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Abstract

The oceans have a very important role in climate regulation due to their massive heat storage capacity. Thus, for the
past decades, oceans have been observed by satellites to better understand their dynamics. Satellites retrieve several
data with various spatial resolutions. For instance, sea surface height (SSH) is a low-resolution data field where sea
surface temperature (SST) can be retrieved in a much higher one. These two physical parameters are linked by a
physical link that can be learned by a super-resolutionmachine-learning algorithm. In thiswork, we present a subpixel
convolutional deep learningmodel that takes advantage of the higher resolution SST field to guide the downscaling of
the SSH one. The data fields that we use are simulated by a physic-based ocean model at a higher sampling rate than
the satellites provide. We compared our approach with a convolutional neural network model. Our architecture
generalizedwell with validation performances of 3.94 cm rootmean squared error (RMSE) and training performances
of 2.65 cm RMSE.

Impact Statement

The dynamics of the oceans are a key issue to understand the climate system, as they transport heat from
equatorial areas to colder ones. Ocean currents are therefore an important variable, and their estimation requires
to measure the sea surface height (SSH). This altimetry map is hard to acquire in practice and thus has a low
effective resolution compared to other physical data such as the sea surface temperature (SST). In this work, we
propose a deep learning algorithm that takes advantage of the high-resolution information of the SST to enhance
the resolution of the SSH.

1. Introduction

The oceans, with theirmassive heat storage capacity and conveyor belt circulation, are the prime drivers of
climate regulation. Better understanding and monitoring their response to climate change requires high-
resolution data sets. Such data sets are usually obtained by satellite imaging, numerical modeling, or by a
combination of the two through data assimilation (Bertino et al., 2003). Satellite remote sensing provides a
multitude of geophysical data fields with various sampling in space and in time. For instance, sea surface
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temperature (SST) can be obtained at a very high resolution (1.1 and 4.4 km) from the AVHRR instruments
(Emery et al., 1989). On the other hand, sea surface height (SSH) can be retrieved at a coarser resolution
(around 25 km) from different satellites. SSH and SST variables are linked by a hidden physical relation
(Leuliette and Wahr, 1999) that we aim to use by combining these multiresolution data to downscale the
coarse SSH. This could lead to estimate ocean currents as they are formed by geostrophy fromSSH gradient
(Doglioni et al., 2021). This is a super resolution (SR) problem applied to oceanography.

Since 2014 and the super resolution convolutional neural network (SRCNN) introduced by Dong
et al. (2014), neural networks have been used to perform super resolution tasks, and often achieve state-
of-the-art performances (Wang et al., 2021). Awide range of deep neural network architectures has been
explored such as the residual networks (ResNet). ResNets allow the use of deeper architectures and
bigger learning rates (Kim et al., 2016; Lim et al., 2017). Various up-sampling strategies have also been
tested such as the subpixel convolution method introduced by Shi et al. (2016a). However, the literature
on super-resolution with deep learning networks focuses on lower upsampling factors, without multi-
resolution data. Therefore these methods should be adapted to the SSH downscaling problem because
the network must be able to extract information from the high-resolution SST. This problem has been
tackled by the RESAC neural network architecture (Thiria et al., 2022), which is a proof-of-concept
super-resolution architecture. Its main features are downscaling through consecutive resolutions, and
using a cost function that monitors the correct downscaling in each of these resolutions. We propose a
subpixel convolutional residual network, called RESACsub, a modified version of the RESAC
network. As the RESAC network, RESACsub aims to downscale a low-resolution SSH using infor-
mation from a higher-resolution SST.We achieve the SSH downscaling with a higher upsampling factor
than in the RESAC proof of concept, but we only focused on the SSH, while RESAC also recovers the
longitudinal and latitudinal velocities. In the following, we will present RESACsub, as well as its main
differences from RESAC, briefly detail the data set used by both models, present the results obtained
and discuss further potential developments.

2. Data

In order to train a supervised neural network as RESACsub, we need the data fields at every resolution. As
SSH cannot be retrieved from a satellite at the resolution we want to downscale, we use simulated grided
SSH and SST from an ocean physics-based model: NATL60 (Ajayi et al., 2020). This model is based on
the NEMO 3.6 (Madec et al., 2017) code, with atmospheric forcing, and initial conditions taken from
MERCATOR (Lellouche et al., 2018).We use the SSH and SSTstate variables of this model at a very high
resolution denoted R01 (for a resolution of 1/60° at the equator). At this resolution, the model has a very
high running cost; therefore, we were only able to retrieve 1 year of training data (366 days starting from
October 1, 2012), and 4 months of validation in 2008 (March, June, September, and December). We are
well aware that we should use different test/validation dataset, but considering the importance of the
annual cycle and that the main objective is to compare two models, we decided not to separate the four
validation months. Compared to RESAC, our validation method is more rigorous as there cannot be data
leakage from sampling the validation data from the training year.

