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Elasto-inertial turbulence (EIT) is a recently discovered two-dimensional chaotic flow
state observed in dilute polymer solutions. Two possibilities are currently hypothesized
to be linked to the dynamical origins of EIT: (i) viscoelastic Tollmien–Schlichting waves
and (ii) a centre-mode instability. The nonlinear evolution of the centre mode leads to a
travelling wave with an ‘arrowhead’ structure in the polymer conformation, a structure
also observed instantaneously in simulations of EIT. In this work we conduct a suite of
two-dimensional direct numerical simulations spanning a wide range of polymeric flow
parameters to examine the possible dynamical connection between the arrowhead and EIT.
Our calculations reveal (up to) four coexistent attractors: the laminar state and a steady
arrowhead regime (SAR), along with EIT and a ‘chaotic arrowhead regime’ (CAR). The
SAR is stable for all parameters considered here, while the final pair of (chaotic) flow
states are visually very similar and can be distinguished only by the presence of a weak
polymer arrowhead structure in the CAR regime. Analysis of energy transfers between the
flow and the polymer indicates that both chaotic regimes are maintained by an identical
near-wall mechanism and that the weak arrowhead does not play a role. Our results suggest
that the arrowhead is a benign flow structure that is disconnected from the self-sustaining
mechanics of EIT.

Key words: transition to turbulence, viscoelasticity

1. Introduction

It has been more than 70 years since the phenomenon of polymer drag reduction
in wall-bounded turbulence was first observed experimentally (Toms 1948; Mysels
1949). Following this discovery, great efforts have been directed towards understanding
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how inertial turbulence (IT) is altered by the addition of polymers to the flow
(e.g. see the reviews Lumley 1969; White & Mungal 2008). Polymeric fluids also
exhibit counter-intuitive chaotic behaviour in very small-scale, inertialess flows. This
‘elastic’ turbulence (ET) was also first discovered experimentally (Groisman & Steinberg
2000, 2004) at vanishing Reynolds numbers and is thought to rely on finite-amplitude
curvature in the streamlines (Shaqfeh 1996). In contrast to polymer-modified IT, ET
is associated with an increased drag relative to the laminar Newtonian state (Varshney
& Steinberg 2018). It can be exploited to promote heat transfer (Traore, Castelain &
Burghelea 2015) and to efficiently mix at very small scales (Squires & Quake 2005).

In addition to these distinct phenomena, a third chaotic flow state was recently identified
(Dubief, Terrapon & Soria 2013; Samanta et al. 2013) where both inertial and elastic
effects are relevant, and was named ‘elasto-inertial’ turbulence (EIT). Elasto-inertial
turbulence can be sustained for Reynolds numbers Re = O(1000), and is potentially linked
to the ‘early turbulence’ reported in a range of experimental studies (Jones & Maddock
1966; Goldstein, Adrian & Kreid 1969; Draad, Kuiken & Nieuwstadt 1998; Chandra,
Shankar & Das 2018; Choueiri, Lopez & Hof 2018). Elasto-inertial turbulence differs from
both IT and ET in that it can be sustained in a purely two-dimensional planar flow (Sid,
Terrapon & Dubief 2018), and is dominated by highly extended ‘sheets’ of polymer stress
(see, e.g. Dubief, Terrapon & Hof 2023). A connection has been sought between EIT and
the so-called ‘maximum drag reduction’ state in IT (Zhang et al. 2021; Zhu & Xi 2021),
though the mechanisms underpinning both of these flow types remain to be clarified.

Despite much progress in our statistical understanding of the various chaotic viscoleastic
flows (Datta et al. 2022; Sánchez et al. 2022; Dubief et al. 2023), the dynamical origins
and connections between polymer-perturbed IT, EIT and ET remain largely unknown. The
exception here is ET in curved geometries, which is associated with a linear instability
driven by viscoelastic hoop stresses (Larson, Shaqfeh & Muller 1990; Shaqfeh 1996). In
parallel flows there has been some indication that self-sustaining ET can be triggered
by a finite-amplitude perturbation to generate the curvature necessary for a hoop-stress
instability (Meulenbroek et al. 2004; Morozov & van Saarloos 2007; Pan et al. 2013),
but the exact requirements and dynamical connection to the linear instabilities in a curved
geometry has not been demonstrated and there is also the possibility of a direct connection
to EIT.

The situation in a planar pressure-driven channel flow is ripe for investigation due
to the presence of a pair of linear instabilities. One is the viscoelastic analogue of the
Newtonian Tollmien–Schlichting (TS) waves and exists at high Re (Zhang et al. 2013).
It has been observed that the polymer conformation field associated with a saturated TS
wave and the polymer conformation for the weakly chaotic edge state for (subcritical)
EIT have a similar appearance (Shekar et al. 2019, 2021) though the TS branch turns
around prior to the emergence of EIT as the Weissenberg number Wi is increased
and a clear dynamical connection has yet to be established. The other instability was
discovered only very recently, and is a ‘centre mode’ found in both pipes (Garg et al.
2018) and channels (Khalid et al. 2021a) at modest Weissenberg numbers Wi ∼ 20.
Most intriguingly, the unstable centre mode in a channel remains unstable even in the
inertialess limit (Khalid, Shankar & Subramanian 2021b), although only for very high
Wi and vanishing polymer concentration (more realistic values of Wi are found with the
introduction of a more realistic polymer model, see Buza, Page & Kerswell 2022b). The
existence of a linear instability in areas of the parameter space relevant to both ET and EIT
could provide a plausible direct connection between these states. The nonlinear evolution
of the viscoelastic centre mode leads to a saturated ‘arrowhead’ travelling wave (Page,
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Dubief & Kerswell 2020) that is strongly subcritical (Wan, Sun & Zhang 2021; Buza et al.
2022b). The arrowhead can be continued down to the inertialess limit where it is found to
exist at experimentally realisable values of the Weissenberg number (Buza et al. 2022a;
Morozov 2022). Finite-amplitude structures that are similar in appearance to the exact
arrowhead travelling waves have been observed in experiments at low Re (Choueiri et al.
2021) and have also been seen intermittently in numerical simulations of EIT at high Re
(Page et al. 2020; Dubief et al. 2022). However – much like the TS waves – a direct route
to chaos from this structure (e.g. in a sequence of successive bifurcations) has yet to be
found.

