, y) +Bul’ + M,
where M is again a positive constant independent of A, y, and of %, All the other
estimates are now a consequence of (2.5)—(2.6).
LemMa 2.2, Suppose all the hypotheses of Theorem 1.1 are satisfied. Then there
exists y, in L°(0, T; H) with y} in L0, T; H), solution of (2.2). Moreover
Iy; ”iz(o.r;m + | A;yx "i%o,r;m + supo<, <79 (t, 3, () < MQ + 90, y) + llu ||§>,
where M 1is a positive costant independent of A, Y, U.
Proof. Since ¥ is wsc. from L°(0, T; H) into the closed convex subsets of
L0, T; H), it follows from the approximate selection theorem that there exists

{f,} of single-valued continuous mappings of L°(0, T; H) into L*(0, T; H) such
that

1
1. Graph f, € Graph ¥ + w (unit ball about the graph of %),
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2. Range f, C co(Range ¥).

Lemma 2.1 yields the existence of a solution of the intial value problem

(2.6) v, + A, = f,(t, y) + B,on 0, T), y,(0) = y,.
Furthermore
(2.7) Iy, “iZ(O,T;H) + | A;Zh ”izm,r;m + supo<, <7 @: (8, ¥) <

MA + |ulf; + ¢, 4,

where M is a positive constant independent of #, u, ¥,, A.

We obtain by taking subsequences (denoted again by ) {y,, ¥} — {y, v’}
weakly in L*(0, T; H) X L*(0, T; H). Taking into account the lower semi-
continuity of ¢,, we get

“ Y ”iz(o,r;m + Supog;gr(px(ty y(t)) <M1+ ” u ”?/ + (P(O, .7/0))'

It follows from Assumption 1.2 that: y, — y in L*(0, T; H). From the defini-
tion of A; we obtain

Ay, =1, — Liy) — A
weakly in L°(0, T ; H). So:
| Ay o0 < MQA+ Tl + 000, 9)).
We know that
lw, = £, 4 leozm < 075w, € F (&, ).

With our hypotheses on #, we get: | w, ”LZ(O,T;H) < M. Taking subsequences, we
have: w, — w weakly in L*(0, T; H). Since ¥ is u.s.c. we get: w € F(t, y).
The lemma is proved.

THEOREM 2.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then for
any given y, in D(9(0,.)) and any u € U, there exists y in L0, T; H) with y’ in
LX0, T; H), solution of (2.1). Moreover

Iy’ ”iz(o,r;m + jug 1AC, v ”i%o,r;m +
sup o, y(0) < MQA + lully + 00, y)),

0<t<T

where M is a postitive constant independent of u, y,.
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Proof. Let y, be a solution of (2.2) given by Lemma 2.2. From the estimates

of the lemma, we obtain by taking subsequences: {y;, y;} — {y, ¥’} weakly in
L*(0, T; H). Since

SuPogrgr‘P(t, y) <M,

it follows from the estimate and from Assumption 1.2 that y,—y in L0, T; H)
as A— 0. The us.c. of F gives: f(t, y) — f(t, y) weakly in L(0, T; H) for any
fe g

From Lemma 2.2 we know that: Aj(y,) — z weakly in L*(0, T; H). Since
A(y) € A(t, y), we have

0 gfo Ay) — Alt, D), y, — Ddt

for any A € o and all zin D(o) N L*0, T; H).
Therefore

T
0 ﬁf (z— AU, 0, y— 2dt

for any A € o and all zin D(d) N L*0, T; H).

Now a standard argument yields z € 4 (¢, y).

The estimates of the theorem are now an immediate consequence of those of
Lemma 2.2.

§3. The optimal control problem (0.1)
First let us consider the problem (1.1).
LEMMA 3.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then for

each € <1, there exists at least ome solution {ysn, uz, v:} m L2(0, T;H) X9 X
L0, T; H) of the optimal control problem (1.1).

