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Abstract

Escherichia coli O157:H7 is the largest cause of hemolytic uremic syndrome (HUS). Previous
studies proposed that HUS risk varies across the E. coli O157:H7 phylogenetic tree (hyperviru-
lent clade 8), but the role of age in the association is unknown. We determined phylogenetic
lineage of E. coli O157:H7 isolates from 1160 culture-confirmed E. coli O157:H7 cases
reported in Washington State, 2004–2015. Using generalised estimating equations, we tested
the association between phylogenetic lineage and HUS. Age was evaluated as an effect modi-
fier. Among 1082 E. coli O157:H7 cases with both phylogenetic lineage and HUS status (HUS
n = 76), stratified analysis suggested effect modification by age. Lineages IIa and IIb, relative to
Ib, did not appear associated with HUS in children 0–9-years-old. For cases 10–59-years-old,
lineages IIa and IIb appeared to confer increased risk of HUS, relative to lineage Ib. The asso-
ciation reversed in ⩾60-year-olds. Results were similar for clade 8. Phylogenetic lineage
appears to be associated with HUS risk only among those ⩾10-years-old. Among children
<10, the age group most frequently affected, lineage does not explain progression to HUS.
However, lineage frequency varied across age groups, suggesting differences in exposure
and/or early disease manifestation.

Introduction

Although significant progress has been made in reducing the incidence and impact of
Escherichia coli O157:H7, it remains the largest cause of post-diarrhoeal hemolytic uremic syn-
drome (HUS) [1]. HUS incidence varies by age, with the greatest burden among children
<5-years-old [2–5].

Beyond age, pathogen characteristics are an important factor in determining progression to
HUS. Shiga toxin (Stx), E. coli O157:H7’s cardinal virulence factor, can be encoded by multiple
genes (stx1 and stx2), with some genotypes more frequently associated with HUS than others
[6–9]. A study in 2008 identified a subtype of E. coli O157:H7, termed clade 8, associated with
increased risk of HUS [10]. Although numerous studies have investigated virulence factor
expression that may be responsible for this association [11–14], studies confirming the asso-
ciation have been limited, suggesting an effect of varying strength and specificity [15–17].

The phylogenetic definition of the E. coli O157:H7 serotype has advanced since the 2008
discovery of the putatively hypervirulent clade 8 and it is unknown whether branches of the
updated phylogenetic tree are also associated with HUS. In contrast to the earlier tree,
Bono et al. [18] reported a tree of phylogenetic lineages that drew on a large pool of system-
atically chosen single nucleotide polymorphisms (SNPs) and incorporated isolates from a
diverse set of sources. This tree was further developed by Jung et al. [19].

In a population-based cohort of 1160 E. coli O157:H7 cases in Washington State, reported
2005–2014, we sought to use the updated lineages to confirm and refine the role of phyloge-
netics in HUS risk proposed by Manning et al. [10]. Given the higher incidence of HUS
among young children and the preponderance of clade 8 strains isolated from children by
Manning et al. [10], we also investigated the role of age in the association between phylogen-
etic lineage and HUS, evaluating it as a potential confounder and effect modifier.
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Methods

Study setting and design

We conducted a population-based retrospective cohort study of
all culture-confirmed E. coli O157:H7 cases reported to the
Washington State Department of Health (DOH) from 2005
through 2014. Mandatory Shiga toxin-producing E. coli case
reporting occurs primarily through diagnostic laboratories and
healthcare providers. Local health jurisdiction personnel use a
standardised DOH case report form to obtain demographic infor-
mation, potential exposures and details of the course of illness.

We confirmed HUS status during a review of all reported, hos-
pitalised, culture-confirmed E. coli O157:H7 cases from the study
period. HUS was defined as a hematocrit <30%, platelet count
<150 000/mm3 and serum creatinine concentration above the
normal for age. All criteria needed to be met on the same day.
Non-hospitalised cases were considered to not have HUS because
all patients with HUS would be hospitalised due to the severity of
disease.

The Washington State Institutional Review Board designated
this study as exempt.