Although near-wall perturbations have been a signature of EIT since its discovery
(Samanta et al. 2013), the possible importance of the arrowhead in sustaining EIT was
suggested by the simulations of Dubief et al. (2022), who performed DNS of viscoelastic
flows using the FENE-P model for Re = 1000, Wi ∈ [50, 200] and 0.5 ≤ β ≤ 1. Their
study identified several regimes in different areas of the parameter space: a stable travelling
wave arrowhead, EIT, a chaotic arrowhead regime (CAR) and an intermittent arrowhead
regime. Motivated by these results, we conduct a systematic study of the state space of
a two-dimensional viscoelastic channel flow for a wide range of polymeric parameters in
the finite-extensibility nonlinear elastic-Peterlin (FENE-P) model, in an effort to directly
connect the arrowhead to EIT. Surprisingly, we find that the arrowhead is a benign flow
structure – it can be maintained on top of a background EIT, but does not play a role in
the self-sustaining mechanism that is driven by near-wall behaviour. Our search reveals
that the steady arrowhead structure travelling wave is always stable for the parameters we
consider, and we also find a large region of multistability with up to four attractors – the
laminar (L) state, SAR, EIT and CAR. The final regime is nearly identical to EIT apart
from a weak arrowhead in the centre of the domain.

The rest of this paper is structured as follows. In § 2 we present the governing equations
and describe the numerical simulations to be conducted. In § 3 we present evidence for the
four distinct attractors and draw connections to the results of Dubief et al. (2022). In § 4
we look for dynamical connections between the attractors and compute various edge states
between them. Finally, conclusions are presented in § 5.

2. Formulation and computational details

We consider a two-dimensional streamwise-periodic flow between two infinite, stationary,
rigid walls, separated by a distance 2h and driven by a time-varying pressure gradient so
that the mass flux is constant. The viscoelastic flow is governed by the FENE-P model
with governing equations

∂tu + (u · ∇)u + ∇p = β

Re
�u + (1 − β)

Re
∇ · T (C), (2.1)

∂tC + (u · ∇)C + T (C) = C · ∇u + (∇u)T · C + 1
Re Sc

�C, (2.2)

∇ · u = 0, (2.3)

where

T (C) := 1
Wi

( f (trC)C − I) , and f (x) :=
(

1 − x − 3
L2

max

)−1

. (2.4a,b)

We consider two-dimensional flows with u = (u, v) denoting the streamwise and
wall-normal velocity components, p the pressure and C the positive-definite conformation
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tensor that represents the ensemble average of the product of the end-to-end vector of the
polymer molecules. The parameter β := ηs/(ηs + ηp) denotes the viscosity ratio, with ηs
and ηp the solvent and polymer contributions to the total kinematic viscosity, η = ηs + ηp.
The parameter Lmax is the maximum extensibility of the polymer chains. The equations are
made non-dimensional with the half-distance between the plates h and the bulk velocity

Ub := 1
2h

∫ h

−h
u dy. (2.5)

The non-dimensional Reynolds, Re, and Weissenberg, Wi, numbers are defined as

Re := Ubh
η

and Wi := τUb

h
, (2.6a,b)

where τ denotes the polymer relaxation time. Equation (2.2) has a stress diffusion
term that, for a realistic polymer solution, would take a value Sc = O(106). However,
numerical simulations are typically restricted to much smaller values, Sc = O(103) (Sid
et al. 2018; Page et al. 2020), and the term itself is treated as regulariser to help
maintain positive-definite C . With non-zero polymer diffusion we must specify boundary
conditions on the polymer conformation. As previously used in the literature (Page et al.
2020; Buza et al. 2022a; Dubief et al. 2022), we apply the following equation at the wall:

∂tC + T (C) = C · ∇u + (∇u)T · C + 1
Re Sc

∂xxC. (2.7)

Note that (2.2) does not require boundary conditions in the limit Sc → ∞ (Sid et al. 2018);
the boundary conditions (2.7) are chosen so that the distance from the Sc → ∞ limit is
minimized (Sid et al. 2018; Dubief et al. 2022).

2.1. Numerics
The spectral codebase Dedalus (Burns et al. 2020) is used to perform direct numerical
simulations of (2.1)–(2.3). We consider a computational domain of fixed size [Lx, Ly] =
[2π, 2] in units of h. The quantities C and u are expanded in Nx Fourier modes in the
x direction and Ny Chebyshev modes in the y direction. Time integration is performed
with a third-order semi-implicit BDF scheme (Wang & Ruuth 2008) with a fixed time
step. We fix Sc = 500 for the majority of simulations unless otherwise indicated. The
different numerical solutions have various requirements in term of resolution. We typically
use [Nx, Ny] = [512, 600] to simulate travelling waves while higher values of [Nx, Ny] =
[600, 800] are used to simulate chaotic states, although for some of the higher Weissenberg
and higher Lmax cases, we have considered [Nx, Ny] = [800, 1024]. Further increasing
Sc can cause C to lose positive definiteness in several locations of the domain, as
previously reported by Dubief et al. (2022). However, reducing the computational time
step and increasing the resolution can alleviate this. We have checked those results that
temporarily lose positive definiteness in certain regions by reducing the time step below
10−5 and increasing the resolution to at least [Nx, Ny] = [2048, 2048]. The increase
of spatio-temporal resolution ensured that positive definiteness is recovered while the
reported dynamics remain unaltered.