Proof. 1) It is clear that the admissible set is non-empty as it contains
{9y, 0, v} with any v in F(t, y,) + B(0).
Let d] which we shall write as d, be given by

d, = inflg() +h@) + 1l vlzerm +
T
e [ ot ) + 0" v) — 4, 0)1dt:
0
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Yy €EF,y) +Bu—v,0<t<T,
y(0) =y, ;x €Uy, vE LN, T; H)}.

It is clear that: 0 < d,.
Let {y,, #,, v,} be a minimizing sequence of (1.1) with

(3.1) d. < gly,) + h(u,) +1nlv, ”iz(o,r;m +

T
E“f o(t, y) + @ (t, v,) — (,, y)ldt < d. + n".
0

With % as in the paper and g(.) = 0, we get
N ” Uy ”iz(o,r;m + " U, ”U < C(@).

C(¢) is independent of #, 7.
But

(3.2) ¥, € #(t, y,) + Bu, — v, on (0, T), 4,(0) = ¥,

Thus,
33 Nu®F<lul+C [ Un@ P+ 1+l + v, Fds.

The Gronwall lemma gives

(3.4) ” Yn “L"(o,r;m < Cs(e, 77)-

The constants C are all independent of #.
From the definition of the conjugate function, we get

T
lwmwm
T
e +d)+ [ Lot 0) + (g, v)ldt

<a+d)+ [ 1ot 0+ 1yl har
< C,(e, m).

From the equation (3.2) and from (3.4), we have

(3.5) o |z, < Cs(e, m).

2) Let m— o to obtain by taking subsequences (again denoted by #%): u,— u
weakly in U, {y,, y,, v,} = {y, ¥, v} weakly in (L*(0, T; H))®. Since u, € U
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and AU is closed, u# is also in 9. In view of (3.4)-(3.5), Assumption 1.2 gives: y,—y
in L*(0, T; H). The lower semi-continuity of both ¢ and of its conjugate yield

T % T T %
[ Tott ) + ¢*(t, wldt <timint,.. [ ¢(t, y)dt +limink,_. [ ¢*(t, v)at.
0 0 0

Clearly

T T
f (v, ydt < lim,,%,f (v,, y,)dt.
0 0

We now have
2 -1 T *
d.=g@ + hw +nllvlgrm +e f lo(t, ) + o™, v) — (y, v)]at.
0

It remains to show that
y €EF(t,y) +Bu—wvon (0, D, y(0) = y,.

Since F is us.c. from L0, T; H) into the subsets of L*(0, 7; H) and since y,—y
in L*(0, T; H), we get: f(t, y,) — f(¢, y) weakly in L*(0, T; H) for any f € Z.
The lemma is proved.

LEMMA 3.2. Suppose all the hypotheses of Theovem 1.1 ave satisfied. Then for
any 1, there exists at least one solution {y”, u"} in LZ(O, T; H) X U of the optimal
problem (1.2).

Proof. Let

0<d"=inflgy) +h) +nlvlrm:
vy € —dt,y +Ft,y + Bu, 0 <t < T, y0) = y,;
u€ U ye L0, T; H),veE dt, p

From Theorem 2.1 we know that the admissible set
{y:y€dt,y +F&, y + Buon (0, T), y(0) = y,)

is non-empty.
Let {y,, u,, v,} be a minimizing sequence such that

d" < gly,) +h,) +nlv, leﬂ(o,r;m <d + ”_lr

and
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y, € d(t,y,) +F(,y,) + Bu,on (0, T), y,(0) = y,.
Then it follows from Theorem 2.1 that

” Yn "i”(o,r;m + SUp”A(-, ) ||12_2<o,r;11> + sup o(t, y,)
Aed 0<t<T
< MQA + u, I + 000, yo))
< Cy(p).

We get by taking subsequences: y,— y weakly in L0, T; H), y,—y’
weakly in L*(0, T; H), u,— u weakly in U, {A(t, y,), v,} — {2z, v} weakly in
(L*(0, T; H))® From Assumption 1.2, we obtain: y, — y in L*(0, T; H).

