VOL. I (1969), 245-261.

On the group ring of a finite abelian group

Raymond G. Ayoub and Christine Ayoub

Abstract

The group ring of a finite abelian group G over the field of rational numbers Q and over the rational integers Z is studied. A new proof of the fact that the group ring $Q G$ is a direct sum of cyclotomic fields is given - without use of the Maschke and Wedderburn theorems; it is shown that the projections of $Q G$ onto these fields are determined by the inequivalent characters of G. It is proved that the group of units of $Z G$ is a direct product of a finite group and a free abelian group F and the rank of F is determined. A formula for the orthogonal idempotents of $Q G$ is found.

Introduction

In this paper we study the group ring of a finite abelian group G over the field Q of rational numbers and over the (rational) integers Z. We give a new proof of the well-known fact that the group ring $Q G$ is a direct sum of cyclotomic fields [G. Higman] which enables us to say which fields arise and with what multiplicity (see also [5]). We show that the projections of $Q G$ onto these fields are determined by the inequivalent characters of G. This proof is to our mind conceptually much simpler than the one using representation theory. Granted an acquaintance with the elementary properties of tensor products (of commutative algebras) all that is needed is developed in the paper itself.

In $\S 3$ we consider the group U of units of $2 G$; we find that U is the direct product of a finite group and a free abelian group F of finite rank - a fact already established by Higman (cf. [4]) - but our results

[^0]enable us to calculate the rank of the group F (Theorem 4). Theorem 5 gives a formula for the orthogonal idempotents of $Q G$. Finally in the last paragraph we study the embedding of $Z G$ in the direct sum of cyclotomic fields, in the case when G is cyclic of prime power order.

Definitions and notations

We list the notations which will be used throughout the paper. Some of these are standard, while others are our own invention - most of the latter will be explained in the body of the paper but are listed here for the convenience of the reader.
\oplus is used for the direct sum of rings.
If X_{i} are rings and if $x_{i} \in X_{i}$ (for $i \in I$), we write $\underset{i \in I}{\oplus} x_{i}$ for the element of $\underset{i \in I}{\oplus} X_{i}$ whose i-th component is x_{i}.

Q denotes the tensor product over the rational field.
If R is a ring, we write $m R$ for $R \oplus \ldots \oplus R \quad\left(m\right.$ terms) and R^{m} for $R \otimes \ldots \otimes R$ (m terms).
Q is the field of rational numbers.
ζ_{d} denotes a primitive (complex) d-th root of unity. $\Phi_{d}(x)$ denotes the cyclotomic polynomial satisfied by the primitive $d-t h$ roots of unity over the rationals.
Q_{d} is the splitting field of $\Phi_{d}(x)$, so that Q_{d} is obtained from Q by adjunction of ζ_{d}.
$F[x]$ denotes the ring of the polynomials in x over the field F and $F(\alpha)$ the field obtained by adjunction of α to F.

If $f(x) \in F[x], \operatorname{deg}(f(x))=$ degree of $f(x),(f(x))=$ ideal generated by $f(x)$.

The exponent of a finite group G is the least positive integer. m such that $g^{m}=1$ for all $g \in G$. (a) is the cyclic group generated by a, and $o(a)=$ order of a.
\times denotes the direct product of multiplicative groups.

We write our mappings on the left so that α o β denotes the mapping β followed by the mapping α.

For the homomorphism $\eta, \operatorname{Ker}(\eta)=$ kernel of η and $(\eta \mid G)=$ restriction of η to $G \quad(G$ a group).
N and Z denote the natural numbers and integers, respectively.
Z_{d} denotes the polynomials in ζ_{d} over Z.
$\operatorname{Mod}_{2}\{S\}=$ module generated by S over Z.
$Q G$ and $Z G$ are the group rings of G over Q and Z, respectively.
Actually only finite abelian groups are considered - but this is explicitly stated in the theorems.

1. The structure of $Q G$

DEFINITION 1. If ζ_{d} is a (complex) primitive d-th root of unity, $Q_{d}=Q\left(\zeta_{d}\right)$. We note that Q_{d} does not depend on the particular d-th root of unity chosen.

PROPOSITION 1. Let G be a cyczic group of order n, and Q the field of rational numbers. Then

$$
\begin{equation*}
Q G \simeq{ }_{d \mid n}^{\oplus} Q_{d} \tag{1}
\end{equation*}
$$

Proof. Let $\Phi_{d}(x)$ be the cyclotomic polynomial satisfied by the primitive d-th roots of unity over Q. Then

$$
\begin{aligned}
Q G & \simeq Q[x] /\left(x^{n}-1\right) \\
& \simeq \oplus \quad Q[x] /\left(\Phi_{d}(x)\right)
\end{aligned}
$$

But $Q[x] /\left(\Phi_{d}(x)\right)^{\prime} \simeq Q\left(\zeta_{d}\right)=Q_{d}$. Hence (1) $\left.Q G \simeq \underset{d}{\oplus}\right|^{Q} d$.
Note. If G is generated by a, then under the isomorphism (1),

$$
\begin{equation*}
a^{i} \leftrightarrow \underset{d \mid n}{\oplus} \zeta_{d}^{i} \in{\underset{d \mid n}{\oplus} Q_{d} .}^{d} \tag{2}
\end{equation*}
$$

PROPOSITION 2. If the groups $A_{i}(1 \leqq i \leqq k)$ are subgroups of the group G such that $G=A_{1} \times \ldots \times A_{k}$ (direct product) then (3) $\quad Q G \simeq Q A_{1} \otimes \ldots \otimes Q A_{k}$ (tensor product over Q).

