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1. Introduction
A complete system of combinantal forms (generalised and ordinary) of a

pencil of quadrics/A = Xl/l+k2/1 can be chosen such that the coefficients
of the various power products of kx, ).2 in the former give a complete irreducible
system of concomitants of the two quadrics flt f2, and conversely. This
result was proved by Todd (1), who used it in conjunction with Schur function
analysis (2) (3) to derive the complete irreducible system of concomitants of
two quaternary quadratics (4).

The aim of the present paper is to generalise the result contained in (1)
by deriving a similar result applicable to a net of n-ary quadratic forms, and
also to develop a method of symbolical polarisation whereby a concomitant
of partial degrees such as (m + r+s, n — r, p — s) in the respective coefficients of
three quadrics of the net can be derived explicitly from any (w, n, p) con-
comitant. From the method of proof it will be seen that a further generalisation
is possible for an oor system of n-ary quadratics.

A combination of these three methods, viz. combinantal forms, 5-function
analysis and symbolical polarisation has been applied to the relatively simple
complete system of the 47 invariants of three quaternary quadratics, as derived
by Turnbull (5) and also to the more complex system of linear complexes
formulated by Williamson (6), in order to obtain the corresponding irreducible
systems. Only the above-mentioned techniques for analysing such concomitant
systems in general are developed at present, their applications being deferred
to a subsequent account.

2. Application of the Gordon-Capelli Theorem

The three n-ary quadratics / j = a\, f2 s b\, f3 = c\, where ax = £ a,xf
i = 1

etc., have a complete irreducible system of concomitants which may be denoted
by {C}, a member of this being a combinant of the nttfx = A.l/l+X2/2+A3/3

if it is unaltered except for a factor involving the parameters Xh when/i , / 2 , / 3

are replaced byany three quadrics of the net. Moreover, if/̂  = r\px = s2
xox = t\xx

is treated as a double form, its complete system includes, besides such combinants,
members which are covariant and contravariant in X. Such generalised
combinants are of the form:
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where P contains r', r", r'", ..., r(m); s', s", s'", ... sin); t', t", t"', ... t(p\ each
symbol occurring twice, together with the variables x, n2, n3, ..., nn_i, such
variables n being determinantal compounds of i cogredient sets x, y, z, ..., w
with nt = xyz...w (7, p. 249). In the quaternary case, for example, p = n2,
u = n3 and so x, p, u, the point, line and plane co-ordinates can appear in (i).
Also

am = p'p"p'"...pW; p- = <7'<7V"...a(n); y" = T'T"T'"...T(P)

and ,?! = (A/x)23; £2 =

X and (i being cogredient parameters.
It is now proposed to prove that {C} can be replaced by an equivalent

complete system {C1}, each of whose members is either a combinant or the
coefficient of a term involving ti^HA-i^lX™ in a system of generalised com-
binants represented by (i). This latter system together with the ordinary
combinants will be denoted by {G1}. Unlike the result given in (1) for a
pencil of quadrics there is not necessarily a one-to-one correspondence between
members of {C1} and the coefficients of {G1}, since some of the latter may be
equivalent (i.e. they may differ only by reducible terms).

The proof is as follows: any concomitant of the three quadrics of respective
degrees m, n, p in their coefficients may be represented by PctffiZyl- By the
Gordon-Capelli Theorem for m, n^p (with similar expressions for n, p^m
andp, m^ri) (8):

mnn n -A V^ • • / 3 V ( d\"~'~j

dxPuiv = X / . (Xfxv)X<xpy)'I v — I I v — 1 <pt XX, ft) (ii)
i = o j = o \ dfij \ dXj

where
l * H -v v~i • fa SaQTOQSO TO SO ^•••^

a

and

while

K + K + r™ = m + p-2i-j = 8, say
and

= E.