Isolate typing

All E. coli O157:H7 isolates were sent to DOH for microbiological
confirmation and pulsed-field gel electrophoresis (PFGE) analysis.
We obtained these isolates from DOH and determined their lin-
eage according to the phylogenetic tree developed by Bono et al.
[18] and expanded by Jung et al. [19]. The 48-plex SNP assay
developed by Jung et al. [19] was used to type 793 of the 1160 iso-
lates. Isolates that did not undergo SNP-typing were then assigned
the lineage of a SNP-typed isolate with the same PFGE profile
(Supplementary Material), for a total of 1121 isolates with an
assigned lineage. Of the 39 excluded isolates, six were biochem-
ically atypical E. coli O157:H7 and 33 were not available for typing
(Supplementary Material).

Based on Jung et al.’s categorisation as clinical, bovine-biased,
or sparsely represented lineages [19], we retained the clinical
lineages Ib, IIa and IIb as separate categories. The bovine-biased
and remaining lineages were grouped into a clinically rare cat-
egory, reflecting the low frequency of isolating these groups
from human cases.

A subset of 480 isolates was also typed using a 32-plex SNP
assay to determine Manning clade [10]. We used PFGE type to
infer Manning clade for an additional 422 untyped isolates
(Supplementary Material). Distribution of Manning clades by
Bono-Jung lineages is shown in Supplementary Table S1.

A subset of 453 isolates underwent Stx-encoding bacterio-
phage insertion (SBI) typing. The SBI typing methods, which
use PCR to detect 12 targets including stx1, stx2a and stx2c,
have been described [19, 20].

Statistical analysis

Case data were merged with isolate typing results using a unique
identifier and the dataset was de-identified before analysis. Age
[21–24] and sex [25–27] were considered a priori confounders.
Distributions of other potential confounders were summarised
in contingency tables. Aside from age, no examined variable
was significantly associated with both lineage and HUS.

Logistic regression with generalised estimating equations (GEE)
was used to estimate the association between lineage and HUS.

Lineage was modeled as a categorical, group-level variable, with
the most common lineage (Ib) as the reference category and groups
defined by PFGE types. An exchangeable working correlation
matrix was used for all analyses. Robust standard errors calculated
using the sandwich estimator accounted for any potential misspeci-
fication of the correlation structure. HUS is sufficiently rare that the
odds ratio (OR) calculated from model coefficients could be inter-
preted as the risk of HUS associated with a lineage (e.g. IIa) relative
to lineage Ib. A 95% confidence interval (CI) was estimated for each
OR. Age, modelled as a continuous variable, and sex were added as
covariates in the adjusted model. To examine effect modification,
the sex-adjusted GEE model was stratified by age group and the lin-
eage OR estimates were compared across strata. Unadjusted,
adjusted and stratified analyses were also conducted for the associ-
ation of Manning clade and HUS (Supplementary Material).

To understand the impact of our use of multiple isolates per
PFGE type, we simulated the method used in previous studies
[10, 16] for comparison with our results. One isolate per PFGE
type was randomly drawn and used in a single-level adjusted
logistic regression. For each of 10 000 repetitions of this process,
the coefficient estimates for lineages IIa and IIb and the associated
P-values were recorded. We examined the distribution of coeffi-
cient estimates by lineage and calculated the proportion that
was statistically significant at P < 0.05.

The frequency of Shiga toxin subtypes was summarised by lin-
eage and HUS status. Formal mediation analysis of the role of stx
genotypes in the association between lineage and HUS was
planned. However, most major stx genotypes were too highly cor-
related with lineage to differentiate the direct effect of lineage and
that mediated by stx genotype.

R [28] was used for all analyses.

Results

There were 1160 culture-confirmed E. coli O157:H7 cases
reported to DOH during the 10-year-period. Validated HUS sta-
tus was available for 1082 cases of the 1121 cases with an assigned
lineage; the HUS definition was met for 76 (7.0%). HUS status
differed by age, with children <5-years-old constituting over
half of HUS cases but less than one-fourth of non-HUS cases
(Table 1). The case fatality was 3.9% among HUS cases and
0.4% among non-HUS cases.

Phylogenetic association with HUS

In the unadjusted GEE model, lineage IIb was associated with
increased risk of HUS relative to lineage Ib (OR = 1.65, 95% CI
1.05–2.60) (Table 2). There was no elevation in HUS risk
among lineage IIa cases, compared with lineage Ib cases. No
HUS cases occurred in the group of rare lineages; effect estimates
for this group are not presented because of statistical instability.
After adjustment for age and sex, the association between IIb
and HUS was attenuated and no longer distinguishable from
the null (OR = 1.43, 95% CI 0.90–2.25).