Note. If Z denotes the integers then we also have $Z G \simeq Z A_{1} \otimes \ldots \otimes Z A_{k}$. The proof follows in the same way.

Proof. If $g=a_{1} \ldots a_{k}$, where $a_{i} \in A_{i}(1 \leqq i \leqq k)$, map g onto $a_{1} \otimes \ldots \otimes a_{k} \in Q A_{1} \otimes \ldots \otimes Q A_{k}$. This mapping sends a basis for $Q G$ onto a basis for $Q A_{1} \otimes \ldots \otimes Q A_{k}$ and hence we can extend it to an isomorphism.

PROPOSITION 3. $Q_{k} \otimes Q_{Z} \simeq$ direct sum of $\phi(d)$ copies of $Q_{m}=\phi(d) Q_{m}$, where $d=$ g.c.d. $(k, \imath), m=1 . c . m .(k, Z)$ and ϕ denotes the Euler ϕ-function.

Proof. Let $m=k s=l t$, where $(s, t)=1$. Then ζ_{m}^{s} and ζ_{m}^{t} are clearly primitive k-th and l-th roots of unity respectively. Thus the field $Q\left(\zeta_{k}, \zeta_{I}\right)$, obtained by adjoining to Q primitive k-th and Z-th roots of unity, is contained in Q_{m}; on the other hand, if we choose u and v such that $u s+v t=1$, then $\zeta_{m}=\left(\zeta_{m}^{s}\right)^{u}\left(\zeta_{m}^{t}\right)^{v}$ and hence ζ_{m} is in the field $Q\left(\zeta_{k}, \zeta_{q}\right)=Q_{k}\left(\zeta_{q}\right)$. Therefore, we have shown that

$$
\begin{equation*}
Q_{m}=Q_{k}\left(\zeta_{\tau}\right) \tag{4}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\Phi_{2}(x)=f_{1}(x) \ldots f_{s}(x) \tag{5}
\end{equation*}
$$

be the decomposition of the cyclotomic polynomial into irreducible factors in $Q_{k}[x]$. Since by (4) Q_{m} is obtained from Q_{k} by adjoining any root of $\Phi_{Z}(x)$ (and therefore, any root of any $f_{i}(x)$)
$Q_{m} \simeq Q_{k}[x] /\left(f_{i}(x)\right) \quad(1 \leqq i \leqq s)$. Thus each $f_{i}(x)$ has degree

$$
\left[Q_{m}: Q_{k}\right]=\frac{\left[Q_{m}: Q\right]}{\left[Q_{k}: Q\right]}=\frac{\phi(m)}{\phi(k)}=\frac{\phi(Z)}{\phi(d)},
$$

since $\phi(k) \phi(Z)=\phi(m) \phi(d)$. Also

$$
\phi(Z)=\operatorname{deg}\left(\Phi_{Z}(x)\right)=s\left[\operatorname{deg}\left(f_{i}(x)\right)\right]=s \frac{\phi(Z)}{\phi(d)}
$$

so that
(6)

$$
s=\phi(d)
$$

From a known theorem we have that $Q_{k} \otimes Q_{Z} \simeq Q_{k}[x] /\left(\Phi_{Z}(x)\right)$, and
from the decomposition (5) and (6) this is isomorphic to
$\underset{i=1}{\phi(d)} Q_{k}[x] /\left(f_{k}(x)\right) \simeq \phi(d) Q_{m}$, since $Q_{k}[x] /\left(f_{i}(x)\right) \simeq Q_{m}$ for
$1 \leqq i \leqq \phi(d)$.
Note. Applying Proposition 3 several times we could establish that for positive integers k_{1}, \ldots, k_{r}

$$
Q_{k_{1}} \otimes \ldots \otimes Q_{k_{r}} \simeq s Q_{m}
$$

where $m=l . c . m .\left(k_{1}, \ldots, k_{p}\right)$ and s is a positive integer (which we could calculate). In particular, if g.c.d. $\left(k_{i}, k_{j}\right)=1$ for $i \neq j$,

$$
\begin{equation*}
Q_{k_{1}} \otimes \ldots \otimes Q_{k_{r}}=Q_{m} \quad(\text { i.e. } \quad s=1) \tag{7}
\end{equation*}
$$

THEOREM 1. If G is a finite abelian group of exponent m, there exist integers $u_{d} \geqq 0$ such that

$$
\begin{equation*}
Q G \simeq \underset{d \mid m}{\oplus} u_{d} Q_{d} \tag{8}
\end{equation*}
$$

Proof. Let $G=A_{1} \times \ldots \times A_{k}$, where A_{i} is cyclic of order d_{i} for $1 \leqq i \leqq k$ and $d_{1}\left|d_{2}\right| \ldots \mid d_{k}=m$. Then by Proposition 2, $Q G \simeq Q A_{1} \otimes \ldots \otimes Q A_{k}$ and hence by Proposition 1, $Q G \simeq \underset{d \mid d_{1}}{\oplus} Q_{d} \cdots{ }^{\otimes}{ }^{\otimes} \mid d_{k}{ }^{\oplus} Q_{d}$. Now if we expand using the distributive law and the note after Proposition 3, we see that $Q G$ is the direct sum of
cyclotomic fields Q_{d}, where each d divides m.