The usc. of F yields: f(¢, y,) — f(t, y) weakly in L°(0, T; H) for any
f € %. The maximal monotonicity of o gives: z € A (¢, y).

Therefore:

y € —dt,y) +F(t, y + Buon (0, T), y0) =y,
It is clear that
d"=g) + hG + v lerm
with v € 4 (¢, ).

The lemma is proved.

LemmA 3.3.  Suppose all the hypotheses of Theovem 1.1 are satisfied. Then the
set {yl, ul, v} of solutions of (1.1) given by Lemma 3.1, is compact in L0, T; H)
X Ugeae X (L0, T; H)) weax for each fixed 1. Every limit point in L0, T; H)
X Ugene X (L0, T3 H)) yea Of that set as e — 0, is a solution of the optimal control
problem (1.2).

Proof. 1) Let {y*, u*, v™} be a solution of the optimal control problem (1.2)
given by Lemma 3.2.

Takingy =y™, u=u", v=20"= A, y*) for some A € 4, ie. v* € do(t,
y*) in (1.1): we get:

g + h(u) + nl v, e +
T
e Lot 5 + 0%, ) — G, w)la
0
< g™ +h@™ + 0l 0" o rm,

since

https://doi.org/10.1017/50027763000005985 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005985

206 BUI AN TON

olt, y) + 0" (t,v) — (y, v) = 0for all v = A(t, y) € do(t, y).
It follows that
(3.6) ” U, “U + n ” Ve ”iz(o,T;H) <M,

where M is a positive constant independent of both € and of 7.
On the other hand, using the definition of the conjugate function we have

(3.7) J 1ot 00 = 05, 0 + @ =y, v)lds < eM

for all z in D(¢) N L*(0, T ; H).
Since we assume that x = 0 is in D(@(¢,.)), we get

t t
-1 2
(3.8) [ ot s < con™ + [y las

But
y. € F(t, y) + Bu, — v, on (0, T); y.(0) = y,.
So:

t
(39) lo.F <lulF + ¢, [ .0 Fds+ ca™

The different constants C are all independent of €, 7.
The Gronwall lemma applied to (3.10) yields

(3.10) 1 9e o < Com ™

It now follows from (3.9) that

! -1
(3.11) ﬁw&meQn,

and

ly: ||L2(0,T;H) <M.

The set {y,, #,, v} is now compact in L*(0, T; H) X Uygen X (L0, T; H)) yeur

2) Let e — 0 and we have, by taking subsequences: {u,, v,} — {u, v} weakly
in U X L*0, T; H). Since u, € U and U is closed, # is in U. Assumption 1.2
gives: y,— y in L*(0, T; H). Clearly y. — y’ weakly in L*(0, T; H). Since
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g + h@w) + 1l v o rm
< gly) +h) +nlo, Gagrm + ¢ f Lot ) + 67, v) — G, 0)dt
< g™ + h@® + 110" o rms
we obtain
(3.12) g@ T h@ + 1ol rm < 2@ +h@™ + nlv* Lo rm-
3) We now show that
y €A,y +F&, y) + Buon 0, D, y0) =y,

The upper semi continuity of & gives: f(¢, y,) — f(¢, y) weakly in L0, T; H)
for any f € . In (3.7), we get by replacing v, with f(¢, y.) + Bu, — y,

T
fo lo(t, y) — o, ©) + (x —y,, f(t, y) + Bu, — y)Dldt < eM.
So:
1 2 T
5 ly (D +j(: lo(t, y) — o(t, ©) + (x —y,, f(t, y. + Bu,)ldt
T , 1 )
— [ @owdr<em+5lyl
Hence, letting € — 0 yields
T
f lot, ) — o, 2) + (@ —y, ft,y) + Bu—y)]ldt < 0.
0
It follows that
T T
L (y —Bu—f(t,y), z —ydt < fo lo(t, ©) — o(t, y)]dt
for all x in D(¢) N L*(0, T; H) and for some f € Z.