We simulate the various resolutions by recursively averaging the pixels in a 3�3mask. We then call,
hereafter R01, R03, R09, R27, and R81, the five resolutions that we study with respective sizes at the grid
center of (1:5�1:5, 4:5�4:5, 13�14, 40�41, and 120�122km2). We renormalize the data set
between 0 and 1 to both stabilize the numerical calculations and equalize the importance of SST and
SSH. In order to compare ourmodels, we perform 10 rounds of training of each architecture, with different
weight initialization on each training.

3. Method

3.1. RESAC super-resolution method

In this paper, we compare two CNN architectures that use the same downscaling RESAC method. This
method aims to learn the hidden link between a high-resolution SST and a low-resolution SSH. To that
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end, we progressively increase the resolution of our coarse SSH_R81 in three up-sampling steps each one
with an up-sampling factor of 3 for a total up-sampling factor of 27. To perform each resolution increase
we use a CNN block as shown in the RESAC method in Figure 1.

The Vanilla RESAC method as proposed by Thiria et al. (2022) performed only two downscaling
CNNs starting from SSH_R81 (120�122km2) and retrieving SSH_R09 (13�14km2) for a total
up-sampling factor of 9. But the original method also used another CNN block at the end of the network
to compute the circulation (U and V currents) from the estimate SSH_R09. Our downscaling method
upscales the SSH from 120�122km2 down to 4:5�4:5km2 (upsampling factor of 27) without retrieving
ocean currents. Both methods use cost functions that force the model to correctly downscale through the
intermediary resolution. Therefore we use three loss functions at R27, R09, and R03 and the global loss of
the model is their sum. The use of three separate loss functions guides the model to correctly reconstruct
the intermediary resolutions, which depend on different physical phenomena given their scales. For each
of these loss functions, we use mean squared error (MSE) between the estimated SSH and the target.

In this work, every architecture uses the same downscalingmethod: a slightly differentmethod than the
one used by Thiria et al. (2022), which downscale SSH_R81 to SSH_R03 using every intermediate
resolution SST without retrieving ocean currents. We denote this downscaling method as the RESAC
method hereafter.

3.2. Network architecture

3.2.1. RESAC network
The original RESAC architecture upsamples the SSH with a bilinear upsampling and then applies Nloop
times two convolution layers followed by a batch normalization (BN) layer as shown in Figure 2. In the
following work, we set Nloop¼ 5, therefore, each downscaling CNN block has 10 convolution layers,
each one with 37 filters. We use the swish activation function for every convolution layer, except for the
last one that uses a linear activation function.

3.2.2. RESACsub network
RESACsub is a Subpixel Convolutional Residual Network. It is a post-network upsampling strategy
shown in Figure 2. The principle of a subpixel convolutional layer is to perform the convolution, not in the
original image space (that we call supspace hereafter), but in a deeper and smaller space (that we call
subspace hereafter). This method has been introduced by Shi et al. (2016a, 2016b): the upsampling is
therefore performed at the end of the network by getting back to the supspace. The supspace is obtained
from the subpsace by applying a pixel shuffler operation as shown in Figure 3. Two pixels that are spatial
neighbors in the supspace are channel neighbors in the subspace. We call hereafter P the operation that
transforms a subspace image into a supspace image and P�1 the inverse operation, see equation (1):

Isubn,n,R2c ⇄
P

P�1
IsupRn,Rn,c, (1)

Figure 1. Comparison between the vanilla downscaling method used in Thiria et al. (2022) and this
paper. The main two differences are that we increase the SSH resolution one step further but we do not
retrieve the ocean circulation.
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where R is the upsampling factor (3 in our work), n is the spatial dimension of the low-resolution image,
and c is the number of channels. Therefore, Isubn,n,R2c is the image in the subspace and IsupRn,Rn,c is the same
image shifted in the supspace.