2. The projections of $Q G$

DEFINITION 2. Let G be a finite abelian group. The characters X and ψ are equivalent if $\operatorname{Ker}(\chi)=\operatorname{Ker}(\psi)$.

LEMMA 1. Let G be a finite abezian group of order n and exponent m; let d divide m and let t_{d} be the number of cyclic subgroups of G of order d. Then
(1) The number of inequivalent characters X such that $x(G)=\left(\zeta_{d}\right)$ is t_{d}.
(2) If $\chi(G)=\left(\zeta_{d}\right)$, the number of characters equivalent to X is $\phi(d)$.
(3) $\sum_{d \mid m} t_{d} \phi(d)=n$.

Proof. (1) Let D be a subgroup of G such that G / D is cyclic of order d, and let ζ_{d} be a primitive d-th root of unity. Then there exists an epimorphism from G to (ζ_{d}) with kernel D-i.e. a character with kernel D. Therefore, the number of inequivalent characters X such that $\chi(G)=\left(\zeta_{d}\right)$ is equal to the number of subgroups D such that G / D is cyclic of order d and this is equal to the number of cyclic subgroups of order d.
(2) Let χ be a character with $\chi(G)=\left(\zeta_{d}\right)$ and $D=\operatorname{Ker}(\chi)$. Then for α in the automorphism group of $\left(\zeta_{d}\right) \psi_{\alpha}=\alpha 0 X$ is a character of G with kernel D - i.e. ψ_{α} is equivalent to χ - and distinct automorphisms α give rise to distinct characters ψ_{α}. Furthermore, any character ψ of G which is equivalent to X is of this form, since the mapping α defined by $\alpha(\chi(g))=\psi(g)$ for $g \in G$ is an automorphism of $\left(\zeta_{d}\right)$. But the automorphism group of $\left(\zeta_{d}\right)$ has order $\phi(d)$. Thus there are $\phi(d)$ characters equivalent to X.
(3) From (2) and (3) the total number of characters of G is
$\sum_{d \prod_{m}} t_{d} \phi(d)$. Hence $n=\sum_{d \mid m} t_{d} \phi(d)$, since G has n distinct characters.

COROLLARY. If X_{1}, \ldots, X_{2} are inequivalent characters of the finite abelian group G of order n and if $\sum_{i=1}^{Z} \phi\left(d_{i}\right)=n$, where $\chi_{i}(G)=\left(\zeta_{d_{i}}\right)$ for $1 \leqq i \leqq 2$, then the characters $X_{i}(1 \leqq i \leqq 2)$ form a complete set of inequivalent characters of G.

THEOREM 2. Let G be a finite abelian group of exponent m. Then $Q G \simeq{ }_{d \mid m}^{\oplus} t_{d} Q_{d}$, where t_{d} is the number of cyclic subgroups of G of order d. The projection π of $Q G$ onto the component Q_{d} defines a character $X=(\pi \mid G)$ of G onto $\left(\zeta_{d}\right)$ and the characters so defined form a complete set of inequivalent characters of G.

Proof. From Theorem l, we have

$$
\begin{equation*}
Q G \simeq \underset{d \mid m}{\oplus} u_{d} Q_{d} \tag{8}
\end{equation*}
$$

It is clear that for each projection π onto a component Q_{d} we get a character $\chi=(\pi \mid G)$ of G. We show first that if π_{1} and π_{2} are projections onto different components then the characters $X=\left(\pi_{1} \mid G\right)$ and $\psi=\left(\pi_{2} \mid G\right)$ are not equivalent. For suppose to the contrary that ψ is equivalent to X. Then if $X(G)=\left(\zeta_{d}\right)$ there is an automorphism α of $\left(\zeta_{d}\right)$ such that $\psi=\alpha \circ X$. Let $\bar{\alpha}$ be the automorphism of Q_{d} which takes ζ_{d} into $\alpha\left(\zeta_{d}\right)$.

Since $Q G \simeq \underset{d \mid m}{\oplus} t_{d} Q_{d}$, there is an element $r \in Q G$ with $\pi_{1}(r)=0$ and $\pi_{2}(r) \neq 0$. Now $r=\sum_{g \in G} r(g) g$ with $r(g) \in Q$ and we have:
$0=\pi_{1}(r)=\sum_{g \in G} r(G) \pi_{1}(g)=\sum_{g \in G} r(g) \times(g)$. On the other hand,

$$
\begin{aligned}
0 \neq \pi_{2}(r)=\sum_{g \in G} r(g) \pi_{2}(g) & =\sum_{g \in G} r(g) \psi(g)=\sum_{g \in G} r(g)(\alpha \circ \chi)(g) \\
& =\bar{\alpha}\left(\sum_{g \in G} r(g) \chi(g)\right)=0 .
\end{aligned}
$$