The proportion of E. coli O157:H7 infections caused by lineage
IIb strains decreased with age and those caused by Ib strains
increased. An effect of lineage on HUS risk could not be estab-
lished in 0–4 or 5–9 year-olds. In 10–19 and 20–59-year-olds,
lineages IIa and IIb were associated with an increased risk of
HUS, relative to lineage Ib, with effect estimates highest in the lat-
ter group (IIa OR = 12.7, 95% CI 1.57–103; IIb OR = 8.50, 95% CI
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1.13–63.7). There were no lineage IIa or IIb HUS cases among
⩾60-year-olds (Table 2).

Results of unadjusted, adjusted and stratified analyses assessing
the association between Manning clade and HUS were consistent
with those seen for lineages (Supplementary Table S2).

In simulations of selecting and analysing only one isolate per
PFGE type, the distribution of effect sizes for the association
between lineage IIa and HUS was centered near 0 (OR = 1) and
0.1% of estimates had P < 0.05 (Supplementary Fig. S1). This is
consistent with our adjusted effect estimate for lineage IIa
(Table 2). The distribution of effect sizes for lineage IIb was
centred near 2 (OR > 7) with P < 0.05 for 25% of simulations
(Supplementary Fig. S1). This is not consistent with our results
for lineage IIb using all isolates (OR = 1.43, P = 0.13) (Table 2).

Shiga toxin genotype

Shiga toxin genotype was determined for 469 cases, 453 of which
also had a validated HUS status. Distribution of stx genotypes by
lineage showed that 92% of isolates contained stx2a, whether
alone or in combination with another stx gene (Table 3).
Lineage Ib isolates were dominated by the stx1-stx2a genotype
(90%). Lineage IIa isolates were predominantly the stx2a-stx2c
genotype (84%). Most lineage IIb isolates (94%) had only the
stx2a gene. Six isolates had none of the three probed stx genes
at the time of typing. Relative to the frequency of HUS among
cases infected with stx1-stx2a and stx2a-stx2c strains (11% and
12%, respectively), cases infected with stx2a-only strains had a
higher frequency of HUS (21%).

Discussion

The results of this study do not support an association between
phylogenetic lineage (or clade) and HUS for children <10, the
age group with the greatest burden of E. coli O157:H7 and
HUS. While lineage IIb was associated with increased risk of
HUS in unadjusted analysis, stratifying by age indicated an
increased risk of HUS associated with lineages IIa and IIb, relative
to lineage Ib, only among 10–59-year-olds. In the eldest group,
lineage Ib conferred greater HUS risk than either lineage IIa or
IIb. Our analysis of the risk associated with Manning clade 8
was consistent with our lineage IIa/IIb results.

Table 1. Frequency of case characteristics of patients reported in Washington
State with confirmed E. coli O157:H7 infection, 2005–2014

No HUS
(n = 1042)

HUS
(n = 76)

Sex

Female 591 (57.0%) 46 (60.5%)

Male 445 (43.0%) 30 (39.5%)

Age group (years)

<5 227 (21.8%) 41 (53.9%)

5–9 145 (13.9%) 18 (23.7%)

10–19 184 (17.7%) 5 (6.6%)

20–59 358 (34.4%) 7 (9.2%)

⩾60 127 (12.2%) 5 (6.6%)

Ethnicity

Hispanic or Latino 97 (12.5%) 8 (11.1%)

Not Hispanic or Latino 676 (87.5%) 64 (88.9%)

Race

American Indian or Alaskan Native 10 (1.3%) 2 (2.8%)

Asian 55 (7.1%) 4 (5.6%)

Black 25 (3.2%) 0

Multiracial 11 (1.4%) 0

Native Hawaiian or Pacific Islander 5 (0.6%) 0

Other 20 (2.6%) 4 (5.6%)

White 651 (83.8%) 62 (86.1%)

Phylogenetic lineage

Ib 531 (52.7%) 37 (49.3%)

IIa 235 (23.3%) 18 (24.0%)

IIb 173 (17.2%) 20 (26.7%)