2.2. Elasto-inertial attractors
Dubief et al. (2022) identified various statistically steady states in the same channel
geometry: the L state, SAR, EIT and a CAR. Note that Dubief et al. (2022) also discuss
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Figure 1. Example snapshots of tr(C)/L2
max and vertical velocity v for the states initially explored in Dubief

et al. (2022). (a,d) Steady arrowhead regime at Re = 1000, Wi = 50, β = 0.9, Lmax = 90, Sc = 500; (b,e) EIT
at Re = 1000, Wi = 50, β = 0.9, Lmax = 70, Sc = 500; (c, f ) CAR at Re = 1000, Wi = 50, β = 0.9, Lmax =
70, Sc = 500. We show that these state do not succeed each other but coexist in parameter space.

an intermittent arrowhead (IAR) that we now believe is actually a weaker version of CAR
and not a distinct state.

Examples of the three non-trivial attractors are reported in figure 1, where we show
contours of the polymer trace tr(C)/L2

max. The SAR state features a pair of symmetric
sheets of polymer extension, which sit close to the channel centreline, bending to meet
at y = 0. A highly stretched central sheet then extends downstream along the centreline
for almost half of the computational domain. Both EIT and CAR show intense polymer
stretch in near-wall regions, with many wavy sheets of polymer extension layered on top
of one another. The states are visually very similar, though CAR features a weak, distorted
arrowhead structure near the centre of the domain.

We trigger each of the states discussed above and shown in figure 1 by time stepping
appropriate initial conditions. The SAR attractor was initially found via nonlinear
saturation of the linear centre mode instability as described in Page et al. (2020). We
found the SAR to always be stable, and were able to obtain this state at other parameter
settings by supplying a converged arrowhead obtained nearby in parameter space as an
initial condition. We triggered the chaotic states CAR and EIT by applying blowing and
suction at the wall, starting from either SAR (to obtain CAR) or the L state (to obtain
EIT). The blowing and suction is similar to that used in previous studies (Dubief et al.
2013; Samanta et al. 2013) and takes the form

v( y = ±1) = ∓A sin (2πx/Lx), (2.8)

with A = 2 × 10−3. The forcing is active for 0 ≤ t < 3. Perturbations from the wall were
found to be necessary to trigger the self-sustained chaotic states. In contrast, arbitrary
perturbations applied in the core of the domain did not trigger chaotic behaviour.
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Figure 2. Summary of computations and the attractors found over the parameter space. Blue circles indicate
that only the L state was found as an attractor, orange stars indicate that the SAR and L coexist as attractors,
light blue squares indicate that L and EIT coexist as attractors and red triangles indicate that L, EIT, SAR and
CAR all coexist as attractors. For the main plot, Sc = 500, β = 0.9 and Re = 1000 while for the inset Wi = 50,
β = 0.9 and Sc = 500 again. At Lmax = 50 only EIT and L were explored as attractors as SAR/CAR become
prohibitively expensive computationally.

3. Multistability of two-dimensional viscoelastic channels

In this section we summarise our computations and map out regions of multistability. We
also explore the impact of changing the flow parameters on the appearance and statistical
properties of the various attractors.

3.1. Coexistence of attractors in parameter space
The parameter space here is five dimensional and so a systematic search was impractical.
However, a preliminary investigation indicated that Wi and Lmax were the most important
parameters (yielding the most qualitative changes) so they were the focus of the search;
see figure 2. Over the range (Wi, Lmax) ∈ [20, 70] × [50, 1000] at Sc = 500, β = 0.9 and
Re = 1000, the L state is linearly stable. This is consistent with the centre-mode instability
appearing at slightly higher Wi (see figure 2 in Page et al. (2020) where Sc = 1000
was used). However, the consequence of the centre-mode instability – the SAR state –
is seen at lower Wi as the instability is subcritical. The SAR state was found to be an
attractor for Lmax ≥ 70 and Wi ≥ 30 consistent with Page et al. (2020). Interestingly, the
CAR was only found where SAR also exists and is stable (basically for Wi ≥ 50 and
Lmax ∈ [70, 120]) excluding the possibility of a SAR-to-CAR bifurcation in this (Wi, Lmax)
range. Elasto-inertial turbulence was found for Wi ∈ [30, 100], Lmax ∈ [50, 130] with
β ∈ [0.9, 0.97], Re ∈ [900, 1200] and Sc ≥ 500. In terms of figure 2, CAR and EIT
coexist when Lmax is as low as 50 where only EIT and the L state were simulated.
Attempts to simulate SAR and CAR for this value of Lmax were prohibitively expensive
computationally due to the loss of positive definiteness and the high spatio-temporal
resolution required.

981 A30-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.50


Multistability of elasto-inertial channel flow

The general conclusion from figure 2 is that the nonlinear states first reported in Dubief
et al. (2022) – SAR, CAR and EIT – coexist in parameter space rather than succeeding
each other as attractors. The latter scenario would suggest dynamical connections between
the states in which one loses stability to another, but this seems not to be the case at least in
the parameter ranges considered. The fact that SAR and CAR coexist as attractors for the
parameters considered is particularly surprising as CAR plausibly looks like the indirect
result of a bifurcation off SAR.

3.2. Distinguishing between CAR and EIT
Figure 1 shows that the CAR and EIT states look very similar and developing some
quantitative measure to distinguish them is important. Another issue is whether either state
is just a long-lived transient. For example, does CAR eventually evolve into the EIT state?
This latter question is impossible to answer definitively with finite-time computations but
what can be said is that over the course of our simulations (some of duration over 1000
h/Ub), CAR never collapsed.