This is clearly impossible so that X and ψ cannot be equivalent.
Let π_{1}, \ldots, π_{l} be the projections of $Q G$ defined by (8), and let $\chi_{i}=\left(\pi_{i} \mid G\right)$ for $1 \leqq i \leqq 2$. We establish the fact that the X_{i} form a complete set of inequivalent characters of G. Clearly if $\dot{x}_{i}(G)=\left(\zeta_{d_{i}}\right)$,
 that comparing dimensions we have: $n=\sum_{i=1}^{l} \phi\left(d_{i}\right)$. Hence by the Corollary to Lemma 1 , the X_{i} are a complete set of inequivalent characters of G. Thus also

$$
\begin{equation*}
Q G \simeq \stackrel{\theta}{\mid m}^{t} d Q_{d} \tag{9}
\end{equation*}
$$

REMARK. It may happen that $Q_{d}=Q_{d}$, with $d<d '$ - in fact, this is the case if, and only if, d is odd and $d^{\prime}=2 d$. It can be shown that the expression (8) (obtained by use of Propositions 1-3) is the same as (9) i.e. $\quad u_{d}=t_{d}$. However, the proof is a little tedious and so we thought it not of sufficient interest to include.

3. The units of $Z G$

THEOREM 3. (G. Higman) The only units of finite order in $Z G$ are of the form $\pm g(g \in G)$.

Proof. Let $u \in Z G$ be a unit of finite order. Then if π is the projection of $Q G$ in the isomorphism $Q G \simeq \underset{d \mid m}{\oplus} t_{d} Q_{d}, \pi(u)$ is a unit of finite order in Q_{d}-i.e. $\pi(u)$ is a root of unity. Thus if $u=\sum_{g \in G} u(g) g$ with $u(g) \in Z, \pi(u)=\sum_{g \in G} u(g) \pi(g)=\sum_{g \in G} u(g) \chi(g)=\rho_{x}$, where $X=(\pi \mid G)$ and ρ_{χ} is a root of unity. Since these characters X form a complete set of inequivalent characters we have:
(10)

$$
\sum u(g) \chi(g)=\rho_{\chi} \quad \text { for every } \quad \chi \in \hat{G}
$$

the character group G and where each ρ_{X} is a root of unity. Using the orthogonality relations of the characters, we obtain $n u(g)=\sum_{x \in G} \rho_{\chi} \overline{\chi(g)}$ for $g \in G$ and from this it is easy to deduce that there exists a $g_{0} \in G$ such that $u\left(g_{0}\right)= \pm 1$ and $u(g)=0$ for $g \neq g_{0}$ (cf.e.g. [1]). Thus $u= \pm g$.

THEOREM 4. Let G be a finite abelian group of order n and let U denote the group of units of $2 G$. Then $U=T \times F$ with $T=\{ \pm g \mid g \in G\}$ and E free abelian of rank $\frac{1}{2}\left(n+1+t_{2}-22\right)$, where $t_{2}=$ number of elements of G of order 2 and $Z=$ number of cyclic subgroups of G.

Proof. $Z G$ is isomorphically embedded in $\underset{d \mid m}{\oplus} t_{d} Z_{d}$ under the isomorphism (9) (here $Z_{d}=Z\left(\zeta_{d}\right)$). Since both $Z G$ and ${ }_{d \mid m}^{\oplus} t_{d} Z_{d}$ are free abelian of rank $n, Z G$ is of finite index k in ${ }_{d \mid m}^{\oplus} t_{d}^{2} d$ (identifying $Z G$ with its image under the isomorphism). Let U denote the group of units of $Z G$ and U_{1} the group of units of $\oplus t_{d} Z_{d}$. Then U_{1} is generated by the units of the components $Z_{d}-$ and the unit group of each Z_{d} is finitely generated by Dirichlet's Unit Theorem (cf. [3] p. 124 Satz 100; we note that Z_{d} is the ring of integers of $q_{d}-c f .[6], p, 264$, 7-5-4 Theorem). Now we show that U_{1} / U is finite. It is sufficient to show that every unit u of $Z d$ has finite order, mod $Z(G)$. Letting $\underline{\underline{A}}=$ principal ideal generated by k in Z_{d}, we have $u^{\phi(\underline{\underline{A}})} \equiv 1$ (mod $\underline{\underline{A})}$ where $\phi(\underline{\underline{A})}$ denotes the number of reduced residue classes, mod $\underline{\underline{A}}$. Hence $u^{\phi(\underline{A})}=1+\lambda k$ (cf. [3], Satz 84), where $\lambda \in Z_{d}$ and so $u^{\phi(\underline{A})} \in Z G$ since $\left[\oplus t_{d} Z_{d}: 2 G\right]=k$. Hence $U=T \times F$, where T is finite and F is free abelian of rank $=$ the torsion-free rank of U_{1}. In Theorem 2, we have determined T so it remains to calculate the torsion-free rank of U_{1}.

