ON A NEW SINGULAR DIRECTION OF ALGEBROID FUNCTIONS

Songmin Wang and Zongsheng Gao

In this paper, we prove that for an algebroid function $w(z)$ with finite lower order, satisfying $\underset{r \rightarrow \infty}{\limsup }\left(T(r, w) /(\log r)^{2}\right)=\infty$, there exists a T direction dealing with multiple values.

1. Introduction and main results

The ν-valued algebroid function $w=w(z)(z \in \mathbf{C})$ is defined by the irreducible equation(see [5, 6])

$$
\begin{equation*}
A_{\nu}(z) w^{\nu}+A_{\nu-1}(z) w^{\nu-1}+\ldots+A_{0}(z)=0 \tag{1}
\end{equation*}
$$

where $A_{\nu}(z), \ldots, A_{0}(z)$ are all entire functions without any common zeros. In particular, $w(z)$ is a meromorphic function when $\nu=1$. In 1930s, Valiron [13], Ullrich [12] and Seleberg [10, 11] generalised the value distribution theory of meromorphic functions(see [4]) to the corresponding theory of algebroid functions. The singular direction for $w(z)$ is one important objects studied in the theory of value distribution of algebroid functions. Many people, such as Valiron [14], Lü [7], Lănd Gu [8] and Gao and Wang [2], have studied the Julia direction and Borel direction of algebroid functions.

Recently, Zheng [16] introduced a new singular direction of meromorphic functions, called the T direction. Then Guo, Zheng and Ng [3] proved that a meromorphic function $f(z)$ must have at least one T direction, provided that $\limsup \left(T(r, f) /(\log r)^{2}\right)=\infty$. Thus a natural question is whether there exists a T direction for an algebroid function $w(z)$. In this paper, we investigate the existence of the T direction dealing with its multiple values for an algebroid function with finite lower order (that is, $\left.\liminf _{r \rightarrow \infty}\left(\left(\log ^{+} T(r, w)\right) / \log r\right)<\infty\right)$, which implies that the algebroid function has a T direction, under the condition $\underset{r \rightarrow \infty}{\limsup }\left(T(r, w) /(\log r)^{2}\right)=\infty$.

Let $w(z)$ is a ν-valued algebroid function, defined by (1). Then the single-valued domain \widetilde{R}_{z} of its definition is a Riemann surface, which is a ν-sheet covering of the z plane. A point in \widetilde{R}_{z} is denoted by \tilde{z} if its projection in the z-plane is z. The open set

[^0]which lies over $|z|<r$ is denoted by $|\tilde{z}|<r$, and its boundary is denoted by $|\tilde{z}|=r$. Let $n(r, a)$ be the number of a-points of $w(z)$ in $|\bar{z}|<r$, counted according to their multiplicities, and $\bar{n}^{d}(r, a)$ be the number of distinct a-points of $w(z)$ with multiplicity $\leqslant l$ in $|\bar{z}|<r$. In addition, $\bar{n}(r, a)$ denotes the number of distinct a-points of $w(z)$ in $|\bar{z}|<r$, ignoring the multiplicity. Let
\[

$$
\begin{aligned}
S(r, w) & =\frac{1}{\pi} \iint_{|\bar{z}|<r} \frac{\left|w^{\prime}(\tilde{z})\right|^{2}}{\left(1+|w(\tilde{z})|^{2}\right)^{2}} d \omega=\frac{1}{\pi} \sum_{j=1}^{\nu} \iint_{|z|<r} \frac{\left|w_{j}^{\prime}(z)\right|^{2}}{\left(1+\left|w_{j}(z)\right|^{2}\right)^{2}} d x d y \\
T(r, w) & =\frac{1}{\nu} \int_{0}^{r} \frac{S(r, w)}{t} d t, \quad N(r, a)=\frac{1}{\nu} \int_{0}^{r} \frac{n(t, a)-n(0, a)}{t} d t+\frac{n(0, a)}{\nu} \log r, \\
\bar{N}^{\prime \prime}(r, a) & =\frac{1}{\nu} \int_{0}^{r} \frac{\left.\left.\bar{n}^{\prime}\right)(t, a)-\bar{n}^{\prime}\right)(0, a)}{t} d t+\frac{\bar{n}^{\prime}(0, a)}{\nu} \log r \\
\bar{N}(r, a) & =\frac{1}{\nu} \int_{0}^{r} \frac{\bar{n}(t, a)-\bar{n}(0, a)}{t} d t+\frac{\bar{n}(0, a)}{\nu} \log r \\
m(r, w) & =\frac{1}{2 \pi \nu} \int_{|\bar{z}|=r} \log ^{+}|w(\tilde{z})| d \theta=\frac{1}{\nu} \sum_{j=1}^{\nu} m\left(r, w_{j}\right)=\frac{1}{\nu} \sum_{j=1}^{\nu} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|w_{j}\left(r e^{i \theta}\right)\right| d \theta,
\end{aligned}
$$
\]