Thus, y* — Bu — f(t, y) € 0¢ (¢, y). It is now clear that v € d¢(¢, y). Since
{y*, u*, v*} is a solution of (1.2) any y, # are in the admissible set of the prob-
lem (1.2); in view of (3.13) the lemma is proved.

Proof of Theovem 1.1. In view of Lemma 3.3 it remains only to show that

there exists at least a solution of (0.1) and that the set of solutions {y”, #”, v"} of
(1.2) is relatively compact in L*(0, T; H) X U,y X (L*0, T; H)) yeue and that
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the limit in L*(0, T; H) X U,y of any {y”, #”, v"} is a solution of (0.1).
The existence of a solution of (0.1) can be established as in the proof of Lem-
ma 3.3 by using a minimizing sequence. We shall not reproduce the proof here.
Let {y™, #™} be a solution of (0.1) and let v™ = m[[t, y™)], ie. the element
of the convex set & (., y™) with minimal L*(0, T'; H)-norm. Since y", #", v" is a
solution of (1.1), we have

g@") + h”) + 010" oo rm
< g(y*) + h(u*) + 7 “ v* “iz«),r;m
<M.

Thus,
lu"ll, <M,

where M is independent of 7.
On the other hand

" edt, y) +F y") + Bu'", y"(0) =y,
Theorem 2.1 gives
I ™ ||iz<0,T;H, + sup, ey 1 AC, u") "i%o,r;m +sup o, y") < CA+ ¢,y) + [«"[5).

Thus, as before the set {y"} is relatively compact in L0, T; H).
Let {y, u} be the limit in L*(0, T; H) X Uyeae of {y”, u"}, then a proof as
before gives

y € —dt,y +F&, y + Buon (0, T), y(0) =y,
and
g + h(w) < g™ + h@u™).

Since {y, ) is now in the admissible set of the problem and since {y*, #™} is
a solution of (0.1), the theorem is then an immediate consequence of the above ine-
quality.

§4. Extremality relations for (1.1)

The first order necessary conditions of optimality for the differential inclu-
sion (1.1) are derived in this section.
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Let K(u) be a closed convex subset of L*(0, T'; H) defined by
2 T 2
() K@ =gy O, T:M,0< [ o, pdt< e +ull+ 00, )]
and let I, (x) be its indicator function.

LemMMA 4.1. Let F be a set-valued mapping of L0, T; H) into the subsets of
L0, T; H) verifying Assumption 1.3. Suppose further that:

1. For each y, F(y) is a compact subset of L0, T; H).

2. F is conves, ie. the graph of F is a convex subset of L*(0, T; H) X L*(0, T; H).
Then for cach fixed x in L0, T; H), the function
T
(4.2) Fly;2) = inf,cq, f (f, x)dt
0
is convex and l.s.c. from L0, T; H) into R.

Proof. For each fixed x in L0, T; H), F(.;2) is a mapping of L*(0, T; H)
into R and its lower semi-continuity is an immediate consequence of a known re-
sult. (Cf. [2] p.67). We now show that it is convex, i.e.

FQy, + 1 = Dy,;2) < AF(y,;2) + (1 — DF(y,; x).

for any pair ¥y, ¥, in L0, T; H) and any 0 < 2 < 1. Let {y,, f(y)} be in Graph
F(y,), then {Ay, + 1 — Dy, Af @) + A1 — ) fy,)} € Graph FUy, + 1 —
Ay, for any 0 < 2 < 1. We have

FQAy, + 0 — Dy,; 2
= inf fT (f, Ddt

feF Qy+(1=-yy ~0

T T
< inf , x)dt + inf , v)dt

ge(1-DF(y, v0

T
inf _]0‘ (h, x)dt

heF @y

T
<1 inf f (h, Ddt + 1 — 2
0

heF(y,y)

S AF(y,;x) + (1 — DF(y,; o).