By Dirichlet's Theorem if $d>2, Z_{d}$ has $\frac{\phi(d)}{2}-1$ independent units
of infinite order. Thus the torsion-free rank of U_{1} is
$\sum_{d \mid m} t_{d}\left(\frac{\phi(d)}{2}-1\right)$. But $\sum_{\left.d\right|_{m}} t_{d}(d)=n$, and $\sum t_{d}=\tau=$ number of $a \neq 1, \neq 2$
cyclic subgroups of G and t_{2} = number of elements of order 2(by Theorem
1). An easy calculation shows that

$$
\sum_{\substack{d \mid m \\ d \neq 1, \neq 2}} t_{d}\left(\frac{\phi(d)}{2}-1\right)=\frac{1}{2}\left(n+1+t_{2}-2 v\right) .
$$

4. The idempotents of $Q G$

In what follows we will identify $Q G$ with $\oplus t_{d} Q_{d}$ (using the isomorphism of Theorem 2). If D is a subgroup of G with G / D cyclic, then π_{D} will denote the projection of $Q G$ onto Q_{d} whose associated character X_{D} has kernel D. By Theorem 2, there is exactly one such projection. Thus if $u=\oplus s_{D}$, then $s_{D}=\pi_{D}(u)$. It is clear that u is idempotent if, and only if, each s_{D} is either 0 or 1 -i.e. each idempotent is a sum of primitive idempotents u_{D}, where $\pi_{D}\left(u_{D}\right)=1$ and $\pi_{D^{\prime}}\left(u_{D}\right)=0$ for $D^{\prime} \neq D$. In Theorem 5 we obtain the representation of the idempotents u_{D} as elements of $Q G$.

THEOREM 5. For $D \leqq G$ with G / D cyclic, let $u_{D} \in(Q G)$ be the primitive idempotent which corresponds to the identity of $\pi_{D}(Q G)$, and for $K \leqq G$ let $e_{K}=\sum_{\substack{K \leqq D \\ \overline{\text { cyclic }}}} u_{D} \cdot$ Then

$$
\begin{gather*}
e_{K}=\frac{1}{|K|} \sum_{k \in K} k \tag{11}\\
u_{D}=\sum_{D \leq H} \mu(|H / D|) e_{H},
\end{gather*}
$$

where μ is the Möbius μ-function.
Proof. Consider the element $r_{K}=\frac{1}{|K|} \sum_{k \in K} k \in Q G$. For $H \leqq G$ with

G/H cyclic,

$$
\begin{gathered}
\pi_{H}\left(r_{K}\right)=\frac{1}{|K|} \sum_{K \in K} \pi_{H}(k)=\frac{1}{|K|} \sum_{k \in K} x_{H}(k)= \begin{cases}1 & \text { if } K \leqq H, \\
0 & \text { otherwise }\end{cases} \\
\pi_{H}\left(e_{K}\right)=\sum_{G / D \leq D} \sum_{H} \quad \pi_{H}\left(u_{D}\right)= \begin{cases}1 & \text { if } K \leqq H, \\
0 & \text { otherwise } .\end{cases}
\end{gathered}
$$

Hence $\quad e_{K}=r_{K}=\frac{1}{|K|} \sum_{k \in K} k$, as claimed.
(12) follows from the Möbius inversion formula. ${ }^{1}$

COROLLARY. Let $G=(a)$ be cyclic of order p^{n} (p a prime), and let

$$
\begin{gather*}
e_{i}=\frac{1}{p^{n-i}} \sum_{k=0}^{n-i}\left(a^{p^{i}}\right)^{k} \in Q G, 0 \leqq i \leqq n, \tag{13}\\
u_{i}=e_{i}-e_{i-1}, 1 \leqq i \leqq n . \tag{14}
\end{gather*}
$$

Then

$$
\begin{aligned}
& e_{i} \leftrightarrow 1 \oplus \ldots \oplus 1 \oplus 0 \oplus \ldots \oplus 0 \in{\underset{j=0}{n} 2}^{n} p^{j}, \\
& u_{i} \leftrightarrow 0 \oplus \ldots \oplus 1 \oplus \ldots \oplus 0 \in \sum_{j=0}^{n} z_{p^{j}} .
\end{aligned}
$$

5. The index of $Z(G)$ in $t_{d} Z_{d}$

THEOREM 6. Let $G=(a)$ be a cyclic of order p^{n} (p a prime) and let a_{i} be defined by (13). Then the set $\left\{e_{i} a^{j}\right\}$
$10 \leqq i \leqq n, 0 \leqq j \leqq \phi\left(p^{i}\right)$) is a basis for $\underset{j=0}{\oplus} z_{p}^{j}$ over z. (Here we

1 We are indebted to the referee for the use of the Möbius μ-function in the representation of u_{D} and for pointing out that the Möbius inversion formula holds under these circumstances.
are identifying $e_{i} a^{j}$ with its image in $\underset{j=0}{n} z_{p^{j}}$).

Proof. Let $M=\bmod _{z}\left\{e_{i} a^{j}\right\} \underset{\substack{0 \leq i \leqslant n \\ 0 \leqq j \leq j \leqq \phi\left(p^{i}\right)}}{ }$. By the Corollary to Theorem 5, $M \leqq$| \oplus |
| :---: |
| $j=0$ |
| Z_{j}^{j} | since e_{i} and $a^{j} \in \underset{j=0}{\oplus} Z^{n} p^{j}$. The number of generators $e_{i} a^{j}$ is $\sum_{j=0}^{n} \phi\left(p^{j}\right)=p^{n}$. Thus if we establish that $M=\underset{j=0}{n} Z p_{j}^{j}$, the theorem will be proved.

