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Abstract
Predicting the laminar to turbulent transition is an important aspect of computational fluid dynamics because of its
impact on skin friction. Traditional transition prediction methods such as local stability theory or the parabolized
stability equation method do not allow for the consideration of strongly non-parallel boundary layer flows, as in the
presence of surface defects (bumps, steps, gaps, etc.). A neural network approach, based on an extensive database
of two-dimensional incompressible boundary layer stability studies in the presence of gap-like surface defects, is
used. These studies consist of linearized Navier–Stokes calculations and provide information on the effect of surface
irregularity geometry and aerodynamic conditions on the transition to turbulence. The physical and geometrical
parameters characterizing the defect and the flow are then provided to a neural network whose outputs inform about
the effect of a given gap on the transition through the ΔN method (where N represents the amplification of the
boundary layer instabilities).

Impact Statement
The transition to turbulence from a laminar boundary layer is a major physical problem studied by the
aeronautical industry because of the impact of the transition on the drag of an aircraft. In order to minimize
it and to be more energy and cost efficient, laminar wings are designed. This type of wing is designed to
adapt the pressure gradient generated by the wing aerodynamics in order to dampen the growth of instabilities
(Tollmien–Schlichting and cross-flow waves) developing within the boundary layer. However, the presence
of surface defects can induce an amplification of these unstable waves and a triggering of the turbulence.
Tools that can predict the impact of surface imperfections on the transition are therefore necessary for the
manufacturing of laminar airfoils. This paper provides both a qualitative and quantitative study of the influence
of gap-like surface defects on the amplification of Tollmien–Schlichting waves and shows in particular that
the use of a neural network saves considerable computational time and may eventually replace empirical
correlations. Developed neural models represent a first step towards modelling of surface defects’ influence
on transition in flight conditions.

1. Introduction

In a global context where the general trend is to reduce greenhouse gas emissions, it has become
necessary to reduce fuel consumption of future aircraft. One of the solutions is to reduce the skin
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friction drag, which can represent up to 50 % of the total drag of an airliner (Marec, 2001). Since a
laminar boundary layer induces a lower friction coefficient than a turbulent boundary layer, delaying the
onset of laminar–turbulent transition would lead to a drag reduction.

The transition path is strongly determined by the impact of external perturbations (external turbulence,
acoustic disturbances, surface defects, etc.) on the boundary layer. During a first stage of receptivity,
the boundary layer will filter out these external disturbances and generate new instabilities. The linear
amplification of these instabilities is followed by a nonlinear process which will trigger the transition
to turbulence. For two-dimensional subsonic boundary layers, the dominant mechanism responsible of
the breakdown to turbulence is due to Tollmien–Schlichting (TS) waves. The eN method developed by
van Ingen (1956) and Smith and Gamberoni (1956) is one of the most efficient tools to predict correctly
the transition location. The N-factor represents the amplification of the boundary layer instabilities and
several works have shown that transition occurs when the N-factor reaches a critical value Ntr between 6
and 11 (Arnal, 1994). This critical value depends mainly on the free-stream turbulence intensity (Mack,
1977) for TS wave induced transition.

Several strategies exist to control the boundary layer transition: a passive method (natural lami-
nar flow, NLF), an active method (laminar flow control, LFC) and a hybrid method (hybrid laminar
flow control, HLFC). While the LFC method consists of stabilizing the boundary layer by technical
solutions such as wall suction (Braslow, 1999; Joslin, 1998) or wall heating, the NLF strategy aims at
optimizing the pressure gradients in order to delay the transition. The HLFC method is a combination
of the two previous methods. Although a lot of research is carried out on NLF, a laminar boundary
layer is difficult to obtain because of its high sensitivity to surface imperfections. On an aircraft, these
defects can be two-dimensional (steps, gaps, bumps) or three-dimensional (screw heads, holes, insects,
ice accretion, etc.) and are most of the time inherent to the manufacturing processes. These surface
irregularities affect the laminar to turbulent transition process by amplifying the unstable waves, i.e. the
TS waves for two-dimensional flows as well as the cross-flow instabilities in three-dimensional boundary
layers.

Traditional numerical methods used to predict the transition, such as local stability theory (LST) or the
parabolized stability equations (PSEs), have yielded satisfactory results for dealing with smooth cases
or surface defects of limited dimensions (Perraud, Arnal, & Kuehn, 2014; Thomas, Mughal, Roland,
Ashworth, & Martinez-Cava, 2018). However, the effect of a surface irregularity on the transition is
poorly captured by these methods due to the assumptions made on the base flow. Indeed, LST assumes
that the flow is parallel and the PSE method only considers a slow variation in the streamwise direction,
while the presence of surface defects within the boundary layer generates strong non-parallel effects
that cannot be solved. To overcome these limitations, Worner, Rist, and Wagner (2003) and Edelmann
and Rist (2015) used direct numerical simulations to study the impact of humps and forward-facing
steps (FFSs), respectively, on the transition. More recently, Franco Sumariva, Hein, and Valero (2020)
introduced the adaptive harmonic linearized Navier–Stokes (AHLNS) method which they coupled with
PSE upstream and downstream of the region with strong streamwise flow variations to study the effect
of humps on the transition. A similar technique is used by Hildebrand, Choudhari, and Paredes (2020) to
study backward-facing steps (BFSs). These methods have the advantage of requiring short computational
times but their automation is difficult and requires human expertise.

In most cases, surface defects only have a very localized effect on the boundary layer near the defect.
Away from the surface imperfection, the flow recovers its initial behaviour. The change caused by the
defect is responsible for an N-factor shift close to the imperfection. This jump from a no-defect case
is ΔN high and may allow the transition threshold value Ntr to be reached earlier. Many studies have
looked for empirical correlations linking the type of defect and its geometrical characteristics to the
ΔN shift. Wind tunnel experiments were conducted by Crouch, Kosorygin, Sutanto, and Miller (2022)
on gaps and by Wang and Gaster (2005) on BFSs. These studies showed that the ΔN corresponded to
0.122b∗ tanh(36h∗/b∗) for the gaps and 4h∗ − 1.4 for the BFSs, where h∗ and b∗ denote the step height
and step width, respectively, made dimensionless with the boundary layer displacement thickness for
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a Blasius boundary layer at the defect location 𝛿1,d. Recently, the numerical study of Hildebrand et al.
(2020) corrected Wang’s correlation to the form 3h∗−0.55. These empirical relations have the advantage
of being easy to implement and not requiring any additional experimental or numerical calculations
than those required for a smooth surface. On the other hand, each correlation corresponds to only one
particular defect geometry.