Rarea 68 (6.8%) 0

Outbreak-associatedb 105 (10.1%) 7 (9.2%)

Most likely source of infection

Animal 70 (17.5%) 6 (18.8%)

Environment 43 (10.7%) 0

Food 201 (50.1%) 18 (56.2%)

Person 75 (18.7%) 7 (21.9%)

Water 12 (2.9%) 1 (3.1%)

Contact with lab-confirmed case

Yes 127 (13.7%) 14 (20.3%)

No 799 (86.3%) 55 (79.7%)

Direct animal contact

Yes 490 (55.9%) 39 (60.0%)

No 387 (44.1%) 26 (40.0%)

Underlying condition

Yes 101 (10.7%) 9 (13.6%)

No 842 (89.3%) 57 (86.4%)

Bloody diarrhoea

(Continued )

Table 1. (Continued.)

No HUS
(n = 1042)

HUS
(n = 76)

Yes 870 (87.1%) 73 (96.1%)

No 129 (12.9%) 3 (3.9%)

Received dialysis

Yes 2 (0.2%) 40 (52.6%)

No 1036 (99.8%) 36 (47.4%)

Documented deathc 4 (0.4%) 3 (3.9%)

HUS, hemolytic uremic syndrome.
a‘Rare’ lineages include 12 different lineages.
bWhether a case was associated with an outbreak was not reported for most cases, so only
positive responses are shown.
cDeath status was not reported in most cases. There were eight reported deaths. Only seven
are shown in the table. The eighth was hospitalised, but the chart could not be abstracted
to determine HUS status.
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Age has long been considered the strongest predictor of pro-
gression to HUS among those with E. coli O157:H7 infection
and our results are consistent with that: 15.9% of children
<10-years-old progressed to HUS, compared to 2.5% of indivi-
duals ⩾10. Similarly, the incidence of HUS in our study was
6.79 per 100 000 <10-year-olds, compared with 0.29 per 100 000
⩾10-year-olds. The lack of association we found between lineage
and HUS among those aged <10 years suggests that differential
infection by high virulence lineages does not explain why young
children are more likely to progress to HUS. However, our find-
ings show that lineage IIb strains disproportionately establish

disease in young children, driving the observed unadjusted asso-
ciation between lineage IIb and HUS and suggesting that there is a
difference in either exposure or early disease manifestation that
leads to more IIb-infected cases being reported in this age
group than cases infected with other lineages.

Among those aged 10 and over, we observed substantially
more reported cases infected by lineage Ib than lineages IIa and
IIb, which may indicate less exposure to lineage IIa and IIb strains
or greater difficulty for these strains in establishing disease.
However, if IIa or IIb strains are successful in establishing disease,
they appear more likely to cause HUS than the more common lin-
eage Ib strains. The eldest group, ⩾60-year-olds, appears to be an
exception, with higher risk associated with lineage Ib strains.
Individuals ⩾60-years-old have a slightly higher incidence of
HUS (0.58 per 100 000) than 10–59-year-olds (0.26 per 100
000), and E. coli O157:H7 outbreaks have occurred in nursing
homes [24], making this age group of particular interest. The
reversal of the association in the eldest group is curious and
with a low number of cases among older children and adults,
urges caution in interpreting our results in 10–59 and
⩾60-year-olds.

In a 2008 study of 333 Michigan cases with unique PFGE fin-
gerprints, Manning et al. [10] identified a sevenfold increased
odds of HUS among patients infected with E. coli O157:H7
clade 8 strains after adjustment for age (0–18 vs. 19–64), sex
and symptoms. Subsequent studies have also suggested an associ-
ation of varying magnitudes between clade 8 and HUS [15, 16].
Lineages IIa and IIb in the present study overlap with clade 8
and show an elevation in risk of HUS only among 10–
59-year-olds. There are multiple reasons why our results may
have differed from those of others. First, some previous studies
have either not adjusted for age [15] or adjusted by large age
groups [10], increasing the potential for residual confounding.
Only one previous study stratified by age [16]. In our analysis,
sensitive age groups defined based on the epidemiology of the dis-
ease were critical in better understanding the association.