We prove by induction on i, that $e_{i} a^{j}$ and $u_{i} \alpha^{j}$ (where $u_{i}=e_{i}-e_{i-1}$, are in $M, \forall j \in N$. Note that

$$
\begin{equation*}
a^{j}=1 \oplus \rho_{1}^{j} \oplus \ldots \oplus \rho_{i}^{j} \oplus \ldots \oplus \rho_{n}^{j} \tag{15}
\end{equation*}
$$

where $\rho_{i} \in \underset{p^{i}}{ }$ is a primitive p^{i}-th root of unity (strictly speaking the "=" should be " \leftrightarrow " but we are identifying $Z G$ with its image). If $i=0, e_{0} a^{j}=u_{0} a^{j}=e_{0} \in M, \forall j \in N$. So we assume that $e_{i-1} a^{j}$ and $u_{i-1} a^{j} \in M, \forall j \in N . u_{i} a^{j}=0 \oplus \ldots \oplus \rho_{i}^{j} \oplus \ldots \oplus 0$ and $Z\left(\rho_{i}\right)$ is generated over z by $1, \rho_{i}, \rho_{i}^{2}, \ldots, \rho_{i}^{\phi}\left(p^{i}\right)-1$; hence $u_{i} a^{j} \in M, \forall j \in N$ if $u_{i} a^{j} \in M$ for $0 \leqq j \leqq \phi\left(p^{i}\right)$. So consider $u_{i} a^{j}$ with $0 \leqq j \leqq \phi\left(p^{i}\right)$. We have

$$
\begin{equation*}
u_{i} a^{j}=e_{i} a^{j}-e_{i-1} a^{j} \tag{16}
\end{equation*}
$$

and $e_{i} a^{j} \in M$ since it is one of the generators of $M, e_{i-1} a^{j} \in M$ by the induction assumption. Hence $u_{i} a^{j} \in M$. Also $e_{i}=u_{i}+e_{i-1}$ and hence

$$
\begin{equation*}
e_{i} a^{j}=u_{i} a^{j}+e_{i-1} a^{j} \in M, \forall j \in N . \tag{17}
\end{equation*}
$$

 so $M=\stackrel{\square}{\oplus} Z_{j=0} p^{j}$.

THEOREM 7. Let $G=(a)$ be cyclic of order p^{n} (p a prime) and let $e_{i}(0 \leqq i \leqq n)$ be defined by (13). Then
(A) $e_{i} a^{j}$ has order $p^{n-i}, \bmod Z G(\forall j \in N)$.
(B) The elements $e_{i} \alpha^{j}\left(0 \leqq i \leqq n-1,0 \leqq j<\phi\left(p^{i}\right)\right)$ form a basis for $\stackrel{\oplus}{j=0} 2_{n} \quad p^{n}, \bmod Z G$.
(C) $\left|\begin{array}{cc}\oplus_{j=0}^{n} & Z^{j}\end{array}: Z G\right|=p^{1+p+\ldots+p^{n-1}}=p^{\left(p^{n}-1 / p-1\right)}$.

Proof. By the previous theorem, the $e_{i} a^{j} \quad\left(0 \leqq i \leqq n, 0 \leqq j<\phi\left(p^{i}\right)\right)$ form a basis for $\bigoplus_{j=0}^{n} Z_{j}=M$. Since $e_{n} a^{j}=a^{j} \in Z G$, the elements $e_{i} a^{j} \quad\left(0 \leqq i \leqq n-1,0 \leqq j<\phi\left(p^{i}\right)\right)$ generate $M, \bmod 2 G$. It is clear from the definition of e_{i}, that $e_{i} a^{j}$ has order $p^{n-i}(\forall j \in N)$. Hence (A) holds. To prove (B), we need only show that the $e_{i} a^{j}\left(0 \leqq i \leqq n-1,0 \leqq j<\phi\left(p^{i}\right)\right)$ are linearly independent, $\bmod Z G$. We prove this by induction on n. If $n=1$, there is just one generator e_{o} and so there is nothing to prove.

Now assume the result true in case of a cyclic group of order p^{n-1}. Let $B=(b)$, where $b=a^{p} ; B \leqq G$ has order p^{n-1} and so if we let

$$
w_{i}=\frac{1}{p^{(n-1)-i}} p_{k=0}^{(n-i)-1}-1 \quad\left(b^{p^{i}}\right)^{k}
$$

the induction hypothesis implies that $w_{i} b^{j} \quad\left(0 \leqq i \leqq n-2,0 \leqq j<\phi\left(p^{i}\right)\right)$ are linearly independent, $\bmod Z B$. But

$$
\omega_{i}=\frac{1}{p^{n-(i+1)}} p^{n-(i+1)}-1 \quad\left(a^{p^{i+1}}\right)^{k}=e_{i+1}
$$

and $\omega_{i} b^{j}=e_{i+1} a^{p j}$. Hence the elements $e_{i+1} a^{p j} \quad 10 \leqq i \leqq n-1$, $\left.0 \leqq j<\phi\left(p^{i}\right)\right)$ are linearly independent, $\bmod Z B$.