In RESACsub we first concatenate the SST and the SSH in the subspace. As the SST is wider than the
SSH, we first shift it to the subspace with an inverse pixel shuffling layer. To keep the same weight
between SSTand SSH images we duplicate nine times the low-resolution SSH image and concatenate the
two images after doing so.We then use a Residual Network to downscale the SSH,with five residual loops
(Nloop¼ 5). Each residual loop starts with an adapted form of BN that we detail in Section 3.2.3, followed
by 3 convolution layers with respectively 32, 32, and 18 filters and the swish activation function.We then
add the SSH and concatenate the SST. The final output layer is a convolution layer with nine filters and a
linear activation function followed by a pixel shuffling.

3.2.3. Batch normalization
With this subpixel convolution method, we use the channel dimension to store neighbors pixels and then
perform a convolution layer. This implies that using BN will create strong checkerboard artifacts as each
channel is normalized with a different mean and variance. The tests we performed confirmed this. To
explain the impact of BN on the checkerboard artifacts, we must get back to the following equation:

Yb,x,y,c ¼ γc
Xb,x,y,c�μcffiffiffiffiffiffiffiffiffiffiffiffi

σ2c þ ε
p þβc, (2)

Figure 2.Comparison of the architectures of one downscaling step for RESAC and RESACsub. For each
layer, the output number of channels is given below it.

Figure 3. Pixel shuffler and inverse pixel shuffler.
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where X and Y are, respectively, the input and the output of the BN layer. They are four-dimensional
tensors with b as the batch coordinate, x and y as the two spatial coordinates of the image, and c as the
channel index. Parameters μc and σc are, respectively, the mean and the standard deviation of the image
across the two space dimensions and the batch dimension for the channel c. Finally, ε is a small positive
constant that we add for numerical stability, βc and γc are, respectively, the output mean and the output
standard deviation that are learned during the training.

The BN method thus learns the bias and the standard deviation of each channel independently during
the training phase. This is inconsistent with the subpixel convolutional method because the channels do
not represent different data or images, but neighbors pixels that have similar distributions and should be
normalized the same way.

To fix this issue we use an adapted form of BN that we call supBNsub as illustrated in Figure 4.
Operator supBNsub gets back to the supspace, applies a BN layer, and then returns to the subspace. If we
call BN the batch normalization operation described in Eq. (2), we can write the supBNsub operator as

supBNsub¼P�1 BN Pð Þð Þ (3)

and SupBNsub method produces better results in RMSE sense.
To explain why BN creates checkerboard artifacts, we must write the mean and standard deviation of

both methods. It is trivial that in the case of the standard BN, the C0
1 channel has a mean of β1 and a

standard deviation of γ1 (respectively, β2 and γ2 for the C
0
2 channel). According to notations in Figure 4,

in the supBNsub case we have (see Appendix A for details)

μp ¼
μ1þμ2

2
σ2p ¼

σ21þσ22
2

þ μ1�μ2
2

� �2
μ01 ¼ γp

μ1�μp
σp

þβpσ
0
1
2 ¼ γ2pσ

2
1

σ2p
: (4)

In both cases, the output mean and standard deviation of the C0
1 and the C0

2 channels are not equal
(Figure 4). During the upsampling operation to get back to the supspace, neighbors pixels will have
slightly different values due to their different means, therefore some checkerboard artifacts will appear as
shown in Figure 6. However, the supBNsub layer performs better than the standard BN because it has a
higher regularization effect as all the channels are normalized the same way. The supBNsub layer has less
degrees-of-freedomwhere the standard BN bias and standard deviation are completely unrelated between
two different channels.

The checkerboard artifacts are intrinsically linked to the subpixel convolutional layers, as different
filter weights are applied to neighbor pixels. To get rid of this problem we use a post-trained denoising
filter: at the end of RESACsub, we apply two convolution layerswith 32 filters with a 7�7 kernel size and
a ReLu activation function. This convolution operation is wide enough to perceive a 12�12 area where

Figure 4.Comparison of the two BNmethods for a one-dimensional example. For each channel, we write
the mean and standard deviation below it and the learned parameters are in bold.

Environmental Data Science e26-5

https://doi.org/10.1017/eds.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.28


several checkerboard patterns should be repeated. After these two layers, we perform a last convolution
layer with one filter 1�1 and no activation to get back to the image dimension.