For three-dimensional flows, Duncan, Crawford, Tufts, Saric, and Reed (2014) found, thanks to hot-
wire measurements, that steps caused an increase in the growth of the stationary cross-flow vortices,
thus moving the transition location forward relative to a similar two-dimensional case. In particular,
BFSs will have only a small effect on cross-flow instabilities by causing a small localized increase in
their amplitude downstream of the reattachment point (Eppink, Wlezien, King, & Choudhari, 2018;
Tufts, Reed, Crawford, Duncan, & Saric, 2017). On the other hand, for FFSs, a large growth in the
stationary cross-flow amplitude will accelerate the transition. Perraud and Seraudie (2000) also indicate
that increasing sweep angles tends to make the boundary layer more sensitive to the FFS height, whereas
for BFSs, a critical height was found below which transition was not changed. In this paper, only two-
dimensional boundary layers and two-dimensional defects will be considered, and therefore cross-flow
instabilities will not be studied.

Models using database analysis techniques (Perraud, Arnal, Casalis, Archambaud, & Donelli, 2009;
van Ingen, 2008) have been used to simplify or replace eN methods. However, these methods do not
generalize well to large parameter sets. Nowadays, the rise of neural networks (NNs) makes it possible
to predict instabilities by taking into account many input parameters in a robust way. Crouch, Crouch,
and Ng (2002) used NNs to determine instability growth rates for calculating the N-factors to predict
transition caused by cross-flow and TS wave instabilities. Lately, Giannopoulos and Aider (2020)
predicted the dynamics of a BFS flow using velocity fields as inputs for a NN. More recently, Zafar et al.
(2020) proposed a transition model based on convolutional NNs to predict the growth rates of instabilities
in two-dimensional incompressible boundary layers. The same authors have also developed a transition
model based on recurrent NNs to predict the N-factor envelope as well as the transition position for
different wing profiles (Zafar, Choudhari, Paredes, & Xiao, 2021). Because of their architecture, the
use of artificial NNs could allow for more complex relations between the geometrical characteristics
of a defect to be taken into account in the evaluation of the ΔN compared with previous empirical
correlations.

The aim of this paper is to use NN methods taking into account different geometrical and aerodynamic
parameters of several types of gap-shaped surface defects to generate new ΔN models and make more
accurate the prediction of the transition to turbulence of a two-dimensional incompressible boundary
layer in the context of TS wave induced transition.

First, the governing equations are introduced in §§ 2.1 and 2.2, and the numerical methods are
presented and validated in § 2.3. In a second step, § 3 focuses on a particular defect case to detail the
implemented procedure. A database of boundary layer stability analyses in the presence of surface
defects is then created and analysed in § 4.3. The NNs used for the creation of transition models and the
results are reported in § 4.4. Finally, a discussion of the use and limitations of this method is conducted
in § 5.

2. Computational strategy

A large database is generated in order to derive new transition models for gap-shaped surface defects. This
database consists of N-factor envelope curves obtained by linearized Navier–Stokes (LNS) calculations
performed with the ONERA code PIMS2D. The governing equations of the physical problem to be solved
are first detailed in § 2.1. The eN method is then presented in § 2.2, as well as the ΔN method used to
quantify the effect of a surface irregularity on the transition. The defect configuration and the numerical
methods used to solve the problem are detailed in a third step in § 2.3. Finally, the code is validated both
for a boundary layer on a flat plate and in the presence of a BFS in § 2.4.
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2.1. Governing equations

The flow considered is a boundary layer developing on a flat plate with a surface defect and governed
by the forced incompressible two-dimensional Navier–Stokes equations

∇ · u = 0, (2.1a)

𝜕tu + (u · ∇) u = −
1
𝜌
∇p + 𝜈Δu + 𝜀g′, (2.1b)

where u is the velocity vector, p is the pressure, 𝜌 is the fluid density and 𝜈 is the kinematic viscosity.
The infinitesimal forcing g′ introduced in the momentum equation (2.1b) acts as a source term mod-
elling the presence of noise in the boundary layer and thus modifying its receptivity. The state vector
q = (u, p) is decomposed into a steady base flow Q = (U,P) plus an unsteady small perturbation field
q′ = (u′, p′) in the form

q (x, t) = Q (x) + 𝜀q′ (x, t) , 𝜀 � 1, (2.2)

where x = (x, y) is the position vector x and t represents time; x and y are the streamwise and normal
components, respectively. Introducing the decomposition (2.2) into (2.1), the steady Navier–Stokes
equations governing the base flow are obtained

∇ · U = 0, (2.3a)

(U · ∇) U = −
1
𝜌
∇P + 𝜈ΔU. (2.3b)

At the first order, the LNS equations governing the dynamic of the perturbations developing in the base
flow are written as

∇ · u′ = 0, (2.4a)

𝜕tu′ + (U · ∇) u′ + (u′ · ∇) U = −
1
𝜌
∇p′ + 𝜈Δu′ + g′. (2.4b)

The set of equations (2.4) is used to compute the evolution of a small disturbance q′ in the boundary
layer in a linear regime. The forcing term and so the perturbations are assumed to be time harmonic as
follows:

u′ (x, y, t) = û (x, y) exp(−i𝜔t), p′ (x, y, t) = p̂ (x, y) exp(−i𝜔t), g′ (x, y, t) = ĝ (x, y) exp(−i𝜔t),
(2.5)

where𝜔 = 2πf is the real angular frequency of the perturbations and f is the disturbance frequency. Intro-
ducing this decomposition into (2.4), the governing equations of the spatial structure of the perturbations
(û, p̂) are obtained