Second, both Manning et al. [10] and Iyoda et al. [16] used
one representative isolate from each outbreak or PFGE-defined
strain. We demonstrated through simulation that studies using
only one isolate per strain had an average effect estimate higher
than that obtained using all isolates for lineage IIb and that for
lineage IIb, 25% of analyses would appear statistically significant
merely by chance. This finding emphasises the importance of
incorporating the complete data.

Third, previous studies relying on logistic regression [10, 16]
appear to have modelled each clade as an independent variable,
interpreting estimates as the odds of HUS in one clade vs. all
other clades. This method introduces perfect multicollinearity,
which can induce large, unpredictable biases in point estimates
and standard errors [29, 30]. Perfect multicollinearity also gives
the OR dubious interpretability, because, by definition, you can-
not hold the other clades constant (at 0 or 1) and change the
clade of interest from 0 to 1. To avoid this pitfall, we modelled lin-
eage (and clade) as a categorical value in which the most common
lineage Ib (clade 2/3) was used as the reference category.

Finally, the only other study to consider effect modification by
age, Iyoda et al. [16] reported an OR for clade 8 of 6.1 for
0–9-year-olds and 3.1 for children and adults ⩾10 years. Their
results are in contrast to those we report here, potentially because
of their use of asymptomatic controls. We estimated the odds of
HUS for ill E. coli O157:H7 cases, thus estimating virulence, the
probability of progressing from non-severe to severe disease.

Table 2. Association of E. coli O157:H7 phylogenetic lineage and HUS

N
HUS/Total OR 95% CI P

Crude

Lineage Ib 37/568 1 – –

Lineage IIa 18/253 1.11 0.63–1.96 0.711

Lineage IIb 20/193 1.65 1.05–2.60 0.031

Adjusteda

Lineage Ib 37/561 1 – –

Lineage IIa 18/253 0.98 0.54–1.78 0.937

Lineage IIb 20/193 1.43 0.90–2.25 0.126

Age-stratified:
0–4-years-oldb

Lineage Ib 22/118 1 – –

Lineage IIa 8/71 0.61 0.27–1.39 0.24

Lineage IIb 10/62 0.73 0.39–1.36 0.31

Age-stratified:
5–9-years-oldb

Lineage Ib 8/79 1 – –

Lineage IIa 4/31 1.39 0.62–3.12 0.42

Lineage IIb 6/34 2.38 0.79–7.13 0.12

Age-stratified:
10–19-years-oldb

Lineage Ib 1/95 1 – –

Lineage IIa 2/50 4.92 0.89–27.1 0.067

Lineage IIb 2/30 4.99 0.94–26.4 0.059

Age-stratified:
20–59-years-oldb

Lineage Ib 1/200 1 – –

Lineage IIa 4/78 12.7 1.57–103 0.017

Lineage IIb 2/48 8.50 1.13–63.7 0.037

Age-stratified:
⩾60-years-oldb

Lineage Ib 5/75 1 – –

Lineage IIa 0/23 0 0–0 <0.001

Lineage IIb 0/19 0 0–0 <0.001

Logistic regression, using GEE, of HUS status on phylogenetic lineage. No HUS occurred in
the group of cases infected with rare lineages, so results are not shown for this group.
aModel adjusted for age as a continuous variable and sex.
bModel adjusted for sex. CI, confidence interval; GEE, generalised estimating equations;
HUS, hemolytic uremic syndrome; OR, odds ratio.
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Comparing HUS cases with asymptomatic carriers mixes viru-
lence with pathogenicity, the probability of becoming ill if
infected.

We observed a very close correlation of lineage and stx geno-
type, which is similar to previous studies [19, 31]. This may be sug-
gestive of a major role of stx genotype in the association between
lineage and HUS. Other cohorts, including one of <10-year-olds,
have shown stx2a-only and, to a lesser degree, stx2a-stx2c geno-
types associated with progression to HUS [6, 7, 32]. These are
also the most common genotypes among clade 8 isolates [10, 16,
17] and studies of clade 8 isolates have described the potential
for high Stx2 production [12, 33, 34]. Our analysis, which shows
that most lineage IIa strains carry stx2a-stx2c and most IIb strains
carry only stx2a, is consistent with these studies.