where $S(r, w)$ is called the mean covering number of $|\bar{z}| \leqslant r$ into the w-sphere, and we call $T(r, w)$ the characteristic function of $w(z)$. It is known from [5, pp. 84] that

$$
T(r, w)=m(r, w)+N(r, w)+O(1)
$$

Let $n\left(r, \widetilde{R}_{z}\right)$ be the number of the branch points of \widetilde{R}_{z} in $|\tilde{z}|<r$, counted with the order of the branch point. Set

$$
N\left(r, \widetilde{R}_{z}\right)=\frac{1}{\nu} \int_{0}^{r} \frac{n\left(t, \widetilde{R}_{z}\right)-n\left(0, \widetilde{R}_{z}\right)}{t} d t+\frac{n\left(0, \widetilde{R}_{z}\right)}{\nu} \log r
$$

From [5], we know that

$$
\begin{equation*}
N\left(r, \widetilde{R}_{z}\right) \leqslant 2(\nu-1) T(r, w)+O(1) \tag{2}
\end{equation*}
$$

Next, we define the angle region in the z-plane,

$$
\begin{aligned}
& \Delta\left(\theta_{0}, \delta\right)=\left\{z| | \arg z-\theta_{0} \mid<\delta, 0 \leqslant \theta_{0}<2 \pi, 0<\delta<\frac{\pi}{2}\right\} \\
& \bar{\Delta}\left(\theta_{0}, \delta\right)=\left\{z| | \arg z-\theta_{0} \mid \leqslant \delta\right\}
\end{aligned}
$$

$\tilde{\triangle}\left(\theta_{0}, \delta\right)$ and $\tilde{\bar{\Delta}}\left(\theta_{0}, \delta\right)$ denote the regions where \widetilde{R}_{z} lies over $\Delta\left(\theta_{0}, \delta\right)$ and $\bar{\Delta}\left(\theta_{0}, \delta\right)$, respectively. Let $n\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)$ be the number of a-points of $w(z)$ in $\{|\bar{z}|<r\} \cap \widetilde{\Delta}\left(\theta_{0}, \delta\right)$, counted according to their multiplicities, and $\bar{n}^{r)}\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)$ be the number of distinct a-points of $w(z)$ with multiplicity $\leqslant l$ in $\{|\bar{z}|<r\} \cap \widetilde{\Delta}\left(\theta_{0}, \delta\right)$. Then $\bar{n}\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)$ denotes the number of distinct a-points of $w(z)$ in $\{|\bar{z}|<r\} \cap \tilde{\Delta}\left(\theta_{0}, \delta\right)$, ignoring multiplicity. In addition, $n\left(r, \Delta\left(\theta_{0}, \delta\right), \widetilde{R}_{z}\right)$ denotes the number of the branch points in
$\{|\bar{z}|<r\} \cap \tilde{\Delta}\left(\theta_{0}, \delta\right)$, counted with the order of branch. Just like the above, we define $N\left(r, \Delta\left(\theta_{0}, \delta\right), a\right), \bar{N}^{h)}\left(r, \Delta\left(\theta_{0}, \delta\right), a\right), \bar{N}\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)$ and $N\left(r, \Delta\left(\theta_{0}, \delta\right), \widetilde{R}_{z}\right)$, respectively.