Each term of (iii), the numerical coefficient ka being neglected, can therefore
be written in the form:

#<= JL kJidelktirU^ (fiT-el-*) ..(iv)
<B = 0 \ Ok)

by an extension of Gordon's Series for ternary variables X, \i (7, p. 255), 6 being
the lower value of 8, e.
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If £ = (Xfi), tj = (jiv), C = (vA), where £,- = (kn)jk etc., (/, j , k = 1, 2, 3 in
cyclic order), it follows that

v£\\de\Xnr = (-1)' ^

(w-r)!

Similarly,

=(->r(c|)W.
By application of Leibniz's Theorem for differentiation of products,

and since (</eOmd|" V " 1 " is of the form

where f+g+h =• a, u+v+w = 5 + e—2a> = m+n+p — 3i—2(o, it is seen from
(iii), (iv) and (v) that a typical term of (ii) is

where

and it is a numerical coefficient.
Now PaTPZyZ, which is the coefficient of AT^v? in P a ^ y J is thus a linear

combination of coefficients of products

i.e., of
pp-i-j-rej — spat — p + i + r + sim + p-2i-j — <o — rin-i + j — <D-S]r +
Cl C2 "»3 A l A 2 A 3

in a combinantal form of type (i), viz. P(<xPy)'(PyZy(yxO9(<xPZ)h<*Wly1, where
i = 0 top,j! = 0 top — i, co = 0 to n — i+j, r = 0 top — i—j, s = 0 toy.

Thus, any concomitant of/,, / 2 , / 3 can be expressed as a linear combination
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of the coefficients in such combinantal forms (ordinary combinants being
included).

3. Combinantal Forms and Symbolical Polarisation
The net fx may be written in non-symbolical form as follows:

fx = l (aU}x
u% + bU)x^2 + ca)x"%) (i)

O)
n

where (j) = j l j 2 j 3 . . Jn, xU) = x{'x2
2x3*.. .x{" and X /„ = 2.

r = 1

(i) represents a mixed form and so any generalised combinant of the net
possesses six annihilators (9, pp. 410-412):

^rs + is-^7 - A , ^ - ( r , $ = l, 2, 3andr#*),

where, for example,

Qi3 = Z cu) -,—' Q3i = Z au) z,—•
o) oa(j) a) ccU)

The coefficients of power products ^ f ^ j A " ^ ^ in any such combinantal
form are derived from a leading term SAf^f' by expressing the form as the
expansion of

Ira'p-(i/iJn —i _^_ | —P \p (n _ ; ^
"\S3 * I»'l3 ^1 — I C2/C3 I »*23 A2 T^-

= ̂ f Z (-i)r^,0'^! Z I*1 s (ii)
where

0 = 1
and

<D= i{A,Q3 1+A2Q32}.
/.3

Thus, if any one coefficient of a power product of <fs and A's in (ii) is irreducible,
so are all the coefficients and consequently a set of combinantal forms {G1}
can be chosen whose coefficients form a complete irreducible system {C1} of
concomitants of / , , f2, f3 with the possibility of repetitions or equivalences
among the coefficients.

For expansion of (ii) shows that the coefficients of terms such as

Cl C2H.3 Al /2/3 a n a Cl S2 C3^1 S2 A3'

where a+fc + c = w1 and d+e+f - 6J, are all of the same partial degrees
in the coefficients of/,, / 2 , f3 irrespective of the value of r, involving as they
do the respective combinations of expressions, Q,3rQ53Q37rii|2S and
Oi3r^23r^3ir^32rS. It may therefore happen that some of the coefficients
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are equivalent as far as irreducibility is concerned. Thus, when concomitants
of the same partial degrees occur as coefficients in combinantal forms of {G1}
it is necessary to test for equivalence.

Recourse is now had to the principle of symbolical polarisation derived
as follows:

n

Let C(ay)be a concomitant ofdegreem in the coefficients of/x = £ a^XiXj,

a typical term of C being Ea£/4,a^..., where r+s + t+... = m; i,j,k,l,... = 1,
2, 3, ..., n with possible repetitions, but with ij =j= kl 4= pq-', and E containing
by, c y , ... and a numerical coefficient.