Our study was limited to reported cases, which are likely more
severe than unreported cases. Our results can therefore not be
extended to unreported cases. However, it is unlikely that any
HUS cases went unreported due to the severity of the condition.
Our study also included cases from only Washington State, poten-
tially limiting its generalisability to areas with differing E. coli
O157:H7 populations. Indeed, previous work has suggested
local E. coli O157:H7 circulation in Washington [35], emphasis-
ing the importance of small geographic areas in the bacteria’s
population dynamics. The strains composing each lineage may
differ in other geographic regions and those within-lineage differ-
ences could alter the association observed with HUS. However, it
is reassuring that a large number of isolates in our study are from
the most commonly isolated PFGE types in the USA.

We were also not able to assign phylogenetic lineage to 39 iso-
lates, one of which was identified as a HUS case. These isolates
tended to be from earlier in the study period, indicating that
they are not missing completely at random. The composition of
the bacterial population shifted slightly during the study period
[35], with lineage Ib more dominant early in the period.
However, the small number of untyped isolates relative to the
whole sample likely did not alter our results.

Over 75% of our HUS cases were in children <10-years-old,
giving us limited precision to estimate the effect of lineage on
HUS in older children and adults. This is reflected in the large
confidence intervals around estimates for the 10–19 and 20–59
age groups. A larger sample of cases ⩾10-years-old would provide
a better estimate of the true effect of lineage on HUS in this age
group. However, we are confident in our estimates for the effect in
young children, the age group with the highest incidence of both
E. coli O157:H7 and HUS.

The lack of sufficient variability of most stx genotypes in a sin-
gle lineage precluded formal mediation analysis. It is possible that
with a much larger sample one could differentiate the direct effect
of lineage on progression to HUS from the effect mediated by stx
genotype. Ideally, mediation should be examined stratified by age
group, to reflect the apparent effect modification of the overall
association.

This study benefited from over 1100 E. coli O157:H7 cases,
including 76 HUS cases. HUS outcomes were validated with hos-
pital records using a standardised definition to ensure the com-
parability of our outcome. By employing correlated data
methods, we were able to incorporate data from the entire cohort
instead of limiting the study to representative isolates from each
PFGE type, which our simulation study showed is an important
step in accurately estimating the association. By using a consistent
reference group (lineage Ib), we were also able to avoid the perfect
multicollinearity of previous studies, reducing bias and allowing
meaningful interpretation of our effect estimates. Applying
these methods to the Bono-Jung lineages and Manning clades
produced consistent results.

This study demonstrates that E. coli O157:H7 phylogenetic lin-
eage likely only contributes to HUS risk among older children and
adults. Further studies are needed to confirm this association,
given the rarity of the disease among adults. In young children,
the proportion of infections caused by lineage IIb strains was
higher than in older groups. It will be important to determine
whether this is driven by differences between age groups in

Table 3. Distribution of Shiga toxin genotypes by phylogenetic lineages

All lineages
n (%)

Lineage Ib
n (%)

Lineage IIa
n (%)

Lineage IIb
n (%)

Rare lineages
n (%)

No stx 6 (1.3) 2 (0.9) 1 (0.8) 3 (3.3) 0

HUS 0 0 0 0 –

stx1 6 (1.3) 4 (1.9) 0 0 2 (7.4)

HUS 1 (1.7) 1 (3.7) – – 0

stx1-stx2a 192 (42.4) 192 (90.1) 0 0 0

HUS 22 (36.7) 22 (81.5) – – –

stx1-stx2c 15 (3.3) 0 0 0 15 (55.6)

HUS 0 – – – 0

stx2a 117 (25.8) 13 (6.1) 19 (15.4) 85 (94.4) 0

HUS 24 (40.0) 4 (14.8) 2 (13.3) 18 (100) –

stx2a-stx2c 106 (23.4) 1 (0.5) 103 (83.7) 2 (2.2) 0

HUS 13 (21.7) 0 13 (86.7) 0 –

stx2c 11 (2.4) 1 (0.5) 0 0 10 (37.0)

HUS 0 0 – – 0

HUS, hemolytic uremic syndrome; stx, Shiga toxin gene.
No isolates were observed with the stx1-stx2a-stx2c genotype.
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exposure, transmission and/or early disease development.
Additionally, given the close correspondence of lineage and stx
genotype, learning how exposure and early illness differ across
lineages may translate to prevention opportunities for the strains
that tend to carry more virulent stx genotypes.
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Disclaimer. The content is solely the responsibility of the authors and does
not necessarily represent the official views of the funding agencies.