The lemma is proved.
Let
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7y u, v;p) =
F;p = [ = Bupdtt [ @, pat
- (?/(T), P(T)) + (yo’ P(O))

for any {y, u, v} in W20, T; H) X U X L*(0, T; H) and p € W"*(0, T; H).
The strategy set S is given by

(4.3) S={y,u, 0} :{y,u, 0} €W, T;H) x Ux L0, T; H), 7y, u,v;p) <0
for all p in W20, T; H)}.

Let I" be the mapping of L*(0, T; H) x U X L*(0, T; H) into R defined by
(4.4) Iy, u, v) = g@) + @) + 1l vlGuorm + Lew® +
T
s_lf [o(t, y) + (p*(t, v) — (v, y)ldt.
0

Now problem (1.1) may be rephrased as
(1.1 inf,, e I'(y, u, v).
The Lagrangian of the problem (1.1) is
(4.5) Ly, u,v;p) =I'y, u, v) + 7y, u, v; p).

It is defined for {y, #, v} in S and p in W"*(0, T; H).
The Lagrange multipliers p, are given by
inf{L(y, u, v; p,) : {y, u, v} € L*(0, T; H) X Ux L*(0, T; H)}
=inf{ sup Ly, u, v;p):{y, u, v} €L, T;H) x Ux L*0, T; H)}.

pewr2(0,T;H)

It is known that {y,, #4, Dy} is an optimal solution of (1.1) iff:
() {yy, Uy, vy} minimizes L(y, u, v; py) on L0, T;H) x Ux L0, T; H)
and
(i1) 7{Ysr Uy, vy Dyt = 0.
Thus, from (4.4), (4.6) we get
-1 T
(46) '+ 0,F (o D) + 080 + 0l ) + ¢ [ Golt, ) — v, 1> 0;
0
(D) =y, (D).

and
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(4.7) oh(uy,) +B*p >0
with
(4.8) 200, + ¢ 00", vy) — 'y, — p D O0.

It follows from (4.7) and (4.8) that
P+ 0, F Yy, p) + 0g(yy) + 00y, ()

(4.9 — e fo Tpdt+ ¢! fo T[@(p(t, 45 — )y + 2en) 0™ (¢, v,)1dt 2 0,
P(T) =y, (D).

Let P(y,.; p) be given by
Plyy; p) = 0,F(yy; p) — (2em) '[ pdt.

Then P (y, ; p) is a mapping of L*(0, T; H) into L*(0, T; H) and is linear in
p. Since h is convex and l.s.c. from U to R™, its sub-differential dk(2) is a closed
convex subset of U. Let

KW ={p@):p L0, T; H), Bp € — oh(u, ()}

for almost all ¢in (0, T).
The problem (4.9) may be rewritten as

(4.10) —p € P(yy; p) + YUy, vy) on (0, T),pE KB ae. on 0, T), p(T) =y, (T)

with

T
Y(yy, vy) = 0g(yy) + aIK(u*) (y:) + e f (00 (ys) — (zﬁ)—ly*
[
+ 2en) 9™ (v,)]dt.
THEOREM 4.1. Suppose all the hypotheses of Theorem 1.1 and of Lemma 4.1 are
satisfied. Let {yy, Uy, vy} be an optimal solution of the problem (1.1). If u,(T) is in

H, then we assume that By (T) € — h(u,(T)). Then there exists a unique p
with p and p” in L¥0, T; H), solution of the inclusion

—p € 0L,,(p) + Pyy; p) + Y(uy, vy) on (0, T); p(T) = y, (T).

1
Proof. Let ¢(t;x) = §||.2||2 + I,,(x), then ¢ is a convex, lLs.c. function
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from H into R" for almost all ¢ Its subdifferential d¢(¢; x) = x + 0L, () is a
set-valued mapping of H into H for almost all £
Consider the problem

(411 —p +0¢t, p) — Py, p) T ) — Y(uy, vye) 2 0o0n (0, T);
p(T) =y (T).