In terms of Clebsch-Aronhold symbols

naijakl"pq--- — n 1 1 "i "j "k "I ap a q ••• ~ ^ >

say, where a = 1 to r, f} = (r+1) to (r + s), y = (r + s+l) to (r + s + t), .....
Thus, m pairs of equivalent symbols are introduced.

Now

=.?,(>•
Also, since ai} = aJt and btJ = fty,-, O12 can be written as

where

and so

X.

Extension of this result to C(afj) gives

For any set of paired symbols a(<o), a(co) let C = a ^ ^ ^ ^ .

Thus i ( h(<0) - 4 " T Y C = ^a0))fe(s<0)^ and so the effect of operating with
\ day0'/

\ I bi<0) — ^ I is to replace the double a(<o) by a double fc(to) in the symbolical

form of the concomitant C.
Such symbolical polarising processes can be applied to any coefficient of a

combinantal form of {G1} to obtain other coefficients, and can on occasion be
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used to establish irreducibility when S-function analysis fails to give a clear-cut
answer due to the existence of syzygies among concomitants.

Finally, the system {G1} having been determined, any concomitant F of
fi,f2,f3 (i.e. a rational integral function of the forms of {C1}) is a real combinant
if, and only if, it is an invariant of the set of forms of {G1} regarded as functions
of the (J's and A's. But any invariant of the complete system of generalised
combinants of the net is a combinant of the quadrics and so {G1} is this
complete system.

4. Application of Schur Functions
In accordance with the general methods developed by Littlewood (2) and

applied by Todd (3) (4) to a pair of quaternary quadrics similar results will
now be formulated for application to three quaternary quadrics. A con-
comitant of partial degrees (m, n,p) in the coefficients of fi,f2,f3 and of orders
»!, n2, n3 in the variables x, p, u is considered. Then nu n2, n3 are the numbers
of ax, (abp), (abcu) type factors respectively, while «4 is taken to be the number
of (abed) type brackets. Such a concomitant corresponds to a partition
(A) = (Aj, A2, A3, A4) of 2N, where

N = m+n+p and At +k2+i3+XA = 2N y

(i)
ki-k^ = n3

A 4 — /z4

To a partition (A) corresponds an 5-function of type {A}, and the total number
of linearly independent (m, n, p) concomitants of orders nu n2, n3 in x, p, u
is equal to the coefficient of {A} in the expression:

(ii)
where {2}®{r} is the sum of the S'-functions corresponding to the partitions
of 2r into four or fewer parts. The calculation involved in (ii) is performed
by the construction of regular Young Tableaux (3).

For the invariants of three quadrics nt = n2 = n3 = 0 and so from (i)

Xl=X2=X3=X^nA = ̂  and (A) = («*) (iii)

Similarly, for the linear complexes n, = n3 = 0, n2 = 1 and so

At = A2 = A3 + l = A4 + l = « 4 + l .

Thus, the linear complexes have partitions of the type ((«4 + l)2, n4), where
2n4 +1 = N, and the total degree is therefore odd with n4 = 2, 3, 4, ....

The total number v of concomitants of any degree and type can thus be
determined by S'-function analysis. Also the number v1 of such which are
reducible can also be calculated from a knowledge of the irreducible invariants
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and relevant concomitants of lower degree. The number of irreducible con-
comitants of the given type is therefore v—(vl — a), where a is the number of
linearly independent syzygies connecting the v1 products so obtained. A
complete system of concomitants of given type provides an upper bound to
the number of irreducibles of this type, while v—vl gives a lower bound. If
these numbers are equal, that is when a = 0, then all the members of the
complete system are irreducible.

If the results obtained in §§ 2 and 3 for combinantal forms are used in con-
junction with the above procedure the task of obtaining an irreducible system
can be considerably shortened, since in such a form the coefficients are either
all reducible or all irreducible. Moreover, symbolical polarisation can serve
as a useful ancillary method in determining irreducibility in cases where a #= 0
and syzygies do exist.

Such specific applications are given in a subsequent paper.
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