Acknowledgements. This work was supported by the National Institute of
Environmental Health Sciences of the National Institutes of Health
(G.A.M.T., grant number T32ES015459); the National Institute of Allergy
and Infectious Disease of the National Institutes of Health (G.A.M.T., grant
number F31AI126834); and the US Department of Agriculture National
Institute of Food and Agriculture (T.E.B., grant numbers 2009-04248,
2010-04487). The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes of
Health or US Department of Agriculture.

Conflict of interest. None.

References

1. Banatvala N et al. (2001) The United States national prospective hemo-
lytic uremic syndrome study: microbiologic, serologic, clinical, and epide-
miologic findings. The Journal of Infectious Diseases 183, 1063–1070.

2. Centers for Disease Control and Prevention (2016) Summary of notifiable
diseases, 2014. MMWR Morbidity and Mortality Weekly Report 63, 1–154.

3. Marder EP et al. (2017) Incidence and trends of infections with pathogens
transmitted commonly through food and the effect of increasing use of
culture-independent diagnostic tests on surveillance— foodborne diseases
active surveillance network, 10 U.S. sites, 2013–2016. MMWR Morbidity
and Mortality Weekly Report 66, 397–403.

4. Crim SM et al. (2015) Preliminary incidence and trends of infection with
pathogens transmitted commonly through food – foodborne diseases
active surveillance network, 10 U.S. sites, 2006–2014. MMWR Morbidity
and Mortality Weekly Report 64, 495–498.

5. Crim SM et al. (2014) Incidence and trends of infection with pathogens
transmitted commonly through food--foodborne diseases active surveil-
lance network, 10 U.S. Sites, 2006–2013. MMWR Morbidity and
Mortality Weekly Report 63, 328–332.

6. Friedrich AW et al. (2002) Escherichia coli harboring Shiga toxin 2 gene
variants: frequency and association with clinical symptoms. The Journal of
Infectious Diseases 185, 74–84.

7. Persson S et al. (2007) Subtyping method for Escherichia coli Shiga toxin
(verocytotoxin) 2 variants and correlations to clinical manifestations.
Journal of Clinical Microbiology 45, 2020–2024.

8. Eklund M, Leino K and Siitonen A (2002) Clinical Escherichia coli strains
carrying stx genes: stx variants and stx-positive virulence profiles. Journal
of Clinical Microbiology 40, 4585–4593.

9. Luna-Gierke RE et al. (2014) Outbreaks of non-O157 Shiga toxin-
producing Escherichia coli infection: USA. Epidemiology and Infection
142, 2270–2280.

10. Manning SD et al. (2008) Variation in virulence among clades of
Escherichia coli O157:H7 associated with disease outbreaks. Proceedings
of the National Academy of Sciences of the United States of America
105, 4868–4873.

11. Abu-Ali GS et al. (2010) Increased adherence and expression of virulence
genes in a lineage of Escherichia coli O157:H7 commonly associated with
human infections. PLoS ONE 5, e10167.

12. Neupane M et al. (2011) Shiga toxin 2 overexpression in Escherichia coli
O157:H7 strains associated with severe human disease. Microbial
Pathogenesis 51, 466–470.

13. Pianciola L et al. (2014) Genotypic characterization of Escherichia coli
O157:H7 strains that cause diarrhea and hemolytic uremic syndrome in
Neuquen, Argentina. International Journal of Medical Microbiology:
IJMM 304, 499–504.

14. Amigo N et al. (2016) Overexpressed proteins in hypervirulent clade 8
and clade 6 strains of Escherichia coli O157:H7 compared to E. coli
O157:H7 EDL933 clade 3 strain. PLoS ONE 11, e0166883.

15. Soderlund R et al. (2014) Molecular typing of Escherichia coli O157:H7
isolates from Swedish cattle and human cases: population dynamics and
virulence. Journal of Clinical Microbiology 52, 3906–3912.

16. Iyoda S et al. (2014) Phylogenetic clades 6 and 8 of enterohemorrhagic
Escherichia coli O157:H7 with particular stx subtypes are more frequently
found in isolates from hemolytic uremic syndrome patients than from
asymptomatic carriers. Open Forum Infectious Diseases 1, ofu061.