The defining feature of CAR is the mixture of an arrowhead structure at the midplane
with the chaotic stretched polymer sheets towards the walls that characterise EIT.
A quantity well suited to picking the former feature out is

Cgrad := 1
Lx

∫
|∂xC′

kk(x, y = 0)| dx, (3.1)

which is the streamwise-averaged gradient magnitude of the perturbation over the L state
trace along the centreline. We also use the L2 norm of the velocity difference from the
laminar flow – a turbulent kinetic energy

TKEL := 1
2Lx

∫
Ω

(u − uL)2 dΩ, (3.2)

to compare CAR and EIT. Figure 3(a) shows the two-dimensional probability density
function over these two quantities for the CAR and EIT states collected over a 1000
h/Ub time period. The turbulent kinetic energy of EIT and CAR are very similar but,
as expected, Cgrad is much larger for CAR than EIT.

Another differentiator between EIT and CAR is the result of projecting onto the
eigenmodes of the symmetric centre mode (CM) and the antisymmetric TS mode as

〈φ†
j , φ〉 = 1

2

∫ 1

−1
φ

†∗
j φ dy, (3.3)

with

φ( y) := 1
Lx

∫ Lx

0
ϕ(x, y)eix dx, (3.4)

where j = {CM, TS}, ϕ = [u′, v′, p′, C′
xx, C′

yy, C′
zz, C′

xy] is the perturbation to the L state
and φ denotes the projection onto the kx = 1 mode (∗ denotes complex conjugate and †

the adjoint). Figure 3(b) shows that this projection for the same perturbation trajectories
used in figure 3(a) produces the same desired separation. The projection onto the centre
mode is much larger than the TS mode one for both chaotic states. This is caused by the
fact that the trace of the conformation tensor C in the TS eigenmodes has a much larger
amplitude than the other components, but its spatial extension is significantly smaller; see
figure 3(c,d).
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Figure 3. (a) Plot of Cgrad/L2
max vs TKEL as defined in the main text for EIT (blue) and CAR (red) identified

at Re = 1000, Wi = 50, Lmax = 70, β = 0.9, Sc = 500 for a finite-time interval T ≈ 1000; (b) projection of
the same EIT trajectory (blue) and CAR (red) onto the TS mode versus the projection onto the centre mode.
Contours represent the two-dimensional probability density function (p.d.f.) over the two quantities indicated
by the figure axes. The figures present observables to show that EIT and CAR are two separate attractors;
(c) tr(C) of the centre mode for the aforementioned parameters and kx = 1. (d) Idem for the TS mode that
becomes unstable at sufficiently large Re. The shown eigenmodes have arbitrary amplitude. Note that the
projection of the TS mode is much smaller than that of the centre mode due to the smaller spatial extension of
tr(C), which is the largest term in the corresponding eigenmode.

3.3. Effect of varying Wi and Lmax

The kinetic energy of the SAR increases for increasing Lmax, in line with the
results previously reported (Buza et al. 2022a; Dubief et al. 2022). Figure 4(a)
shows the time series of the volume-averaged trace for CAR corresponding
to Lmax = {70, 90, 110} at (Wi, Re, Sc, β) = (50, 1000, 500, 0.9) and Lmax = 130 at
(Wi, Re, Sc, β) = (50, 1000, 1000, 0.9) where the change in Sc was necessary to maintain
chaotic dynamics (ditto for the corresponding SAR). The figure shows that the CAR
states undergo periods of calmer, less energetic dynamics alternating with more active
periods. The duration of the calmer events increases with Lmax as shown by the increasing
distance between peaks of the time series. This behaviour indicates a continuous transition
between the previously reported CAR and intermittent arrowhead regimes, leading to the
conclusion that these states are two ends of the same attractor, hereafter labelled CAR.
The IAR discussed in Dubief et al. (2022) is simply a CAR state where the calm phases
dominate the chaotic dynamics that occurs as Lmax gets large for example.

The effect of varying Lmax on the EIT states can be seen in figure 5 where the
length scales in instantaneous snapshots increase with Lmax. This is further supported
by considering tr(C) at any arbitrary horizontal line (y = −0.6 in this case), which is
shown in figure 5(d) and its Fourier transform in figure 5(e). The latter figure shows
that for increasing Lmax, the energy content in the larger scales (smaller wavenumbers)
is increased.

The effect of increasing Wi on the EIT state is to make the polymer sheets more
undulating spatially and temporally; see figure 6. Increasing Wi also intensifies the
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Figure 4. (a) Time series corresponding to several CARs (solid) and the corresponding SAR (dashed) at Re =
1000, Wi = 50, β = 0.9 with Sc = 500 for Lmax = {110, 90, 70} (second top to bottom) and Sc = 1000 for
Lmax = 130 (top). The figure shows how the duration of the calm–active phases becomes longer with increasing
Lmax, i.e. the peaks of tr(C) become more separated in time. This shows that the IAR and CAR reported in
Dubief et al. (2022) are smoothly connected and so correspond to the same attractor.
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Figure 5. (a–c) Snapshots of tr(C)/L2
max of EIT with varying Lmax for fixed Re = 1000, Wi = 50, β = 0.9,

(a) Lmax = 50, (b) Lmax = 70, (c) Lmax = 90 and Sc = 500 for all cases. (d) Plot showing tr(C)/L2
max along

the arbitrarily chosen line y = −0.6 for Lmax = 50 (red), Lmax = 70 (orange), Lmax = 90 (blue). (e) Fourier
transform of Lmax for the lines in the top right figure illustrating how the length scales in the flow increase with
Lmax, i.e. smaller Lmax shows greater amplitudes in the lower wavenumber modes. The vertical lines indicate
the wavenumbers corresponding to the two smallest wavenumbers (apart from 0) for each Lmax above.

polymer layers that reach closer to the centreline. The same trends were also observed
for decreasing Lmax and are found also for the CAR state. A discussion about the evolution
of the SAR states with Wi can be found in Buza et al. (2022a).
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Figure 6. Snapshots of tr(C)/L2
max of EIT with varying Wi for fixed Re = 1000, Lmax = 70, β = 0.9,

Sc = 500. Results are shown for (a) Wi = 30, (b) Wi = 50, (c) Wi = 100.