∇ · û = 0, (2.6a)

−i𝜔û + (U · ∇) û + (û · ∇) U = −
1
𝜌
∇p̂ + 𝜈Δû + ĝ. (2.6b)

2.2. The N factor and ΔN method

The spatial structure of the modes shows an amplitude amplification when moving in the streamwise
direction (as depicted in figure 9). The LNS approach requires the use of a norm to quantify the
evolution of the disturbances. Assuming that the TS modes are dependent on both the x and y directions,
their amplification can be quantified by the infinity norm A(x), i.e. the maximum absolute value of
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the longitudinal velocity along the wall-normal coordinate at each position in streamwise direction, as
follows:

A(x) = max
y

|û(x, y) | . (2.7)

This amplitude can be linked to the N-factor when scaling (2.7) by an initial amplitude A0 at the critical
point at which the instability begins to amplify, and taking the logarithm of this normalized amplitude

NF (x) = ln
(
A(x)
A0

)
. (2.8)

Each NF-factor curve is defined for a given non-dimensional reduced frequency F defined as

F =
2πf 𝜈
U2

∞

× 106. (2.9)

Since there is no a priori knowledge on which frequency will be responsible for triggering transition,
an envelope curve of the maximum NF-factors over a large range of frequencies is defined as

N (x) = max
F

NF (x). (2.10)

The N-factor method assumes that the transition occurs at a position xtr for which the envelope curve
N reaches a threshold value Ntr. The ΔN method extends the eN method to cases including a surface
defect: the N-factor for a smooth case configuration is artificially shifted by an additional amplification
caused by the defect with a value of ΔN

N = Nsm + ΔN, (2.11)

where Nsm is the N-factor evaluated for a smooth surface. The transition position is therefore shifted
upstream as the threshold value Ntr is reached earlier.

Although it is widely used in the literature, some points must be recalled for a good understanding of
this method and its limits. TheΔN method assumes that no new mode is created in the flow. The unsteady
waves taken into account already exist in the defect-free case and are only over-amplified (or damped in
some cases) by the presence of the defect. Thus, this method will not be applicable if the changes in the
base flow due to the defect occur before the linear amplification region of the perturbations because the
TS waves will have not yet been amplified. Moreover, at infinity downstream of the surface irregularity,
ΔN should theoretically tend towards a zero value. Indeed, as the base flow is no longer disturbed far
from the defect, the envelope curves of the N-factor for the smooth case and the case with defect will
match.

2.3. Flow configuration and numerical methods

As described in § 2.1, a stability analysis consists in first computing a base flow solution of the steady
Navier–Stokes equations, and then solving the first-order LNS equations for a given reduced frequency
F. The numerical methods used to solve these equations are presented here.

2.3.1. Defect configuration
Different defect geometries are studied in this work. The generic parameters defining a defect are two
heights h1 and h2, a width b and the incompressible boundary layer displacement thickness for a flat
plate at zero pressure gradient at the defect location 𝛿1,d. The value of 𝛿1 at a given position x is then
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Figure 1. Surface defect parameters.
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Figure 2. Sketch of the computational domain for the base flow (BF) and for the LNS computations.

given by the theoretical Blasius solution

𝛿1(x) = 1.7208
√

𝜈x
U∞

. (2.12)

This set of four parameters is represented in figure 1 and aims to geometrically represents any type of
gap-shaped surface defect in order to standardize the existing correlations linking geometric parameters
to the ΔN shift. In the rest of this study, the geometric dimensions are made non-dimensional by 𝛿1,d
and will be denoted hereafter h∗1, h∗2 and b∗, and the aerodynamic parameter defining the defect location
𝛿1,d will be the Reynolds number Re𝛿1,d .

2.3.2. Base flow computation
The computational domain is represented schematically in figure 2. It extends in the x-direction from
an abscissa corresponding to Re𝛿1,in = 350 to an abscissa corresponding to Re𝛿1,out = Re𝛿1,d + 1000, and
in the y-direction over a height yBF,out = 30𝛿1,out. A boundary layer develops and encounters a gap with
non-dimensional heights h∗1 and h∗2 and non-dimensional width b∗ at an abscissa corresponding to Re𝛿1,d .
A no-slip boundary condition (u ·n = 0) is imposed at the wall 𝛤wall, while a free-slip condition with zero
normal stress (−pI · n + 𝜈∇u · n = 0) is prescribed on the output boundary 𝛤out. A self-similar boundary
layer profile with displacement thickness 𝛿1,in is imposed on the inlet boundary 𝛤in. This boundary layer
profile is obtained after solving the Blasius equation with a fourth-order Runge–Kutta method.

A two-dimensional triangulation of the domain is performed with the FreeFem++ finite ele-
ment library (Hecht, 2012) with a Delaunay–Voronoi algorithm. Equations (2.3) are discretized with
Taylor–Hood finite elements P2 for the velocity field and P1 for the pressure. The nonlinear solution of
the base flow is obtained with a classical Newton method, by progressively decreasing the value of the
kinematic viscosity 𝜈 from 𝜈 = 1 m2 s−1 until the value corresponding to the desired Reynolds number
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Figure 3. Neutral curve of a Blasius boundary layer obtained by LST and range of reduced frequencies
calculated for the N-factor envelope calculation.

Re𝛿1,d is reached. Thus, the approximated solution at the kth iteration is obtained as follows:

Qk = Qk−1 + 𝜹Qk . (2.13a)

Here, 𝜹Qk is the solution increment obtained by solving the linear problem

J
(
Qk−1

)
𝜹Qk = −NS

(
Qk−1

)
, (2.13b)

where NS and J are, respectively, the Navier–Stokes operator and its Jacobian. The Newton algorithm
solves the linear system (2.13) until ‖NS(Q)‖2 < 10−12.