Since ¥, (T) is in D(¢(T,.) ; it is known that (4.11) has a unique solution p with
pand p’ in L?(0, T; H). The theorem is proved.

§5. Applications

Let 2, be a bounded open set of R” with boundary I, and set =
Upci<r(@, X Ath), I'= U, (L, X {#}). We shall make the following assump-
tions on £2.

ASSUMPTION V.
1. There exist k € N and €, such that for each t in [0, T1, I, consists of closed
hypersurfaces I, of class C* and dist (I'), I')) > ¢, forj # .

2. Let 2i= U _,,(Q, X {r}). Then the domain Q is covered by N slices

.Q,'j’“ﬂ 0,>0and j=1,..., N. For each j, Q,'j”’ is mapped onto a cylin-
drical domain £, X (t, t,+ 0,) by a diffeomorphism of class C* up to the
boundary, which presevves the time-variable.

Let G be an open ball of R” with ¢IQ € G for all ¢in [0, T].

1. A strongly nonlinear parabolic inclusion
Let U= L0, T; L*(6)) and let U, the set of admissible controls be a closed
convex subset of U, e.g.
wuelU,a<ulx,d <PBae in (0, T) X G, fu(x, Ddxdt = M}
2
Let K be a closed convex subset of L*(G) with 0 € K, a typical example of K
is

K={y:y@ € L*(®), 0 <y ae. in G}.
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We shall take 4 (D) to be the set
HW ={ylx, )y € LG N Kae.in (0, D, y=00n G — 2}.

It is easy to see that # (9 is a closed convex subset of L*(G).

Let
(5.1) o,y = ¢,y + 1,,@.
where
ot =r Vylye ity € W (6
and

@(t, y) = + oo otherwise.

Then ¢(t,.) is a Ls.c. convex function of L(G) into R* with D(p(t,.)) =
{y:y € K@) N W,)(G)}. Since K () is a closed convex subset of L*(G), the in-
dicator of the set is a Ls.c. convex function on L*(G) and for any y in D(@¢(2,.)),
the subdifferential of ¢ (¢, ) is

do(t,y) = —V(Vy| " Vy) + 0l,,.

With ¢ as above, its conjugate is given by

(5.2) ", v) = SUD, ek nwir @y U; vzdr — flj; |Vz |'dx}.

It is known that there exists a unique solution 2z, of the nonlinear elliptic
boundary-value problem

(5.3) —V(Vz|"*V2) + 0, (2) ® vin 2, z= 0 on 02,
for any given v in L’(G). It is not difficult to check that @™ (¢, v) = (1 —
r | zw.

‘QI

Consider the optimal control problem
inf{fl yx, O — qlx, O *dxdt +
o)
1 2
7 [Vutz, b Pzt +
0

n fl v Pdzdt + ¢ f G vyl"+ A — r Nzw — yv)drdt
2 2
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cy € F(t, y) + Bu— v, y0) =y,).
Let g(x, D be in L*(0, T; L*(G)) and let

1 1
¢ =5 [y, 0 —qle, 0 Fdudt; h) = 5 |ulf,
We shall study the control problem
. B 2 1 2 )
(5.5) mf{fgly(x, D — qlz, O |"dxdt + 3 fgl u(x, t) ["dxdt 1y € S(u)}

where S(%) is the set of solutions of the initial boundary-value problem

(5.6) ¥y —V(Vyl*Vy) €F¢, y) + Buon , ylx, ) =0on I, y(0) =y,

THEOREM 5.1. Let & be an wu.s.c. set-valued mapping of L0, T; LX(G)) into
the subsets of L°(0, T; L*(G)) satisfving Assumption 1.3. Suppose that Assumption
V is verified and let ¢ be as above with y, € K (0) N W, (2,). Then the set of solu-
tions {y!, ul, oI} of (5.4) is compact in L0, T; L*(®)) x (L*O, T; L*(G)) yeu
X (LZ(O, T; LZ(G))weak‘ Let € 0 and then let § — 0, then the set of limit points
{y, u, v} of {y!, u], v]} are solutions of the optimal control problem (5.5)-(5.6).