17. Haugum K et al. (2011) Detection of virulent Escherichia coli O157
strains using multiplex PCR and single base sequencing for SNP character-
ization. Journal of Applied Microbiology 110, 1592–1600.

18. Bono JL et al. (2012) Phylogeny of Shiga toxin-producing Escherichia coli
O157 isolated from cattle and clinically ill humans. Molecular Biology and
Evolution 29, 2047–2062.

19. Jung WK et al. (2013) Lineage and genogroup-defining single nucleotide
polymorphisms of Escherichia coli O157:H7. Applied and Environmental
Microbiology 79, 7036–7041.

20. Shringi S et al. (2012) Carriage of stx2a differentiates clinical and bovine-
biased strains of Escherichia coli O157. PLoS ONE 7, e51572.

21. Rogers MF et al. (1986) A population-based study of hemolytic-uremic
syndrome in Oregon, 1979–1982. American Journal of Epidemiology
123, 137–142.

22. Taylor DN et al. (1988) Clinical and microbiologic features of Shigella
and enteroinvasive Escherichia coli infections detected by DNA hybridiza-
tion. Journal of Clinical Microbiology 26, 1362–1366.

23. Ostroff SM, Kobayashi JM and Lewis JH (1989) Infections with Escherichia
coli O157:H7 in Washington State. The First Year of Statewide Disease
Surveillance. JAMA 262, 355–359.

24. Reiss G et al. (2006) Escherichia coli O157:H7 infection in nursing homes:
review of literature and report of recent outbreak. Journal of the American
Geriatrics Society 54, 680–684.

25. Rowe PC et al. (1991) Epidemiology of hemolytic-uremic syndrome in
Canadian children from 1986 to 1988. The Canadian Pediatric Kidney
Disease Reference Centre. The Journal of Pediatrics 119, 218–224.

26. Rivas M et al. (2008) Risk factors for sporadic Shiga toxin-producing
Escherichia coli infections in children, Argentina. Emerging Infectious
Diseases 14, 763–771.

27. Al-Jader L et al. (1999) Outbreak of Escherichia coli O157 in a nursery:
lessons for prevention. Archives of Disease in Childhood 81, 60–63.

28. R Core Team (2015) R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.

29. Tu YK, Clerehugh V and Gilthorpe MS (2004) Collinearity in linear
regression is a serious problem in oral health research. European Journal
of Oral Sciences 112, 389–397.

30. Vatcheva KP et al. (2016) Multicollinearity in regression analyses
conducted in epidemiologic studies. Epidemiology (Sunnyvale) 6, 227.

31. Mellor GE et al. (2015) Geographically distinct Escherichia coli O157
isolates differ by lineage, Shiga toxin genotype, and total Shiga toxin pro-
duction. Journal of Clinical Microbiology 53, 579–586.

32. Jelacic S et al. (2002) ABO and P1 blood group antigen expression and stx
genotype and outcome of childhood Escherichia coli O157:H7 infections.
The Journal of Infectious Diseases 185, 214–219.

33. Ogura Y et al. (2015) The Shiga toxin 2 production level in enterohemor-
rhagic Escherichia coli O157:H7 is correlated with the subtypes of
toxin-encoding phage. Scientific Reports 5, 16663.

34. Amigo N et al. (2015) Clade 8 and clade 6 strains of Escherichia coli O157:
H7 from cattle in Argentina have Hypervirulent-like phenotypes. PLoS
ONE 10, e0127710.

35. Tarr GAM et al. (2018) Geogenomic segregation and temporal trends of
human pathogenic Escherichia coli O157:H7, Washington, USA, 2005–
2014(1). Emerging Infectious Diseases 24, 32–39.

Epidemiology & Infection 1555

https://doi.org/10.1017/S0950268818001632 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268818001632
https://doi.org/10.1017/S0950268818001632
https://doi.org/10.1017/S0950268818001632

	Importance of case age in the purported association between phylogenetics and hemolytic uremic syndrome in Escherichia coli O157:H7 infections
	Introduction
	Methods
	Study setting and design
	Isolate typing
	Statistical analysis

	Results
	Phylogenetic association with HUS
	Shiga toxin genotype

	Discussion
	Acknowledgements
	References