3.4. Effect of varying Re, β and Sc
Elasto-inertial turbulence and CAR remain robust as the Reynolds number is increased
away from where they first appear in parameter space. As an example, figure 7(b,d, f )
shows the CAR for three different Re = {900, 1100, 1200}, while keeping the remaining
parameters fixed. The intensity of the dynamics increases while the arrowhead persists at
the centreline, consistent with Dubief et al. (2022).

Increasing the polymer concentration, β, also intensifies the chaotic dynamics present.
Figure 7(a,c,e) shows CAR for β = {0.9, 0.95, 0.97} for fixed Re = 1000, Wi = 50,

Lmax = 70, and Sc = 500. A larger β leads to more active chaotic dynamics. Steady
arrowhead states have been observed at values as low as β ≈ 0.5 (Buza et al. 2022a;
Dubief et al. 2022; Morozov 2022), whereas we have found that chaotic states (EIT
and CAR) cannot be sustained for values below β ≈ 0.8 (using Re = 1000, Lmax = 70,
Wi = 50 and Sc = 500).

The majority of the results presented here were computed using Sc = 500 as a
compromise between including a vanishingly small real diffusion (see, e.g. El-Kareh &
Leal 1989) and enough diffusion to numerically stabilise the time-stepping spectral code
at the resolutions used. The value of Sc = 500 was also selected as the best match to the
previous finite-difference computations reported in Dubief et al. (2022) and Page et al.
(2020) where a value of Sc = 1000 was taken (finite-difference codes already have some
implicit numerical diffusion so less needs to be added explicitly to stabilise time stepping
compared with a spectral code). Even then, the EIT reported in figure 2 of Page et al.
(2020) (the red square at Wi = 20, β = 0.9, Lmax = 500 and Re = 1000) could only be
recovered by using neighbouring parameter values Wi = 30, β = 0.9, Lmax = 120 and
Re = 1000. Runs were also carried out with Sc = 150 and 1000 that confirmed that all four
states (EIT, CAR, SAR and L) as well as their coexistence are robust. The exact parameter
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Figure 7. (a,c,e) Snapshots of tr(C)/L2
max for CAR with varying β at Re = 1000, Wi = 50, Lmax = 70 and

Sc = 500: (a) β = 0.9, (c) β = 0.95, (e) β = 0.97. (b,d, f ) Snapshots of tr(C)/L2
max for CAR with varying Re

at Wi = 50, Lmax = 120, β = 0.9 and Sc = 500: (b) Re = 900, (d) Re = 1100, ( f ) Re = 1200. Increasing β

and Re separately or together intensifies the chaotic dynamics in agreement with Dubief et al. (2022).

limits for their coexistence, however, do depend on Sc and taking Sc ≤ 50 killed the chaotic
states.

4. Dynamic connections between attractors

The goal of this section is to explore how the various attractors – L, SAR, CAR and EIT
– are organised in state space. Of primary concern is identifying which states share basin
boundaries and which do not. The physical features present in the different states, such as
the presence of a polymer sheet across the midplane or the undulations of polymer sheets
closer to the wall, are common to several of the states identified. It is therefore natural
to ask how transitions can occur between them and how they come into existence as the
parameters are varied.

As an initial check, we first examined the linear stability of the SAR state that results
from the centre-mode instability found by Garg et al. (2018) in a pipe and Khalid et al.
(2021a) in a channel. This bifurcation is generally subcritical in both Re and Wi (Wan et al.
2021; Buza et al. 2022b) with the SAR solution emerging as the upper branch solution
(Page et al. 2020; Buza et al. 2022a; Morozov 2022). We examined the two-dimensional
linear stability of the SAR states performing a global stability analysis using an implicitly
restarted Arnoldi method (Sorensen 1992; Bagheri et al. 2009). The linear stability
analysis was carried out in the frame travelling with the speed of the SAR, where the state
corresponds to a fixed point (the perturbation was represented by Nx = 64 streamwise and
Ny = 512 wall-normal modes). A subset of SAR states coexisting with EIT/CAR were
tested and found to be linearly stable to two-dimensional perturbations consistent with the
time-stepping numerics. Interestingly, while this work was being performed, another group
found that the SAR state is, however, linearly unstable to three-dimensional perturbations
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Elasto-inertial turbulence
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Figure 8. Sketch of the state space configuration. The four quadrants represent the basins of attraction
corresponding to the states EIT, CAR, SAR, L. The solid lines emanating from the states represent trajectories
approaching and departing different regions of the state space. The thick lines indicate the edge tracking carried
out: between EIT and L (blue), between EIT and SAR (red) (see figure 9). The edge states resulting from the
bisection algorithm are framed with the same colour. The chaotic attractors undergo calm and active phases
(see figure 4) and approach the edge states during the calm phase.

where there is a non-vanishing spanwise wavenumber (Lellep, Linkmann & Morozov
2023).

As the L state is also linearly stable over the parameter space being considered,
the transition between the SAR, L and the other chaotic states must then be through
finite-amplitude perturbations. To shed some light on this, the saddle states lying in the
boundaries between the basins of attraction of the aforementioned attractors, i.e. the edge
states, are considered below.

4.1. Edge states
Edge states are attracting states on the edge manifold, a codimension one manifold lying
in the boundary between different basins of attraction. Edge states are thus helpful to
shed light on the global structure of the state space (Schneider & Eckhardt 2006; Skufca,
Yorke & Eckhardt 2006; Duguet, Willis & Kerswell 2008). These states can be identified
by the so-called classical edge tracking algorithm based on threshold attainment of a key
observable of the flow (Itano & Toh 2001; Skufca et al. 2006).