Proof. With ¢ as in the theorem and with Assumption V, it was shown by
Yamada [11] that ¢ satisfies Assumption [.1. It is clear that Assumption 1.2 is a
direct consequence of the Sobolev imbedding theorem and of Aubin’s theorem. The

stated result is now an immediate consequence of Theorem 1.1.

2. Mixed boundary problems for evolution inclusions

Let £, be as before and let G be a bounded, open simply connected subset of
R” with a smooth boundary. We assume that £, is a subset of G for all ¢ and that
7, = 0G N I is a non-empty closed surface. Set: ¥y = U, ,.r 7, and let

HG ={y:y€ WG, y=0o0ndG — 7.

Let j be a proper ls.c. convex function from R to [0, c©] with 7(0) = 0 and let
B = 0y. Consider the l.s.c. convex funtion (p* of L*(G) into R" defined by

o) =5 [1vyfas + [jwdoity € HG), jg) & L)

and
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@(y) = oo otherwise.

Let K) = {y:y € L*(G), y=0 ae. in G — £,) and set o(t, ) = Gy +
Ivy@). It was shown in [8] that

D(p(t,)) = [y :y € L(G) 4y € I*(G), yl,, € WH(Q),
0
y=0on G— £, _5%6/3@) on r,}

with d¢(t, y) = —A4y.
The conjugate of ¢ (¢, y) is

¥t v) = SUD,epiz(g) 220 on ”G‘h{./,; [zv — —;I Vz IZ] dr — Lj(z)da}.

Consider the mixed boundary-value problem
. 0z
(5.7 — Az=vwvin £, —%EB(z) on 7, 2= 0on 082, — 7t.

It was shown in [8] that (5.7) has a unique solution 2z, in Wl'z(Qt). Since z, is

0z

in W"*(Q) and Az, is in L’ (), it is known that 5y 1S in L*(32,) and it is not

i o* _1 f _1 f 0z,
difficult to check that: " (¢, v) = 5 5 zpdr — 5 | on vdo.

As before we now consider the optimal control problem

; 1
me;I y, ) ~ gz, ) [*dzdt + ?./,; | uz, O 'dzdt + ”fgl v |dzdt +

(5.8) e—l[%‘]‘; {I Vyl* + —;—zﬂv]dxdt + J;j(y)da — % g;” v — yv)dxdt} :
¥ €F, ) on 0, D, yO) = g,
The problem (5.8) will serve as the approximating system for
(5.9) inf{j;l y(x, ) — q(x, t) |*dzdt + _[)l w(z, t) |*dxdt 1y € S(u)}
where S(u) is the set of solutions of the initial boundary-value problem

(5.10) y —Ay€ F, y) +uon L, —%Eﬁ(y) on 7,,
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y=0on 02 — 7,;y0) =y,

THEOREM 5.2. Let ¢ be as above and let F be a set-valued mapping of X0, T;
L*(G)) into the subsets of L0, T; LX(G)) satisfving Assumption 1.3. Suppose that
Assumption V is verified and let y, be in K©) N H(G) with j(y,) € L'(y). Then
the set of solutions {y., ul, v1} of the optimal control problem (5.8) is compact in L*(0,
T; L'(G)) x (L0, T;LZ(G)))weak X (L0, T; L*(G)) yeu The set of limit
points {y, u, v} of the solution-set of (5.8) as €—0 and then as n—0 is a
solution-set of the optimal control problem (5.9)-(5.10).

Proof. Again with ¢ as in the theorem and with Assumption V, one can show
that Assumption .1 is verified. (Cf. Yamada [11]). It is clear that Assumption 1.2
is satisfied and the stated result is an immediate consequence of Theorem 1.1.
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