A classification of groups

 with a centralizer condition

 with a centralizer condition}

Zvi Arad

Let G be a finite group. A nontrivial subgroup M of G is called a CC-subgroup if M contains the centralizer in G of each of its nonidentity elements. The purpose of this paper is to classify groups with a $C C$-subgroup of order divisible by 3 . Simple groups satisfying that condition are completely determined.

1. Introduction

The purpose of this paper is to prove the following theorem which confirms a conjecture of Feit (cf. [9]).

THEOREM A. Let G be a finite group and let M be a CC-subgroup of G. Assume that $3||M|$. Then one of the following statements is true:
(i) $N_{G}(M)=M$;
(ii) $M \triangleleft G$ and G is a Frobenius group;
(iii) M is a noncyclic elementary abelian S_{3}-subgroup of G;
(iv) M is a cyclic subgroup of G of odd order.

In [1] there is a complete classification for the third case. Case (iv) is dealt with in [11]. These results yield:

THEOREM B. Let G be a finite simple group and let M be a

Received 25 March 1976. Communicated by Marcel Herzog. The author wishes to thank Professor M. Herzog for his constructive remarks; and also Professor G. Glauberman, Dr L.R. Fletcher, and Dr W.B. Stewart for making their recent results available to him before publication.

CC-subgroup of G. Assume that $3||M|$. Then G is isomorphic to one of the following groups:
(a) $\operatorname{PSL}(3,4)$;
(b) $\operatorname{PSL}\left(2,2^{n}\right), n \geq 2$,
(c) $\operatorname{PSL}\left(2,3^{n}\right), n \geq 2$;
(d) $\operatorname{PSL}\left(2, p^{n}\right), p>3,12 \nmid p^{n}+\varepsilon$ for $\varepsilon=1$ or -1.

Conversely, all groups mentioned satisfy the assumptions of Theorem B.
Several authors have studied such groups. In [2] and [5] there is a complete description of groups with $C C$ subgroups of order 3 and 9 . The author [1] gave a complete description of groups with a CC 3-subgroup of G. Herzog [9] and [10] and Ferguson [3] and [4] classified groups with a $C C$ subgroup under additional conditions on the group G. Suzuki [12] classified groups with a $C C$ subgroup of even order.

Our notation is standard and taken mainly from [7].

2. Two recent results

We need two definitions and some recent (still unpublished) results of Glauberman, Fletcher, and Stewart.

DEFINITION 1. Denote the symmetric group of degree four by s^{4}. We say that G is S^{4}-free if S^{4} is not involved in G.

DEFINITION 2. Suppose $A \subseteq T \subseteq G$ are groups such that A is abelian, T is an S_{2}-subgroup of G and whenever $a \in A, g \in G$, and $a^{g} \in T$ then $a^{g} \in A$. In this situation, we say that A is a strongly closed abelian 2-group in T with respect to G.

Recently Glauberman proved:
THEOREM 1. A non-abelion simple group G is S^{4}-free if and only if G has a nonidentity strongly closed abelian 2-group.

Recently Fletcher and Stewart proved:
THEOREM 2. Let G be a non-abelian simple group G. Assume that
the following conditions are satisfied:
(i) no element of G has order 6, and
(ii) some nonidentity 2-subgroup of G is normalized by an element of order 3 .

Then centralizers of involutions in G have normal 2-complements.
The following is an imediate consequence of Theorem 2 and the general classification theorem in [8].

COROLLARY. Suppose G is a non-abelian simple group satisfying the hypotheses of Theorem 2. Then G is isomorphic to either $\operatorname{PSL}(2, q)$ for some q, or $\operatorname{PSL}(3,4)$.

3. Proof of Theorem A

Let G be a minimal counter example. $N_{G}(M)$ is a Frobenius group with Frobenius kernel M. Hence M is nilpotent and $Z(M) \neq 1$. Therefore M is a Hall subgroup of G and a TI-set by [9, Theorem 2.1 and 2.3]. By [9, Corollary 2.2 (b)] G contains a normal simple subgroup G^{*} containing M and satisfying $N_{G^{*}}(M) \neq M$. By induction hypothesis $G=G^{*}$ is simple. If $2||M|$ then the general classification theorem in [12] implies that G has no $C C$ subgroup M such that $N_{G}(M) \neq M$. Therefore $2 \backslash|M|$ and G has no element of order 6. Let H be an arbitrary 2-subgroup of G. If $3\left|\left|N_{G}(H)\right|\right.$ then by the corollary G is isomorphic to either $\operatorname{PSL}(2, q)$, for some q, or $\operatorname{PSL}(3,4)$, in contradiction to our assumption that M is neither cyclic of odd order nor elementary abelian. It is easy to show that G is S^{4}-free if and only if whenever H is a 2-subgroup of G, then S^{3} is not involved in $N_{G}(H) / C_{G}(H)$. Therefore G is S^{4}-free and by Glauberman's Theorem and [6], G is again isomorphic to either $\operatorname{PSL}(3,4)$ or $\operatorname{PSL}(2, q)$, for some q, a contradiction.
4. Proof of Theorem B

Let G be a counterexample. If M is of even order then G is
isomorphic to $\operatorname{PSL}\left(2,2^{n}\right), n \geq 2$, by [12], a contradiction. Assume that $2 \ell|M|$ and hence G has no element of order 6 . It follows from the proof of Theorem A that G is isomorphic to either PSL(3, 4) or $\operatorname{PSL}(2, q)$ for some q. It is easy to check that in the latter case q has to satisfy one of the conditions (b), (c), or (d), a final contradiction.

REMARK. If M, of Theorem A, is either a nilpotent subgroup or is disjoint from its conjugates, then Theorem A holds true when, for (i), we substitute
(i)* G is a Frobenius group with complement M.

Proof. This is an inmediate corollary of [7, Theorem 2.7.7] and [9, Theorem 2.1].

References

[1] Zvi Arad, "A classification of $3 C C$-groups and applications to Glauberman-Goldschmidt theorem", submitted.
[2] Walter Feit and John G. Thompson, "Finite groups which contain a self-centralizing subgroup of order 3 ", Nagoya Math. J. 21 (1962), 185-197.
[3] Pamela A. Ferguson, "A theorem on CC subgroups", J. Algebra 25 (1973), 203-221.
[4] Pamela Ferguson, "A classification for simple groups in terms of their Sylow 3 subgroups", J. Algebra 33 (1975), 1-8.
[5] L.R. Fletcher, "A characterisation of $\operatorname{PSL}(3,4)$ ", J. Algebra 19 (1971), 274-281.
[6] David M. Goldschmidt, "2-fusion in finite groups", Arm. of Math. (2) 99 (1974), 70-117.
[7] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[8] Daniel Gorenstein, "Finite groups the centralizers of whose involutions have normal 2-complements", Canad. J. Math. 21 (1969), 335-357.
[9] Marcel Herzog, "On finite groups which contain a Frobenius subgroup", J. Algebra 6 (1967), 192-221.
[10] Marcel Herzog, "A characterization of some projective special linear groups", J. Algebra 6 (1967), 305-308.
[11] W.B. Stewart, "Groups having strongly self-centralizing 3-centralizers", Proc. London Math. Soc. (3) 26 (1973), 653-680.
[12] Michio Suzuki, "Two characteristic properties of (2T)-groups", Osaka Math. J. 15 (1963), 143-150.

Department of Mathematics, Bar-llan University, Ramat-Gan, Israel.