Definition 1: Let $w(z)$ be a ν-valued algebroid function defined by (1). The radial $\arg z=\theta_{0}$ is called a T direction of $w(z)$, if for arbitrary $\delta>0(0<\delta<\pi / 2)$, in the angle region $\Delta\left(\theta_{0}, \delta\right)$, given any $a \in \bar{C}$, we have

$$
\limsup _{r \rightarrow \infty} \frac{N\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)}{T(r, w)}>0
$$

possibly with the exception of at most 2ν values of a.
Definition 2: Let $w(z)$ be a ν-valued algebroid function defined by (1), and $l(>2 \nu)$ be a positive integer. For arbitrary $\delta>0(0<\delta<\pi / 2)$, if

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\limsup } \frac{\bar{N}^{l}\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)}{T(r, w)}>0 \tag{3}
\end{equation*}
$$

holds for any $a \in \bar{C}$ except at most 2ν possible exceptions, then the radial $\arg z=\theta_{0}$ is called a T direction dealing with multiple value of $w(z)$.

Remark. From the definitions, it is easy to see that the T direction dealing with multiple value is more precise, and the T direction dealing with multiple values must be a T direction. In addition, if $l=\infty$, (3) implies that

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)}{T(r, w)}>0 .
$$

Theorem 1. Let $w(z)$ be a ν-valued algebroid function defined by (1), satisfying

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{+} T(r, w)}{\log r}=\mu<\infty, \quad \limsup \frac{T(r, w)}{(\log r)^{2}}=\infty
$$

Then $w(z)$ must have at least one T direction dealing with multiple values.

2. Lemmas

In order to prove the theorem, we need the following lemmas.
Lemma 1. ([9]) Let $T(r)$ be a positive and nondecreasing continuous function in $[0, \infty)$, satisfying

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{+} T(r)}{\log r}=\mu<\infty, \quad \underset{r \rightarrow \infty}{\limsup } \frac{T(r)}{(\log r)^{2}}=\infty
$$

Then for any given $h>0$, there must exist sequences $\left\{r_{n}\right\}$ and $\left\{R_{n}\right\}$ satisfying

$$
R_{n}^{1-o(1)} \leqslant r_{n} \leqslant R_{n}(n \rightarrow \infty),
$$

such that

$$
\lim _{n \rightarrow \infty} \frac{T\left(r_{n}\right)}{\left(\log r_{n}\right)^{2}}=\infty, \quad T\left(e^{h} R_{n}\right) \leqslant e^{h \mu} T\left(R_{n}\right)(1+o(1))(n \rightarrow \infty)
$$

Lemma 2. ([2]) Suppose that $w=w(z)(|z| \leqslant R)$ is a ν-valued algebroid function defined by (1), and $a_{1}, a_{2}, \ldots, a_{q}$ are $q(\geqslant 3)$ distinct points in the w-sphere such that the spherical distance of any two points is no small than $\delta \in(0,1 / 2)$. Then for any $r \in(0, R)$, we have

$$
\left(q-2-\frac{2}{l}\right) S(r, w) \leqslant \sum_{j=1}^{q} \vec{n}^{l}\left(R, a_{j}\right)+\frac{l+1}{l} n\left(R, \widetilde{R}_{z}\right)+\frac{C R}{\delta^{10}(R-r)}
$$

where $l \geqslant 3$ is a positive integer and C is a constant.
Lemma 3. Suppose that $w=w(z)(|z| \leqslant R)$ is a ν-valued algebroid function defined by (1) and $l(>2 \nu)$ is a positive integer. Let $0<\delta<\delta_{0}<\pi / 2,0 \leqslant \theta_{0}<2 \pi$; that is, $\bar{\triangle}\left(\theta_{0}, \delta\right) \subset \triangle\left(\theta_{0}, \delta_{0}\right)$. The part of \widetilde{R}_{z} which lies over $\bar{\Delta}\left(\theta_{0}, \delta\right) \cap\{|z| \leqslant r\}$ is denoted by $\tilde{\bar{\Delta}}\left(\theta_{0}, \delta, r\right)$, and

$$
S\left(r, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right)=\frac{1}{\pi} \iint_{\tilde{\bar{\Delta}}\left(\theta_{0}, \delta, r\right)} \frac{\left|w^{\prime}(\tilde{z})\right|^{2}}{\left(1+|w(\widetilde{z})|^{2}\right)^{2}} d \omega
$$