The choice of an observable to uniquely label trajectories as lying within a certain basin
of attraction is not straightforward in viscoelastic flows as discussed above in § 3.2. The
choice used here is the L2 norm of the vertical velocity, ‖v‖2, which is zero for the L state.
Edge tracking was then performed between (i) EIT and L (shown in figure 8 as a blue line)
and (ii) EIT and SAR (shown in figure 8 as a red line). The use of ‖v‖2 – as well as other
observables based on tr(C) – was not able to uniquely distinguish between trajectories
belonging to CAR or to EIT at every instant, as illustrated in figure 3. The existence of an
edge manifold between CAR and EIT can still be explored by probing the state space with
specific trajectories and assessing whether an arrowhead structure survives or not after a
sufficiently long time but this is a laborious process.

The simplest edge state identified is the ‘lower branch’ unstable SAR between the ‘upper
branch’ stable SAR and L (Buza et al. 2022a). Figure 9(a) shows the time series of the
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Figure 9. Top edge tracking for Re = 1000, Wi = 50, β = 0.9, Lmax = 70, Sc = 500: (a) between EIT and L
(the green edge trajectory is bracketed by red trajectories approaching EIT and blue trajectories relaminarising
to L), and (b) between EIT and SAR (the green edge trajectory is bracketed by red trajectories approaching
CAR instead of EIT and blue trajectories approaching SAR). Bottom: (c) snapshot of tr(C)/L2

max of the edge
trajectory in (a) at t = 400 that shows a strong polymer layer at y ≈ ±[0.75, 0.85]. Plot (d) repeats this for
(b). The red line in figure 8 explains how it is possible to reach the CAR edge state starting from a bisection
between EIT and SAR.

edge tracking between EIT and L and figure 9(c) shows a snapshot of this trajectory, a
weakly chaotic state characterised by polymer layers located at y ≈ ±[0.75, 0.85]. The
edge state reveals the significance of the polymer layers located close to the walls, as
they are responsible for the self-sustained chaotic dynamics within the edge. Furthermore,
these layers have been observed during the calm phases of both EIT and CAR, suggesting
that they related to the driving mechanism for EIT. The edge state between CAR and L
can be compared with the edge state found between EIT and SAR, figure 9(b,d), which
also corresponds to a weakly chaotic state characterised by polymer layers located at y ±
[0.75, 0.85] with the presence of an arrowhead structure in the centre of the channel.

The results of the edge tracking suggest an organisation of state space sketched in
figure 8 over a two-dimensional plane of wall activity against centre-mode projection.
Here each state is shown within its basin of attraction and the chaotic states are shown
approaching their corresponding edge states in their calm phases. Our calculations suggest
that there could be an intersection between the basins of attraction of EIT, CAR, SAR and
L but the saddle state residing here is not computable using bisection since it must have
two unstable directions.

4.2. Kinetic-to-elastic energy transfer
Our calculations of chaotic states highlight the importance of polymer activity at the walls.
Here we identify the key location where kinetic energy is transferred to elastic polymer
energy. The energy transfer flux from the perturbation kinetic energy to the perturbation
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Figure 10. (a) Cospectra between the perturbation kinetic energy to the perturbation elastic energy for EIT at
Re = 1000, Wi = 50, β = 0.9, Lmax = 70, Sc = 500 as a function of the wall-normal coordinate y just before
an active phase. The streamwise wavenumber kx is normalised with the minimum mean Kolmogorov length
scale. The white dashed line is at y = 0.75. (c) Instantaneous snapshots of tr(C)/L2

max corresponding to the
cospectra in (a). (b) Same as (a) but for snapshots of CAR at the same parameters. (d) Instantaneous snapshot
of tr(C)/L2

max corresponding to the cospectra in (b). (e) Mean cospectra for same EIT as (a). ( f ) Idem for CAR
in (b). The figure illustrates how the energy exchange ahead of an active phase occurs at polymer layers located
at y ≈ ±[0.75, 0.85].

elastic energy is

Π ′
e := 1 − β

Re
T ′

ijS
′
ij (4.1)

(e.g. see equations (9)–(12) in Dubief et al. 2022), where primed variables indicate
perturbations from the mean turbulent state, and the dissipation rate of TKE, ε :=
(β/Re)∂ju′

i∂ju′
i, defines the Kolmogorov length scale,

ηK :=
[
(β/Re)3

ε̄

]1/4

, (4.2)

where ηK is defined for classic turbulence. Although ηK might seem to depend on β at first
glance, the definition of Re is based on the total viscosity η.

Figure 10 shows the instantaneous cospectra of Π ′
e and the corresponding instantaneous

field of tr(C)/L2
max for each of EIT and CAR when they are on the verge of a

high-activity phase. These cospectra highlight that as the trajectories depart from
their calm phases, the largest rate of energy exchange from the kinetic energy to
the elastic energy, i.e. maximal Π ′

e, takes place at a location y ≈ [0.75, 0.85] in (a)
and y ≈ [−0.75, −0.85] in (b). Notably, the critical layer for the stable TS waves for
Re = 1000, Wi = 50, β = 0.9, Lmax = 70, Sc = 500 can be found at y ≈ ±0.79. This
corresponds to the location of the polymer layers harvesting kinetic energy to build
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self-sustained chaotic dynamics. The importance of the critical layer in supporting chaotic
dynamics has been previously discussed in the transition route to EIT based on viscoelastic
TS waves (Shekar et al. 2019, 2020, 2021). It is also interesting to note that the main
exchange from elastic energy to kinetic energy happens in the dark regions of figure 10.
As can be observed throughout the various figures in this work, this region supports
the larger-scale motions during the observed self-sustained chaotic process. Moreover,
these polymer sheets experience the same kind of undulation for the edge states as for
the complex chaotic attractors when departing from the calm phases. The time-averaged
cospectra (shown in figure 10e, f ) confirm the importance of the energy exchange in the
neighbourhood of the wall y ≈ [0.75, 0.85]. As expected, the time-averaged cospectra for
EIT and CAR are very similar as the main energy exchange driving the chaotic dynamics
is located in the same region (Dubief et al. 2022).