2.3.3. The LNS computations
Once the base flow is calculated, the TS waves are artificially excited by introducing a volume force term
g′ = (g′

x, g′
y)

T into the LNS equations. This forcing is only prescribed on a tiny part of the computational
domain and has a zero spatial distribution ĝ according to the x-direction: ĝ = (ĝx, ĝy)

T = (0, 10−5)T. It
extends in the longitudinal direction from an abscissa xf to an abscissa (xf + 0.002), and in the normal
direction over a height 𝛿1,in. The abscissa xf is chosen as the critical point delimiting the unstable domain
of a Blasius boundary layer, i.e. at which Re𝛿1 = 520, as shown in figure 3.

The computational domain for the LNS calculations is similar to the base flow domain, but has
a reduced height yLNS,out = 15𝛿1,out to avoid having too many vertices. The base flow is therefore
interpolated onto the new mesh and equations (2.6) are discretized with Taylor–Hood finite elements
P2 for the velocity field and P1 for the pressure. Whether for the base flow or the LNS computations,
matrix inversion is performed by PETSc (Balay et al., 2021).

The LNS calculations are performed both on a smooth surface and on a surface with defect, for 91
non-dimensional reduced frequencies in the range F ∈ [25, 160] to generate the N-factor envelope.
This frequency region is represented in figure 3 and is chosen because it represents unstable frequencies
which may undergo sufficient amplification to trigger the transition.

2.4. Code validation

2.4.1. Base flow
The base flow considered for validation is a boundary layer developing on a flat plate without surface
imperfection or pressure gradient, with a Reynolds number based on the inlet displacement thickness
Re𝛿1,in = 371. Non-dimensional velocity profiles are plotted at different boundary layer abscissae in
figure 4(a) and show the self-similar feature of this flow. The black dashed curve corresponds to the
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Figure 4. (a) Velocity profiles at different abscissae of the boundary layer and (b) evolution of the
displacement thickness 𝛿1 in the boundary layer.
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Figure 5. (a) The N-factor envelope curve for a flat plate and (b) N-factor curves for the frequencies
f = 300 Hz (blue curve), f = 500 Hz (red curve), f = 700 Hz (green curve) and the envelope curve (black
curve) for a boundary layer in the presence of a BFS.

theoretical profile obtained by solving the Blasius equation. The displacement thickness 𝛿1 is plotted
in figure 4(b) for several abscissae. One can observe that the results are very similar to the analytical
solutions, indicating that the calculated boundary layer acts well as a Blasius boundary layer.

2.4.2. The LNS results
In order to validate the resolution of (2.6), the N-factor envelope for the flat plate corresponding to
the base flow of § 2.4.1 was calculated. The result is plotted in figure 5(a) and is compared with the
amplification curve from a local stability calculation. The non-parallel effects taken into account by
the LNS computation and ignored by LST have a slight stabilizing effect on the boundary layer, which
may partly explain why the amplification of unstable waves starts for a higher Reynolds number in our
case than in the local analysis. A second possible justification is that the very high frequencies are not
calculated, as can be seen in figure 3. However, this does not affect the information about the transition
position insofar as the slopes of the two envelope curves merge from a value of N much lower than the
traditional critical Ntr-factor, once slightly lower frequencies are considered.

To validate our method in the presence of surface imperfections, the configuration studied by Hilde-
brand et al. (2020) is reproduced. The boundary layer encounters a BFS with slope 𝜃 = 75◦ and height
h/𝛿1,d = 0.72 at the abscissa xd = 0.3 m. The flow has the following characteristics: a displacement
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Figure 6. (a) Initial and (b) final mesh after adaptation procedure. In both cases, a zoom is performed
in the vicinity of the defect.

thickness 𝛿1,d = 6.9×10−4 m and a free-stream unit Reynolds number Re∞ = 1.86×106 m−1. Figure 5(b)
compares the N-factor curves for different frequencies and the envelope curve obtained by our method
with those obtained by Hildebrand et al. (2020) and the results match perfectly, validating PIMS2D in the
presence of surface irregularities.

3. Study of a critical defect

A critical defect is studied in this section in order to detail the database generation process for a particular
case. The defect configuration is such that h∗1 = 1.72, h∗2 = 0.47, b∗ = 7.54 and Re𝛿1,d = 1795.

3.1. Base flow results

Boundary layer stability calculations require excellent accuracy in the base flow. The use of a finite
element method allows the use of an unstructured mesh and local adaptations of the mesh. Thus,
the initial mesh is automatically adapted to the solution Q = (U,P) of the previous iteration when
Re𝛿1,d > 100, and then adapted one last time after the final iteration thanks to the function adaptmesh of
FreeFem++. This adaptation procedure is detailed in Hecht (1998) and adapts the mesh to the Hessian
matrix of the solution. As an example, initial and final adapted meshes are shown in figure 6.

The non-dimensional streamwise velocity field exhibits a separation bubble behind the downward
side of the gap, extending downstream of the defect. Figure 7(a) shows the displacement thickness 𝛿1(x)
and figure 7(b) the pressure distribution at the wall P(x, ywall). The presence of the defect generates
a favourable pressure gradient upstream of the gap, followed by a strong adverse pressure gradient
region. Finally, there is a zone with a favourable pressure gradient approaching zero at the infinite
downstream of the defect. These pressure variations explain the separation bubble and have an impact
on the boundary layer thickness. The boundary layer becomes thinner just upstream of the gap when
the pressure gradient is negative, and then thickens in the defect. At a certain distance from the gap, the
boundary layer regains the behaviour of an unperturbed Blasius boundary layer.

3.2. Instability analysis

3.2.1. Analysis of the envelope N-factor
Once the base flow is calculated, it is interpolated on the mesh used for the stability study. Equations
(2.6) are solved for 91 non-dimensional reduced frequencies in the range F ∈ [25, 160] and the TS wave
amplification curves at the specified frequencies are obtained. The maximum of these amplifications
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Figure 7. (a) Boundary layer displacement thickness and (b) pressure distribution at the wall.
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Figure 8. The N-factor envelope curve with defect and for the same aerodynamic configuration but
without defect. The figure also shows the amplification curves for all calculated frequencies (grey curves)
as well as that of the most amplified frequency (F = 58).

gives the N-factor envelope in blue in figure 8. This curve is compared with the Nsm curve obtained for a
smooth case and allows us to visualize quantitatively the effect of the gap on the TS wave amplification.