4. Results

We compare the results of four models on the validation data set. We call hereafter RESAC the network
presented in Thiria et al. (2022), RESACsub supBNsub the proposed network with the supBNsub BN
layer, RESACsub BN the same network but with the standard BN, and Denoiser stands for the denoising
filter applied after the RESACsub supBNsub network. We also provide a bicubic interpolation as a

Figure 5. Network output for SSH at R03. The first line is the estimated SSH of the same day (March 10)
and the second line is the error map associated.

Figure 6. Zoom on the error map of the two subpixel models RESACsub BN and RESACsub supBNsub,
and the denoising network applied on RESACsub supBNsub. We can clearly see the 3�3 pattern on the
two subpixel models, where the denoiser removes it.
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baseline. For each upsampling architecture (a CNN block in Figure 1), both models have five loops
(Nloop¼ 5), see Figure 2. For RESAC, that corresponds to 10 convolution layers with 37 filters, and for
RESACsub it corresponds to 10 convolution layers with 32 filters and 5 with 18 filters. We adjusted the
number of filters in RESAC up to 37 so that the two models are comparable in terms of weight number.
However, RESACsub is still around5 times faster to compute.We train eachnetwork 10 timeswith different
initialization, so the scores presented in Table 1 are the mean� standard deviation on the different training.
The RESAC, RESACsub supBNsub, and RESACsub BN networks are trained with a batch size of
32 and an adaptive learning rate. On the other hand, the Denoiser is trained with a batch of a single image.
In Appendix C, we provide some implementation details and an ablation study of the BN layer.

The proposed model RESACsub with the supBNsup layer outperforms both RESAC and RESACsub
with a standard BN. The denoising network improves the performances of RESACsub supBNsub on
RMSE but also on the visual aspect by removing the checkerboard artifacts as shown in Figure 6.

On each image, we also identify the locations of the 10% highest and 10% lowest ground truth values
and compute the RMSE of our downscaling at those locations (see Appendix B). As expected all the
networks have a higher RMSE on the first decile (10% lowest values) than on the global image. This is
because the North zone that has a low SSH is very energetic with very strong currents. Therefore the SSH
variations aremore important and less predictable. In Table 1, it is clear thatmost of the error ismade in the
north zone (corresponding to the lowest values).

5. Conclusion

We have proposed RESACsub, a subpixel convolutional residual network that outperforms RESAC in
the Super Resolution task of downscaling SSH with high-resolution SST. Our method (RESACsub þ
denoising network) achieves a downscaling of 27 upsampling factor (from a resolution of 120�
122km2 up to 4:5�4:5km2) with an RMSE of 3.94 cm. We have compared two forms of BN:
supBNsub, a subpixel adapted form of BN, and the standard BN. We show that the supBNsub method
has higher regularizing power than the standard one which results in a performance improvement.
However, the subpixel convolutional method has some drawbacks: it creates strong checkerboard
artifacts on the output image. We were able to get rid of most of the checkerboard artifacts with a two
layers-denoizing network that learns the 3�3 pattern and successfully denoises the SSHwith a 0.06 cm
RMSE improvement.

To continue this work, we will push our approach further by not limiting it to a number of parameters
similar to the ones in RESAC, which we suspect will yield even better results. This method could be
declined to other bio-geophysical fields such as CHLA concentration if a learnable link exists between
multiresolution data. We also intend to test and adapt our approach with other state-of-the-art architec-
tures. Using the RESACsub network as a generator for a conditional generative adversarial neural (GAN)
network similar to the SRGAN model introduced by Ledig et al. (2016) could improve its performance,
given the advantages of using a discriminator network as a cost function for image reconstruction tasks.

Table 1. Mean and standard deviation scores on 10 rounds of training of each architecture with different weight initializations.

Model RESAC RESACsub BN RESACsub supBNsub Denoiser Bicubic

Weights 344,976 335,442 334,722 51,841 Unsupervised

RMSE (cm) 5:50 � 0:47 4:43 � 0:14 4:00 � 0:26 3:94 � 0:28 6:94

RMSE 1st decile (cm) 8:03 � 0:91 5:33 � 0:76 5:09 � 0:93 5:03 � 0:99 6:28

RMSE 10th decile (cm) 4:65 � 0:14 4:78 � 0:22 4:42 � 0:12 4:36 � 0:12 5:11

RMSE cropped (cm) 5:24 � 0:48 4:22 � 0:14 3:82 � 0:25 3:80 � 0:27 6:89

Note. The scores are given on the validation data set. We compare the models in RMSE (root mean squared error): the global RMSE is given, along with the
RMSE on the first and the last decile of the target image. We also give a cropped RMSE (the RMSE of a smaller interior image to avoid border effects).
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Further work also includes adapting this method to real-world satellite data using transfer learning to
retain the skill obtained over the numerical model’s data set.
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A. Appendix: Proof of the Mean and Variance of the supBNsub Layer