Now assume

$$
\begin{equation*}
\left.c_{00} e_{0}+\sum_{i=1}^{n}\left(\sum_{j=0}^{\phi\left(p^{i}\right)-1} c_{i j} e_{i} a^{j}\right)=t \in Z G \quad \text { (where } \quad c_{i j} \in Z\right) . \tag{18}
\end{equation*}
$$

Multiplying by p^{n} we get:
(19) $p^{n} c_{00} e_{0}+p\left(\sum \sum c_{i j} p^{n-1} e_{i}\right)=p^{n} t \Rightarrow p^{n} c_{00} e_{0} \in p Z G$

$$
\begin{aligned}
& \Rightarrow c_{00}\left(\sum_{i=0}^{p^{n}-1} a^{i}\right) \in p Z G(\text { using }(18)) \\
& \Rightarrow c_{00} \equiv 0 \quad(\bmod \quad p) .
\end{aligned}
$$

So we can set $c_{00}=p c_{00}^{\prime}$ with $c_{00}^{\prime} \in Z$. Noticing that
$\frac{1}{p^{n-1}} \sum_{k=0}^{n-1} a^{k}=e_{1}+e_{1} a+\ldots+e_{1} a^{p-1}$, we can write (19) in the form

$$
\begin{equation*}
c_{00}^{\prime}\left(e_{1}+\ldots+e_{1} a^{p-1}\right)+\sum_{i=1}^{n-1} \phi\left(p_{j=0}^{i}\right)-1 c_{i j} e^{i} a^{j}=t \in z G . \tag{20}
\end{equation*}
$$

Consider now the terms involving only the a^{j} with $j \equiv p-1(\bmod p)$. We get

$$
\begin{aligned}
& c_{\mathrm{OO}}^{\prime} e_{1} a^{p-1}+\sum_{i=2}^{n-1} \sum_{\substack{\leq j<\phi\left(p^{i}\right) \\
j=p-1(\bmod p)}} c_{i j} e_{i} a^{j} \\
& \quad=c_{\circ O}^{\prime} e_{1} a^{p-1}+\sum_{i=2}^{n-1} p^{i-1} \sum_{l=0}^{i-2}-1 \\
& c_{i, l p \rightarrow(p-1)} e_{i} a^{l p+(p-1)} \\
& \quad=t^{\prime} a^{p-1} \text { with } t^{\prime} \in Z B .
\end{aligned}
$$

But as we saw above the $e_{i+1} a^{2 p}$
$\left(0 \leqq i \leqq n-1,0 \leqq 2 \leqq \phi\left(p^{i}\right)-1=p^{i}=p^{i-1}-1\right)$ are independent, $\bmod 2 B \cdot$ Therefore $c_{o 0}^{\prime} \equiv 0\left(\bmod p^{n-1}\right)$ and

$$
c_{i, 2 p+(p-1)} \equiv 0\left(\bmod p^{n-i}\right) \text { for } 2 \leqq i \leqq n-1,0 \leqq t<\phi\left(p^{i-1}\right)
$$

Since $c_{00}=p c_{00}^{1}, c_{00} \equiv 0\left(\bmod p^{n}\right)$ and we obtain

$$
\sum_{i=1}^{n-1} \sum_{j=0}^{-1} c_{i j} e^{i} a^{j} \in Z G .
$$

Repeating the argument (with $p-1$ replaced by s) we obtain

$$
\begin{align*}
c_{i, \tau p+s} \equiv 0\left(\bmod p^{n-i}\right) \text { for: } & 1 \leqq i \leqq n-1 \tag{21}\\
& 0 \leqq \tau<\phi\left(p^{i-1}\right) \\
& 0 \leqq s \leqq p-1 .
\end{align*}
$$

But if $0 \leqq j<\phi\left(p^{i}\right), j \equiv s(\bmod p)$ for some s in the range $0 \leqq s \leqq p-1$, and $j=Z p+s$ with $0 \leqq \ell<\phi\left(p^{i-1}\right)$. Hence from (21) we deduce that

$$
c_{i, j} \equiv 0 \quad\left(\bmod p^{n-i}\right), 1 \leqq i \leqq n-1,0 \leqq j<\phi\left(p^{i}\right)
$$

and this is what we wanted to show. Thus (B) is established.
Finally we consider (C). Since $e_{i} a^{j}$ has order p^{n-i}, mod $Z G$, and these elements form a basis for $\underset{j=0}{\oplus} Z_{p^{j}}^{n}=M$, $\bmod Z G$, the order of the quotient group $M / Z G$ is

$$
p^{n}\left(p^{n-1}\right)^{\phi(p)}\left(p^{n-2}\right) \phi\left(p^{2}\right) \ldots(p)^{\phi\left(p^{n-1}\right)}
$$

But since $n+(n-1) \phi(p)+\ldots+\phi\left(p^{n-1}\right)=1+p+\ldots+p^{n-1}$ (this can easily be established by induction), we have

$$
\left[\bigoplus_{j=0}^{n} Z_{p^{j}}: Z G\right]=p^{1+p+\ldots+p^{n-1}}
$$

COROLLARY. Let $G=(a)$ be cyclic of order p^{n}. If we define
$t_{i}=\sum_{k=0}^{n-i}\left(a^{p^{i}}\right)^{k} 0 \leqq i \leqq n$, the elements $t_{i} a^{j}$
($0 \leqq i \leqq n, 0 \leqq j<\phi\left(p^{i}\right)$) form a basis for $Z G$ (over z).
Proof. Let

$$
\begin{aligned}
M_{1}=\operatorname{Mod}_{Z}\left\{t_{i} a^{j}\right\}_{0} & \leqq i \leqq n \\
& 0 \leqq j<\phi\left(p^{i}\right) .
\end{aligned}
$$