At the upstream infinity, the amplification of the perturbations is equivalent with or without irregular-
ity. Slightly upstream of the defect, the favourable pressure gradient region visible in figure 7(b) tends to
stabilize the disturbances by thinning the boundary layer, and the N-factor decreases slightly compared
with the smooth case. However, just after the gap, the displacement thickness increases abruptly due to
the strong positive pressure gradient and the boundary layer becomes much more unstable. This results
in a very sharp local increase in the N-factor to a Nmax value, due to the strong amplification of high
frequency waves in the mixing layer forming downstream of the step in the detached region. Neverthe-
less, TS waves of these frequencies are rather stable for boundary layers and dissipate after the gap. The
purple curve in figure 8 corresponds to the reduced frequency F = 85 and illustrates this phenomenon.
The TS wave development corresponding to this frequency can be seen qualitatively in figure 9. On the
other hand, TS waves of lower frequencies are also amplified by the defect but to a lesser extent, and the
N-factor recovers the behaviour of the flat plate configuration at the downstream infinity but shifted by
a ΔNfar factor. This is illustrated by the orange curve corresponding to the reduced frequency F = 25.
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3.2.2. Calculation of the ΔN
Two ΔN arise from this analysis: a ΔNmax corresponding to a local maximum of the N-factor located just
after the gap, and a ΔNfar at the downstream infinity. The calculation of ΔNmax is straightforward since
it corresponds to the maximum difference between the envelope curve of both the smooth and defect
cases. In the following, the Nmax is always defined as the value of the envelope N-factor of the defect
case at the location of the ΔNmax. This value will not always correspond to the maximum value of the
N-factor in the computational domain depending on the types of defects considered and the Reynolds
number of the flow.

On the other hand, the determination of ΔNfar is more difficult because it is not constant but slightly
decreasing with the distance to the defect, as shown in figure 10. In this paper, the ΔNfar is defined as
the first point for which the derivative d(ΔN)/dx returns to a constant value. Determining ΔNfar as soon
as the effects of ΔNmax are no longer felt in the flow allows us to obtain the most conservative value
possible, which is of some use for an industrial application.

As an example, the transition N-factor of the present case is chosen at Ntr = 7 and is representative
of a wind tunnel experiment for a TS wave transition scenario. The case considered here is thus critical
insofar as it triggers transition at (x − xd) = 25 𝛿1,d, immediately downstream of the defect due to the
ΔNmax effect, while the transition is triggered for the smooth case for (x − xd) = 647 𝛿1,d. The TS wave
responsible for triggering the transition has a reduced frequency F = 58 and corresponds to the green
curve in figure 8.

3.2.3. Comparison with the literature
The ΔN obtained from experimental measurements is defined as the difference between the value of the
transitional N-factor of the smooth case and the value of the envelope curve at the transition abscissa
in the presence of a defect. We will then refer to it as ΔNExp. On the other hand, the inconvenience of
numerical results from LST, PSE or LNS calculations as in this paper is that the transition position is
not known, which prevents a similar definition of the ΔN responsible for the transition. Thus, ΔN (x)
is computed as the difference between the two envelope curves (with and without defect) in the entire
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Figure 12. Streamwise velocity disturbance for a TS wave of reduced frequency for F = 58 (zoom near
the defect).

computational domain without considering an actual transition location. This difference in definition
between numerical and experimental ΔN has already been raised by Crouch and Kosorygin (2020).
These authors instead mention a Δn for numerical studies which, unlike the experimental ΔNExp, is not
specifically related to the perturbations whose frequencies are responsible for the transition but is seen
rather as a local amplification factor. The comparison between numerical and experimental results is
therefore tricky.

3.2.4. Distortion of TS waves by the defect
In order to visualize the evolution of the most unstable wave in the flow, dimensionless profiles of the
amplitude functions (û, v̂, p̂) are plotted for different abscissae in figure 11, where x∗ = (x − xd)/𝛿1,d.
Upstream of the defect (x∗ = −5), the perturbation profiles correspond to those of a TS wave, with
the presence of a main peak of û close to the wall, followed by a local minimum at the maximum
location of v̂. When crossing the gap (x∗ = 10), the profiles are distorted and û has two main peaks.
The destabilization mechanism then changes from a viscous instability to a combination of viscous
and Kelvin–Helmholtz (KH) instability. Close to the defect, the higher peak 2� in the flow has a larger
amplitude than the peak 1� situated closer to the wall, but this tendency is inverted away from the defect
(x∗ = 30) and the viscous instability becomes predominant again. Finally, the 2� peak disappears and
profiles characteristic of a TS wave are observed again (x∗ = 100).

The presence of these two peaks is visible in the û field plotted in figure 12 near the gap. The orange
region above the first edge for x∗ < 0 corresponds to the main peak of the TS wave in figure 11(a). After
the defect, this area is extended in the groove alignment while increasing in amplitude and corresponds
to the peak 2�, while a second region of progressive amplification appears in the near wall corresponding
to the peak 1�. When moving away from the defect, these two amplification regions merge to form a
single one, typical of TS waves.
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Both viscous and KH instabilities indicate that the mechanisms responsible for the destabilization of
the boundary layer are more complicated than a simple over-amplification of TS waves. At first sight,
it would be necessary to filter out the contribution of TS waves alone in order to use the ΔN method
in this region of the flow to properly separate the contribution of the two unstable modes. However,
Nmax is reached in figure 8 at the abscissa x∗ = 100, which corresponds to the TS profiles shown in
figure 11(d). At this x-value, both modes have combined into a single one, and the KH instability does
not seem to be responsible for theΔNmax. In the rest of the paper, only TS wave transition scenario will be
considered.

4. Neural network model

4.1. Definition

An artificial neuron is a nonlinear function that associates an input vector x = (x1, . . . , xn) with an
output y, as follows:

y = 𝜎

(
n∑

i=1
wixi + bi

)
, (4.1)

where 𝜎 is an activation function, w = (w1, . . . ,wn) is the vector of connection weights and b is a bias.
The activation function introduces a nonlinearity, allowing the neuron to represent arbitrarily complex
functional relations between input variables.