σ2p ¼
1
2n

X2n
i¼1

ðCpðiÞ�μpÞ2

¼ 1
2n

Xn
i¼1

ðC1ðiÞ�μpÞ2þ
Xn
i¼1

ðC2ðiÞ�μpÞ2
" #

¼ 1
2n

Xn
i¼1

C1ðiÞ�μ1þ
μ2�μ1

2

� �2
þ
Xn
i¼1

C2ðiÞ�μ2þ
μ1�μ2

2

� �2
" #

¼ σ21þσ22
2

þ μ2�μ1
2

� �2
þ 1
2n

Xn
i¼1

2 C1ðiÞ�μ1ð Þ μ2�μ1
2

� �
þ
Xn
i¼1

2 C2ðiÞ�μ2ð Þ μ1�μ2
2

� �" #

¼ σ21þσ22
2

þ μ2�μ1
2

� �2
:

(A.1)

Because the BN do not changes the order of the pixels, we can see that

C0
1 ið Þ¼ γp

C1 ið Þ�μp
σp

þβp:

Then we can write μ01 and σ01 as

μ01 ¼E C0
1

� �¼ γp
E C1½ ��μp

σp
þβp ¼ γp

μ1�μp
σp

þβp,

σ01 ¼Var C0
1

� �¼ γ2p
σ2p

Var C1½ � ¼ γ2pσ
2
1

σ2p
:

(A.2)

B. Appendix: Metrics
In Table 1 we used several metrics that we detail hereafter.

RMSE by, yð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
i, jð Þ∈ S

byij� yij
� �2s

, (A.3)

whereby and y are respectively the estimation and the truth at an instant, S is the summation domain, and n is the cardinality of S. All
RMSEs of Table 1 are computed the same way but with various S. We consider y∈ I RHxH , the summation domains are

• RMSE: S¼ i, jð Þ = 1≤i, j≤Hf g,
• RMSE cropped: S¼ i, jð Þ = 6≤i, j≤H�6f g,
• RMSE 1st decile: S¼ i, jð Þ = yij≤d1

	 

, where d1 is the first decile,

• RMSE 10th decile: S¼ i, jð Þ = yij≥d9
	 


, where d9 is the last decile.

C. Appendix: Implementation Details and Ablation Study
In this appendix, we give some implementation details.

• Optimizer: We use the ADAM optimizer with β1 ¼ 0:9, β2 ¼ 0:999 and an initial learning rate of 0:002.
• Learning Rate Scheduler: The learning rate scheduler is defined as follows. During the first 20 epochs, the learning rate stays

constant, then from epoch 20 to epoch 60, the learning rate is multiplied at each epoch by e�0:02. Finally, after epoch 60 the
learning rate is multiplied by e�0:05 at each epoch until the end of the training. All the networks are trained during 150 epochs.

• Weights Initialization Method: The weight initialization used for all convolutional layers is the “He normal” kernel
initialization. The weights are taken from a truncated normal distribution centered on 0 with a standard deviation offfiffiffiffiffiffiffiffiffi
2=in

p
where in is the number of input units in the weight tensor.

• BNAblation Study:We performed an ablation study of the BN.After an extensive search of learning rate schedulers and of the
number of epochs to train the network we found a combination that converged to similar results. We used a constant learning
rate for 50 epochs and then multiplied it by e�0:004 for each epoch. With no BN, the convergence is slower so we had to train
the networks for 1,500 epochs: it is the main drawback of the lack of BN. RESACsub without BN is outperformed by the
RESACsub supBNsub but the two models are close in terms of RMSE (see Table 2).
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Table 2. Ablation study of the BN network.

Model RESACsub with supBNsub RESACsub no BN

Weights 334,722 334,626

RMSE (cm) 4:00 � 0:26 4:13 � 0:12

RMSE 1st decile (cm) 5:09 � 0:93 5:63 � 0:35

RMSE 10th decile (cm) 4:42 � 0:12 4:03 � 0:04

RMSE cropped (cm) 3:82 � 0:25 3:99 � 0:11

Note. Mean and standard deviation scores on 10 rounds of training of each architecture with different weight initializations.
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