Clearly $M_{1} \leqq Z G<M=\underset{0<i<n}{\oplus} Z\left(e_{i} a^{j}\right)$. Let $r \in Z G ;$ then $0 \leq i \leq n$
$\left.0 \leq j<\phi \eta_{p}\right)$
$r=\sum_{\substack{0 \leq i \leq n_{i}}} c_{i j} e_{i} a^{j}$ with $c_{i j} \in Z$ so that $c_{i j}=c_{i j}^{\prime} p^{n-i}$ with $0 \leq j=\overline{<} \bar{i}\left(p^{i}\right)$
$c_{i j}^{\prime} \in Z$ since the $e_{i} a^{j}$ are linearly independent, mod $Z G$. Thus $r=\sum c_{i j}^{\prime} t_{i} a^{j} \in M_{1}$, since $p^{n-i} e_{i}=t_{i}$. Hence $M_{1}=2 G$. But the $t_{i} \alpha^{j}$ are linearly independent since the $e_{i} a^{j}$ are; thus $z G=\underset{\substack{0 \leq i \leq n, 0 \leq j<\phi \\=}}{\oplus} 2\left(t_{i} a^{j}\right)$.

PROPOSITION 4. Let $B_{i} \leqq A_{i}$ be free abelian groups of rank n_{i} and Let A_{i} / B_{i} have elementary divisors $d_{i 1}, \ldots, d_{i n_{i}}(1 \leqq i \leqq r)$. Then $A_{1} \otimes \ldots \otimes A_{r / B_{1} \otimes \ldots \otimes B_{r}}$ has a basis of $\prod_{i=1}^{r} n_{i}$ elements whose orders are $d_{i j_{1}}, \ldots, d_{r j_{r}}$, where $1 \leqq j_{i} \leqq n_{i}$.

Proof. Let A_{i} have a basis $a_{i 1}, \ldots, a_{i n_{i}}$ and B_{i} a basis $b_{i 1}=d_{i 1} a_{i 1}, \ldots, b_{i n_{i}}=d_{i n_{i}} a_{i n_{i}}($ for $1 \leqq i \leqq r)$. Then $A_{1} \otimes \ldots \otimes A_{r}$ has a basis $a_{1 j_{1}} \otimes \ldots \otimes a_{r j_{r}}\left(I \leqq j_{i} \leqq n_{i}\right)$ and $B_{1} \otimes \ldots \otimes B_{r}$ has a basis $b_{1 j_{1}} \otimes \ldots \otimes b_{r j_{r}}=d_{1 j_{1}} \ldots d_{r j_{r}}\left(a_{1 j_{1}} \otimes \ldots \otimes a_{r j_{r}}\right) \quad\left(1 \leqq j_{i} \leqq n_{i}\right)$ and the Proposition follows.

COROLLARY. Under the hypothesis of the Proposition,
$\left[A_{1} \otimes \ldots \otimes A_{r}: B_{1} \otimes \ldots \otimes B_{r}\right]=\prod_{i=1}^{r}\left|\frac{A_{i}}{B_{i}}\right|^{\Pi \quad j \neq i} \quad \operatorname{rank}\left(A_{j}\right)$
If G is a finite abelian group, and $G=C_{1} \times \ldots \times C_{k}$, where each C_{i} is cyclic of prime power order, then $2 G \approx Z C_{1} \otimes \ldots \geqslant C_{k}$ (note after Proposition 2) and for $1 \leqq i \leqq k, Z C$ is isomorphically imbedded in z_{i} ${ }_{j=0}^{i} Z_{i} p_{i}^{j}=M_{i}$, where $\left|C_{i}\right|=p_{i}^{i}$. Theorem 7 tells us the structure of the finite additive (abelian) group $M_{i} / Z C_{i}$. Hence by using Proposition 4 we could calculate $\left[M_{1} \otimes \ldots \otimes M_{k}: 2 G\right]$. However, this does not give us the index of $Z G$ in ${ }_{d \mid m}^{\otimes} t_{d} Z_{d}$ since $M_{1} \otimes \ldots \otimes M_{k}$ is only imbedded in this last group as a subgroup of finite index. The calculation of this index would seem to be rather complicated.

References

[1] S.D. Berman, "On the equation $x^{m}=1$ in an integral group ring", Ukrain. Mat. Ž, 7 (1955), 253-261.
[2] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, (Interscience, New York, 1962).
[3] Erich Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, (Chelsea Publ., New York, 1948).
[4] Graham Higman, "The units of group rings", Proc. London Math. Soc. (2), 46 (1940), 231-248.
[5] Sam Perlis and Gordon L. Walker, "Abelian group algebras of finite order", Trans. Amer. Math. Soc. 68 (1950), 420-426.
[6] Edwin Weiss, Algebraic number theory, (McGraw-Hill, New York, 1963).

Pennsylvania State University, University Park, Pennsylvania, USA.

[^0]: Received 21 March 1969. Received by J. Austral. Math. Soc. 17 September 1968. Revised 17 December 1968. Communicated by G.B. Preston. This research was done under NSF Contract GP-5593.