A NN is a structure composed of successive hidden layers between the input layer and the output
layer, where the output of a neuron becomes the input of all the units in the next layer. The learning
process then consists of iteratively adjusting the weights and biases of the network by minimizing a loss
function L.

4.2. Generation of training data

The inputs of the NN are Re𝛿1,d as the aerodynamic variable and h∗1, h∗2 and b∗ as geometric parameters.
Geometric ranges of input parameters have been selected to represent both stable and critical cases that
could trigger the transition, according to the criteria defined by Beguet, Perraud, Forte, and Brazier
(2017). Discretization of the input parameter domain was performed by Latin-hypercube sampling
with 750 samples. This method, described by McKay, Beckman, and Conover (1979), positions each
sample according to the location of previously positioned specimens, to ensure that they do not have
common coordinates. This scheme has the advantage of not requiring more samples to cover more
dimensions.

During sampling, the region covered by h∗2 is discretized so that we always have 0 < h∗2/h
∗
1 < 1. This

choice is made in order to treat here only cases of step and gap defects with a ‘descending’ trend, i.e. with
the second edge smaller than the first. For each sample of input parameters generated, PIMS2D provides
as output the values ΔNmax and ΔNfar, which will be the outputs to be predicted by the NN, as illustrated
in figure 13. The distribution of the input parameters is shown in figure 14. More specifically, the range
of Reynolds number Re𝛿1,d considered extents over [901.5; 1999.4], the height h∗1 over [0.1; 2.99] , the
height h∗2 over [0.004; 2.9] and the width over [0.5; 14.9].

All the cases used to supply the database and which have been calculated by PIMS2D are subcritical
with respect to the bypass transition. More concretely, the calculation of the stationary base flow cannot
converge if the flow presents a global instability. According to Alam and Sandham (2000), when the
adverse velocity magnitude in the recirculation zone exceeds 15 %–20 % of the upstream infinite velocity,
the flow can become globally unstable. This is what seems to happen in our cases when h∗1 > 3, so only
defects with h∗1 < 3 have been considered.
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Figure 14. Input parameter distribution of the NN: (a) heights, (b) width and (c) Reynolds number.

4.3. Database analysis

Figure 15 illustrates the influence of the input geometrical parameters on the different ΔN for each case
in the database. Analysis of figure 15(a) shows firstly that the ΔNmax is more important when the height
h∗1 is high. Moreover, the ΔNmax is lower when the height h∗2 is higher, i.e. a defect close to a BFS is
more destabilizing than a cavity type defect.

As shown in figure 15(b), the highest values of ΔNmax correspond to the highest b∗ when Δh =
|h∗1 − h∗2 | < 0.5. On the other hand, beyond this threshold, the width does not seem to play a determining
role and a correlation seems to exist between the heights difference Δh and the ΔNmax value. Moreover,
the ΔNmax seems to reach a limit around 2 for Δh < 0.5, i.e. for gaps with relatively similar heights,
while a behaviour closer to the BFS one becomes more destabilizing when Δh increases. Similar results
were shown by Crouch et al. (2022) in their model indicating that the gap acts as a BFS for a shallow
gap, but that the width becomes dominant for deep gaps.

There also appears to be a strong linear relation between the ΔNmax and ΔNfar values, as shown in
figure 15(c). This could translate in future studies into the need to know only one of the two ΔN to
predict the other.

4.4. Neural network predictions and validation

An attempt by the authors to predict ΔNfar and ΔNmax by linear techniques was not conclusive, so the
use of nonlinear models with NNs is preferred. The model is available on zenodo at https://doi.org/10.
5281/zenodo.7101195.
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Figure 15. (a,b) Evolution of ΔNmax as a function of geometric parameters and (c) evolution of ΔNmax
as a function of ΔNfar.

Table 1. Details of networks architectures and results. Architecture of the network corresponds to the
number of neurons in each layer.

Network Architecture Number of parameters 𝜖MAE

A [4 - 80 - 2] 562 0.045 (±0.005)
B [4 - 20 - 20 - 2] 562 0.051 (±0.005)
C [4 - 15 - 15 - 15 - 2] 587 0.054 (±0.007)

4.4.1. Implemented NNs
Given the relatively small number of samples in the database, the NNs used in this work have a rather
simple architecture. Neural networks with different structures regarding the number of hidden layers and
the number of neurons in each layer are considered. The structure of these networks is detailed in table 1.
Each of these models is based on a rectified linear unit activation function and an Adam optimizer. Adam
optimization is a stochastic gradient descent method used to minimize the cost function. Each training
of the network is performed on a normalized training dataset representing 80 % of the total dataset (i.e.
600 samples) and randomly selected, while the validation is done on the remaining 20 % which have
never been seen by the network (i.e. 150 samples).

We consider a learning base (x(i)
1 , . . . , x(i)

k , y(i) ) with n observations, where x (i) are the input variables
of the ith observation and y(i) is the variable to be predicted. The loss function to be minimized by the
network during training is defined as the mean square error between the real values y(i) and the values
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predicted by the NN ỹ(i)

L =
1
n

n∑
i=1

(ỹ(i) − y(i) )2. (4.2)

The evolution of the loss function during the training process is plotted in figure 16 as a function of the
number of epochs, i.e. the number of times that the network sees the training dataset entirely and adapts
its weights and biases. An early stopping criterion is used to limit overfitting, stopping the training when
the validation error no longer improved. Thus, a learning loop will check at the end of each epoch if
the loss function has not decreased over the last five epochs. The learning of the network is completed
when the decrease stops.

When the model is trained several times, the results may be slightly different. A K-fold cross-
validation is therefore used to get an indication of the model performance. The database is divided into
five groups from which one sample is chosen as the validation set while the other four constitute the
training set. After training, a validation performance criterion is obtained. This operation is repeated by
selecting another validation sample among the predefined blocks, and at the end of the procedure five
performance scores are obtained, one per fold. The metric used to quantify the accuracy of the models
is the mean absolute error (MAE) 𝜖MAE described as

𝜖MAE =
1
m

m∑
i=1



y(i) − ỹ(i) 

, (4.3)

with m being the size of the validation dataset. Mean and standard deviation of the five MAE scores are
listed in table 1 for each network.