5. Discussion

In this paper we have carried out a suite of two-dimensional simulations of
viscoelastic channel flow to explore where the various states described in Dubief et al.
(2022) exist in (Wi, Re, β, Lmax, Sc) parameter space. A fully spectral code using the
FENE-P model has been used to confirm the existence of four distinct states: the L
state, SAR, CAR and EIT, EIT (the intermediate arrowhead state, IAR, of Dubief
et al. (2022) has been clarified as a CAR where calm periods dominate over the
chaotic dynamics). Elasto-inertial turbulence has been found for (Wi, Re, β, Lmax, Sc) ∈
[30, 100] × [900, 1200] × [0.9, 0.97] × [50, 130] × [500, ∞) with increasing Wi, Re and
β and decreasing Lmax intensifying the chaotic behaviour. Small Sc values of ≈ 50
suppress the chaotic dynamics, while larger values of Sc allow the chaos to exist in a
greater region of parameter space.

The most significant finding, however, is that there is a substantial set of parameter
values (shown in figure 2) where all four states coexist as attractors. This contrasts with the
classic ‘supercritical’ scenario where a succession of unique attractors appear of increasing
complexity as parameters are changed to make the flow more unstable (e.g. increasing Wi
or decreasing Lmax). In particular, no evidence has been found that a bifurcation off the
SAR leads ultimately to either CAR or EIT (at least in two dimensions) as hypothesized
after the recent discovery of the centre-mode instability (see, e.g. Garg et al. 2018; Page
et al. 2020; Khalid et al. 2021a; Datta et al. 2022; Shankar & Subramanian 2022). It may
well be that such a subcritical bifurcation sequence exists at, for example, higher Wi or
lower Lmax beyond the region of multistability. Our results do not go high enough in Wi
nor low enough in Lmax to see this. In terms of polymer concentration, SAR has been found
as low as β = 0.5 but remains stable even when chaotic dynamics emerges for β ≥ 0.9.

To further probe the connection between the various states, various edge states were
identified between pairs of attractors, and used to sketch the relative locations of the states
in phase space. As expected, the edge state between SAR and L is the unstable ‘lower
branch’ SAR found in Buza et al. (2022b,a) while the edge states between CAR and L,
and between EIT and SAR correspond to weakly chaotic states. The chaotic edge states
reveal the presence of unstable polymer layers at y ≈ ±[0.75, 0.85], qualitatively similar to
the edge states between CAR and L, and between EIT and SAR. By examining the energy
transfer flux, these near-wall polymer layers were found to be where the dominant energy
transfer occurs from the velocity field to the polymers that seems fundamental for the
self-sustained chaotic dynamics. In contrast, the chaotic flow appeared to be insensitive
to the arrowhead structure populating the centreline region. This then further suggests
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that the chaotic dynamics is not related to the centre-mode instability or its arrowhead
manifestation but is more a wall-focused phenomenon.

The conclusion of the present study is then that the two-dimensional linear instability
discovered by Garg et al. (2018) in pipe flow and Khalid et al. (2021a) in a channel, and the
resulting arrowhead structure (Page et al. 2020; Buza et al. 2022a; Morozov 2022), appear
dynamically disconnected from EIT at least in the two dimensions studied here. Instead,
our study suggests that to trigger any chaotic motion, it is necessary to excite polymer
layers located at y ≈ ±[0.75, 0.85] from the wall. Recent work discussing viscoelastic TS
waves (Shekar et al. 2020, 2021) suggests a plausible mechanism as polymer stretch is
found localised at the near-wall critical layer of the TS waves. A three-dimensional route
to EIT stemming from the arrowhead cannot be ruled out. Lellep et al. (2023) have shown
that three-dimensional perturbations render the arrowhead linearly unstable and a possible
route to EIT should be explored in this scenario. Another possibility is the very recent
discovery of a wall-localised linear instability (Beneitez, Page & Kerswell 2023). Clearly,
further efforts are needed to untangle the mechanism leading to EIT but now this can be
focused on near-wall processes or three-dimensional alternatives.

Funding. The authors are grateful to EPSRC for supporting this work via grant EP/V027247/1. Y.D. also
thanks the support of the National Science Foundation CBET (Chemical, Bioengineering, Environmental and
Transport Systems) through award 1805636.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Miguel Beneitez https://orcid.org/0000-0002-4045-7262;
Jacob Page https://orcid.org/0000-0002-4564-5086;
Yves Dubief https://orcid.org/0000-0001-8181-7597;
Rich R. Kerswell https://orcid.org/0000-0001-5460-5337.

REFERENCES

BAGHERI, S., ÅKERVIK, E., BRANDT, L. & HENNINGSON, D.S. 2009 Matrix-free methods for the stability
and control of boundary layers. AIAA J. 47 (5), 1057–1068.

BENEITEZ, M., PAGE, J. & KERSWELL, R.R. 2023 Polymer diffusive instability leading to elastic turbulence
in plane Couette flow. Phys. Rev. Fluids 8, L101901.

BURNS, K.J., VASIL, G.M., OISHI, J.S., LECOANET, D. & BROWN, B.P. 2020 Dedalus: a flexible
framework for numerical simulations with spectral methods. Phys. Rev. Res. 2 (2), 023068.

BUZA, G., BENEITEZ, M., PAGE, J. & KERSWELL, R.R. 2022a Finite-amplitude elastic waves in viscoelastic
channel flow from large to zero Reynolds number. J. Fluid Mech. 951, A3.