Then for any positive number $\lambda>1$, any positive integer α and any $q(\geqslant 3)$ distinct points $a_{1}, a_{2}, \ldots, a_{q}$ in the w-sphere, we have

$$
\begin{aligned}
&(q-2-\left.\frac{2}{l}\right) S\left(r, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right) \\
& \leqslant 2 \sum_{j=1}^{q} \bar{n}^{l}\left(\lambda^{2 \alpha} r, \Delta\left(\theta_{0}, \delta_{0}\right), a_{j}\right)+\frac{l+1}{l}\left(\frac{1+\alpha}{\alpha}\right) n\left(\lambda^{2 \alpha} r, \Delta\left(\theta_{0}, \delta_{0}\right), \widetilde{R}_{z}\right) \\
&+\left(q-2-\frac{2}{l}\right) S\left(\lambda^{\alpha}, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right)+\frac{2 A}{(1-\kappa) \log \lambda} \log ^{+} r,
\end{aligned}
$$

where A is a constant depending only on $a_{i}(i=1,2, \ldots, q)$ and $\kappa(0<\kappa<1)$ is a constant depending only on $\delta, \delta_{0}, \lambda$ and α.

Proof: Set $r_{\mu}=\lambda^{\alpha \mu}, r_{\mu, k}=\lambda^{\alpha \mu+k}(\mu=0,1,2, \ldots, 0 \leqslant k \leqslant \alpha-1)$, where $r_{\mu, 0}$ $=r_{\mu}, r_{\mu, \alpha}=r_{\mu+1,0}$. Let $\Omega_{\mu, k}=\left\{z\left|r_{\mu, k} \leqslant|z| \leqslant r_{\mu, k+1}\right\} \cap \triangle\left(\theta_{0}, \delta_{0}\right)\right.$. For a given positive integer n, we have

$$
\sum_{k=0}^{\alpha-1} \sum_{\mu=0}^{n} \Omega_{\mu, k}=\left\{z\left|1=r_{0} \leqslant|z| \leqslant r_{n+1}\right\} \cap \Delta\left(\theta_{0}, \delta_{0}\right)\right.
$$

for which the component is non-empty. Without loss of generality, we assume that $k=0$ such that

$$
\sum_{\mu=0}^{n} n\left(\Omega_{\mu, 0}, \widetilde{R}_{z}\right) \leqslant \frac{1}{\alpha} n\left(r_{n+1}, \Delta\left(\theta_{0}, \delta_{0}\right), \widetilde{R}_{z}\right)
$$

where $n\left(\Omega_{\mu, 0}, \widetilde{R}_{z}\right)$ denotes the number of branch points in $\widetilde{\Omega}_{\mu, 0}$, counted with the order of the branch point. Let

$$
\begin{aligned}
& \triangle_{\mu}=\left\{z\left|r_{\mu, 0}<|z|<r_{\mu+1,1}\right\} \cap \Delta\left(\theta_{0}, \delta_{0}\right)\right. \\
& \bar{\triangle}_{\mu}=\left\{z\left|\frac{r_{\mu, 0}+r_{\mu, 1}}{2} \leqslant|z| \leqslant \frac{r_{\mu+1,0}+r_{\mu+1,1}}{2}\right\} \cap \bar{\Delta}\left(\theta_{0}, \delta\right)\right.
\end{aligned}
$$

By the Riemann Mapping Theorem, there exists an univalent function $f(z)$ mapping Δ_{μ} onto the unit disk $|\zeta|<1$. At the same time, the point

$$
z=\left(\left(r_{\mu, 0}+r_{\mu, 1}+r_{\mu+1}, 0+r_{\mu+1,1}\right) / 4\right) e^{i \theta_{0}}
$$

can be mapped to $\zeta=0$, and $\bar{\triangle}_{\mu}$ can be mapped into $|\zeta| \leqslant \kappa$, where $\kappa(0<\kappa<1)$ is a constant depending only on δ, δ_{0} and λ^{α}, independent of ν. Then from the fact that

$$
S\left(\bar{\triangle}_{\mu}, w\right)=\frac{1}{\pi} \iint_{{\widetilde{\Delta_{\mu}}}} \frac{\left|w^{\prime}(\tilde{z})\right|^{2}}{\left(1+|w(\tilde{z})|^{2}\right)^{2}} d \omega
$$