4.4.2. Validation of NN results
Once validated, the NN model predictions are compared with the experimental results of Methel, Forte,
Vermeersch, and Casalis (2021). These authors have investigated experimentally the effect of gaps in
transition on a flat plate with wall suction. Some cases without suction were extracted to be compared
with the ΔNfar predictions from the NN. This comparison can be found in table 2. Taking into account
the value of ΔNfar rather than ΔNmax is justified in figure 18 insofar as the experimental transition point
is located far enough from the defect that the effects due to ΔNmax are no longer apparent. This figure
will be analysed in more detail in § 5. Note that all these geometrical configurations are out of the
learning zone, since the networks have never studied defects for which h∗1 = h∗2. Moreover, the last two
gaps are also out of the learning zone in terms of widths. This may have an effect on the performance of
the models. Nevertheless, the orders of magnitude of the predictions are respected and the agreement
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Table 2. Comparison between the Methel et al. (2021) experimental results on a gap and the ΔNfar
predicted by the NN.

Re𝛿1,d h∗1 = h∗2 b∗ ΔNExp ΔNfar A ΔNfar B ΔNfar C

1640 1.90 3.80 0.15 0.01 0.07 0.06
1640 1.90 12.70 0.34 0.49 0.60 0.58
1640 1.90 22.20 0.96 1.18 1.16 1.22
1640 1.90 28.60 2.20 1.65 1.48 1.73

between the ΔNExp obtained experimentally and the ΔNfar predicted is good considering the 𝜖MAE value
of each NN.

In order to verify the network’s ability to correctly predict the ΔN outside of its training area, the
Wang and Gaster (2005) experimental results for BFSs were reproduced. The parameter h∗2 is set to
zero, while the parameter b∗ is set to zero in a first step and set to 20 in a second step, to approximate
as closely as possible the geometry of a BFS. A case with b∗ = 0 is geometrically close to a BFS, while
the b∗ = 20 case allows us to perceive the effect of a large width associated with a zero height h∗2 on the
behaviour of the NN. This configuration does not make sense from a physical point of view. Both cases
are situated outside the learning area of the networks. Neural predictions are also compared with the
following correlations from Hildebrand et al. (2020):

ΔNWang =

{
0 if h∗ < 0.35,
4h∗ − 1.4 if h∗ ≥ 0.35,

(4.4)

and

ΔNHild =

{
2.47h∗2 + 0.62h∗ if h∗ < 0.38,
3h∗ − 0.55 if h∗ ≥ 0.38.

(4.5)

Note that the ΔNWang correlation is a linear relation extrapolated by Hildebrand et al. (2020) from the
experimental data of Wang and Gaster (2005) using a least squares method. As indicated by Hildebrand
et al. (2020), the numerical results leading to correlation (4.5) as well as Wang’s experimental points
correspond to cases for which the transition position is located far enough downstream of the defect
so that the transition is not related to the N-factor overshoot (ΔNmax in this paper). The comparison
of the neural results with the literature is therefore made with the predictions of ΔNfar. Results from
network B are plotted in figure 17 and show reasonable agreement between the experiment and the
neural predictions, keeping in mind that the network has not been trained with a pure BFS configuration.
Considering that Wang and Gaster (2005) assume the uncertainty on the transition position uncertainty
to be approximately ±5 mm in a flat plate configuration, the uncertainty on the experimental ΔN can
fairly be considered to be around ±0.1. The observed differences between both b∗ = 0 and b∗ = 20 cases
are almost invisible and suggest that the network behaves identically regardless of the width when h∗2 = 0.
The NN results corresponding to Re𝛿1,d > 2000, located outside the training region for the Reynolds
number, are represented by filled symbols to differentiate them and have a larger error compared with the
experimental results. Moreover, for h∗1 > 1.2, our results are located between the curves corresponding
to correlations (4.4) and (4.5). Finally, the neural results corresponding to the cases h∗1 < 0.9 and
h∗1 > 1.7 have been obtained by considering an arbitrary Re𝛿1,d = 1600 and are only compared with the
correlations. These cases show an excellent agreement with the relation of Hildebrand et al. (2020), and
prove again the robustness of NN models for defect cases outside the training range.
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Table 3. Range of input parameters (in absolute value) for which the NNs A, B and C were trained.

Re𝛿1,d h∗1 h∗2 b∗

[901.532–1999.41] [0.104–2.999] [0.0009–2.904] [0.515–14.977]

5. Discussion on the use of NN

Developed neural models for ΔN prediction are restricted to two-dimensional and incompressible flows.
However, they represent a first step towards the modelling of surface defects’ influence on transition in
flight conditions. Their range of use for each of the input parameters is summarized in table 3.

The use of neural models implies that the user must dispose of the envelope curve of the N-factor
corresponding to the smooth case. This curve is usually obtained by an LST calculation. Guidelines are
provided on how to use the NN, as illustrated by figure 18. The defect considered is a gap of heights
h∗1 = h∗2 = 1.9, width b∗ = 12.7 and located at Re𝛿1,d = 1640. Experimental results from Methel et al.
(2021) yield Ntr = 6.2. In a first step, the user can check if the transition Ntr is reached thanks to the
effect of the Nmax by adding the ΔNmax predicted by the NN to the smooth case N-factor at the location of
the surface irregularity, or immediately downstream of the defect in a limit 0 ≤ (x−xd) < 100 𝛿1,d. This
limit remains arbitrary but allows us to stay in a region where the Nmax effects are noticeable according
to the study of the database by the authors. The addition of the ΔNmax corresponds to the purple curve in
figure 18 and in this case, the N-factor remains smaller than Ntr. In a more general case, if the ΔNmax is
not sufficient to exceed Ntr, the user can then use the prediction of ΔNfar to get an indication of the defect
influence. SinceΔNfar is extracted by PIMS2D quite early in the flow, once dΔN/dx becomes constant after
the ΔNmax effects have dissipated, the predicted value is rather conservative. Addition of the smooth case
and the neural prediction ofΔNfar corresponds to the green curve in figure 18. The difference in transition
position Δxtr between the LNS calculations and the neural results is approximately 11𝛿1,d, i.e. in this
case Δxtr,LNS � 0.0012 m. In order to properly illustrate this example, the addition of the experimental
ΔN to the smooth case corresponds to the orange curve. The difference between the experimental and
NN-predicted transition position is approximately 63𝛿1,d, i.e. Δxtr,Exp � 0.0073 m.