BUZA, G., PAGE, J. & KERSWELL, R.R. 2022b Weakly nonlinear analysis of the viscoelastic instability in
channel flow for finite and vanishing Reynolds numbers. J. Fluid Mech. 940, A11.

CHANDRA, B., SHANKAR, V. & DAS, D. 2018 Onset of transition in the flow of polymer solutions through
microtubes. J. Fluid Mech. 844, 1052–1083.

CHOUEIRI, G.H., LOPEZ, J.M. & HOF, B. 2018 Exceeding the asymptotic limit of polymer drag reduction.
Phys. Rev. Lett. 120 (12), 124501.

CHOUEIRI, G.H., LOPEZ, J.M., VARSHNEY, A., SANKAR, S. & HOF, B. 2021 Experimental observation of
the origin and structure of elastoinertial turbulence. Proc. Natl Acad. Sci. USA 118 (45), e2102350118.

DATTA, S.S., et al. 2022 Perspectives on viscoelastic flow instabilities and elastic turbulence. Phys. Rev. Fluids
7 (8), 080701.

DRAAD, A.A., KUIKEN, G.D.C. & NIEUWSTADT, F.T.M. 1998 Laminar–turbulent transition in pipe flow
for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267–312.

DUBIEF, Y., PAGE, J., KERSWELL, R.R., TERRAPON, V.E. & STEINBERG, V. 2022 First coherent structure
in elasto-inertial turbulence. Phys. Rev. Fluids 7 (7), 073301.

DUBIEF, Y., TERRAPON, V.E. & HOF, B. 2023 Elasto-inertial turbulence. Annu. Rev. Fluid Mech. 55,
675–705.

981 A30-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0002-4045-7262
https://orcid.org/0000-0002-4045-7262
https://orcid.org/0000-0002-4564-5086
https://orcid.org/0000-0002-4564-5086
https://orcid.org/0000-0001-8181-7597
https://orcid.org/0000-0001-8181-7597
https://orcid.org/0000-0001-5460-5337
https://orcid.org/0000-0001-5460-5337
https://doi.org/10.1017/jfm.2024.50


Multistability of elasto-inertial channel flow

DUBIEF, Y., TERRAPON, V.E. & SORIA, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids
25 (11), 110817.

DUGUET, Y., WILLIS, A.P. & KERSWELL, R.R. 2008 Transition in pipe flow: the saddle structure on the
boundary of turbulence. J. Fluid Mech. 613, 255–274.

EL-KAREH, A.W. & LEAL, L.G. 1989 Existence of solutions for all Deborah numbers for a non-Newtonian
model modified to include diffusion. J. Non-Newtonian Fluid Mech. 33 (3), 257–287.

GARG, P., CHAUDHARY, I., KHALID, M., SHANKAR, V. & SUBRAMANIAN, G. 2018 Viscoelastic pipe flow
is linearly unstable. Phys. Rev. Lett. 121 (2), 024502.

GOLDSTEIN, R.J., ADRIAN, R.J. & KREID, D.K. 1969 Turbulent and transition pipe flow of dilute aqueous
polymer solutions. Ind. Engng Chem. Fundam. 8 (3), 498–502.

GROISMAN, A. & STEINBERG, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405 (6782),
53–55.

GROISMAN, A. & STEINBERG, V. 2004 Elastic turbulence in curvilinear flows of polymer solutions. New
J. Phys. 6 (1), 29.

ITANO, T. & TOH, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70 (3),
703–716.

JONES, W.M. & MADDOCK, J.L. 1966 Onset of instabilities and reduction of drag in the flow of relaxing
liquids through tubes and porous beds. Nature 212 (5060), 388–390.

KHALID, M., CHAUDHARY, I., GARG, P., SHANKAR, V. & SUBRAMANIAN, G. 2021a The centre-mode
instability of viscoelastic plane Poiseuille flow. J. Fluid Mech. 915, A43.

KHALID, M., SHANKAR, V. & SUBRAMANIAN, G. 2021b Continuous pathway between the elasto-inertial
and elastic turbulent states in viscoelastic channel flow. Phys. Rev. Lett. 127 (13), 134502.

LARSON, R.G., SHAQFEH, E.S.G. & MULLER, S.J. 1990 A purely elastic instability in Taylor–Couette flow.
J. Fluid Mech. 218, 573–600.

LELLEP, M., LINKMANN, M. & MOROZOV, A. 2023 Linear stability analysis of purely elastic travelling-wave
solutions in pressure-driven channel flows. J. Fluid Mech. 959, R1.

LUMLEY, J.L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1 (1), 367–384.
MEULENBROEK, B., STORM, C., MOROZOV, A.N. & VAN SAARLOOS, W. 2004 Weakly nonlinear

subcritical instability of visco-elastic Poiseuille flow. J. Non-Newtonian Fluid Mech. 116 (2–3), 235–268.
MOROZOV, A. 2022 Coherent structures in plane channel flow of dilute polymer solutions with vanishing

inertia. Phys. Rev. Lett. 129 (1), 017801.
MOROZOV, A.N. & VAN SAARLOOS, W. 2007 An introductory essay on subcritical instabilities and the

transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 447 (3–6), 112–143.
MYSELS, K.J. 1949 Flow of thickened fluids. U.S. Patent 2492173A.
PAGE, J., DUBIEF, Y. & KERSWELL, R.R. 2020 Exact traveling wave solutions in viscoelastic channel flow.

Phys. Rev. Lett. 125 (15), 154501.
PAN, L., MOROZOV, A., WAGNER, C. & ARRATIA, P.E. 2013 Nonlinear elastic instability in channel flows

at low Reynolds numbers. Phys. Rev. Lett. 110 (17), 174502.
SAMANTA, D., DUBIEF, Y., HOLZNER, M., SCHÄFER, C., MOROZOV, A.N., WAGNER, C. & HOF, B. 2013

Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 110 (26), 10557–10562.
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