For comparison, the computational time to obtain a prediction from the NN is 0.2 s, while the
computation of the N-factor envelope curve by PIMS2D of the second case in table 2 required 12 576 s
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B for the second case of table 2.

(739 s for the base flow and 11 837 s for the LNS computation of the 91 reduced frequencies). Note
that the LNS computation time can, however, be reduced by considering fewer frequencies but losing
accuracy. For information, the time required to train the three networks was 39 s with an Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10 GHz. The difference in computational time between using NN and
numerical resolution by stability analysis is therefore clearly and significantly in favour of the models.

Nevertheless, the method of predicting the different ΔN presented in this work has some limitations.
The first important remark is that the predictions from the NN are only valid for a TS wave induced
transition. Potential global instabilities that can occur for specific geometries have not been studied in
this paper. It should be noted that the presence of global instability mechanisms prevents the resolution
of the base flow by PIMS2D since no stationary solution exists. The transition processes considered here
will therefore only involve natural transition paths, i.e. for which the transition is due to the exponential
growth of TS waves by modal amplification.

Secondly, the neural models are limited to a certain range of parameters corresponding to those
for which the NNs have been trained. The robustness of the results outside the training range is not
guaranteed. Besides, the same problem exists for the empirical correlations which are only valid within
the range of experimentally studied parameters. However, the predictions corresponding to the BFS and
presented in figure 17 seem to indicate that the networks do not make erroneous predictions as long as
the physical mechanisms involved in the transition process remain the same, although there is a slightly
larger difference between the neural predictions and the experimental ΔN when Re𝛿1,d is out of the
learning zone.

Finally, it has been shown by Hildebrand et al. (2020) that the location of the transition position could
not always be deduced from the knowledge of the values of ΔNmax and ΔNfar. There are two instances
of BFSs in this paper (h∗1 = 1.12 and h∗1 = 1.6) for which the transition position does not correspond
to the abscissa at which the envelope N-factor reaches the Ntr value, but rather seems to result from
a different physical mechanism. Furthermore, the LNS calculations do not allow the determination of
a transition position that could have provided the value of the transition ΔN. The proposed method is
therefore only a first approach to the problem considered and various improvements can be made to
enhance the accuracy of the models.

6. Conclusion

A new method for predicting the transition to turbulence of incompressible two-dimensional boundary
layers in the presence of gap-shaped surface defects has been presented. This method is based on
the eN method and a NN is used to determine the values of the ΔNmax and ΔNfar generated by the
surface irregularity when the transition is driven by a natural transition scenario induced by TS wave
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amplification. The proposed model relies on four distinct parameters defining the geometry of the defect
and its aerodynamic environment, which are its two heights h1 and h2, its width b and the Reynolds
number based on the displacement thickness of a Blasius boundary layer at the defect position Re𝛿1,d .

A database of 750 surface defects was generated with the PIMS2D code whose advantage is that it
is quite flexible in the creation of the mesh, allowing us to easily implement boundary layer stability
calculations, while the currently existing methods for the transition prediction in the presence of defects
are rather complex to implement. This code has been validated in the case of a flat plate and around a
BFS, showing good agreement with results from LST or AHLNS calculations.

Three NNs of different architectures have been developed and trained to predict ΔNmax and ΔNfar
using this database. The models have been trained for incompressible flows without a pressure gradient,
for Reynolds numbers Re𝛿1,d ∈ [900–2000] and step-and-gap defects of dimensions h∗1 ∈ [0.1–3],
h∗2 ∈ [0–3] and b∗ ∈ [0.5–15]. The average error of the model is around 5 × 10−2 on either ΔN, which
provides a fairly robust prediction of the criticality of the surface irregularity. Contrary to the empirical
correlations existing in the literature, the model generated by the network generalizes to any type of gap
as long as the characteristics of the defect are within the range of parameters studied by the network. The
parametrization of the surface defects allows the model to be extended to other defects, for example for
BFSs, by setting the parameters h∗2 and b∗ to zero. Encouraging results have been presented in this sense.

In future work, some limitations must be overcome to further improve the efficiency of transition
prediction by NNs. The first improvement would be to extend the operating range of the networks by
considering larger gap widths and a wider range of Reynolds numbers. This would allow the models to
increase their range of use, with a better consideration of real flight conditions, especially with respect
to Reynolds number. In addition, the models could be improved by also considering defects such as
FFSs and bumps, whose parametric representation would be similar to the gaps and BFSs studied here.
Two input parameters could also be added to the models for a better representation of the real flight
conditions. First, stability calculations in a compressible regime (subsonic and/or transonic) could be
implemented to take into account the influence of the Mach number on the stability of the boundary
layer. Moreover, the influence of a pressure gradient could also be taken into account in the models for a
better representation of the NLF wing profiles. Finally, a last natural extension of the code, and thus of
the neural models, would be the resolution of three-dimensional boundary layers to be able to simulate
real surface defects and thus understand the influence of the latter on the development of cross-flow
instabilities. Despite their rather simple architecture, the NNs used here produced good results, given the
size of our dataset (750 samples). In order to handle larger volumes of data, it may be necessary to move
on to more advanced architectures such as convolutional NNs (see for example Guastoni et al., 2021).

Supplementary material. The three NNs developed in this study are available at the following address: https://doi.org/10.5281/
zenodo.7101195 (Rouviere, Pascal, Méry, Simon, & Gratton, 2022). The repository also includes a Python script named Main.py
and a Jupyter script named Main.ipynb that provide detailed explanations and examples on how to use these NNs. Further details
on underlying data are available from the corresponding author (F.M.).
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