is a conformal invariant and Lemma 2, we deduce that

$$
\begin{aligned}
\left(q-2-\frac{2}{l}\right) S\left(\bar{\triangle}_{\mu}, w\right) & \leqslant\left(q-2-\frac{2}{l}\right) S\left(\kappa, w\left(f^{-1}\right)\right) \\
& \leqslant \sum_{j=1}^{q} \bar{n}^{l}\left(|\zeta| \leqslant 1, a_{j}\right)+\frac{l+1}{l} n\left(|\zeta| \leqslant 1, \widetilde{R}_{z}\right)+\frac{A}{1-\kappa} \\
& =\sum_{j=1}^{q} \bar{n}^{l}\left(\triangle_{\mu}, a_{j}\right)+\frac{l+1}{l} n\left(\triangle_{\mu}, \widetilde{R}_{z}\right)+\frac{A}{1-\kappa} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left(q-2-\frac{2}{l}\right) \sum_{\mu=1}^{n-1} S\left(\bar{\triangle}_{\mu}, w\right) \leqslant \sum_{j=1}^{q} \sum_{\mu=1}^{n-1} \bar{n}^{l}\left(\triangle_{\mu}, a_{j}\right)+\frac{l+1}{l} \sum_{\mu=1}^{n-1} n\left(\triangle_{\mu}, \widetilde{R}_{z}\right)+\frac{n A}{1-\kappa} . \tag{4}
\end{equation*}
$$

In addition, it is easy to see that

$$
\begin{equation*}
\sum_{\mu=1}^{n-1} S\left(\bar{\triangle}_{\mu}, w\right) \geqslant S\left(r_{n}, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right)-S\left(r_{1}, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right) \tag{5}
\end{equation*}
$$

Since $\left\{\triangle_{\mu}\right\}_{\mu=0}^{n}$ overlays $\left\{\Omega_{\mu, 0}\right\}_{\mu=0}^{n}$ twice at most, we have

$$
\begin{align*}
& \left.\sum_{\mu=1}^{n-1} \bar{n}^{l}\right)\left(\Delta_{\mu}, a_{j}\right) \leqslant 2 \bar{n}^{l}\left(r_{n+1}, \Delta\left(\theta_{0}, \delta_{0}\right), a_{j}\right) \tag{6}\\
& \sum_{\mu=1}^{n-1} n\left(\Delta_{\mu}, \widetilde{R_{z}}\right) \leqslant\left(1+\frac{1}{\alpha}\right) n\left(r_{n+1}, \Delta\left(\theta_{0}, \delta_{0}\right), \widetilde{R_{z}}\right) \tag{7}
\end{align*}
$$

where $n\left(\triangle_{\mu}, \widetilde{R}_{z}\right)$ denotes the number of branch points in $\widetilde{\triangle}_{\mu}$, counted with the order of the branch point. And it follows $n=\left(\log r_{n}\right) /(\alpha \log \lambda)$ from $r_{n}=\lambda^{\alpha n}$. Then by (4)-(7), we obtain

$$
\begin{align*}
& \left(q-2-\frac{2}{l}\right) S\left(r_{n}, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right) \tag{8}\\
& \leqslant 2 \sum_{j=1}^{q} \bar{n}^{l}\left(r_{n+1}, \Delta\left(\theta_{0}, \delta_{0}\right), a_{j}\right)+\frac{l+1}{l}\left(1+\frac{1}{\alpha}\right) n\left(r_{n+1}, \Delta\left(\theta_{0}, \delta_{0}\right), \widetilde{R_{z}}\right) \\
& \\
& \quad+\left(q-2-\frac{2}{l}\right) S\left(r_{1}, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right)+\frac{A}{\alpha(1-\kappa) \log \lambda} \log ^{+} r_{n}
\end{align*}
$$

If $r \geqslant r_{1}=\lambda^{\alpha}$, there must exist a $n>1$ such that $r_{n-1} \leqslant r<r_{n}$. Thus we have $r_{n+1}=\lambda^{2 \alpha} r_{n-1} \leqslant \lambda^{2 \alpha} r$ and $r_{n} \leqslant \lambda^{\alpha} r \leqslant r^{2}$. Then (8) becomes

$$
\begin{aligned}
&(q-2-\left.\frac{2}{l}\right) S\left(r, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right) \\
& \leqslant 2 \sum_{j=1}^{q} \bar{n}^{l}\left(\lambda^{2 \alpha} r, \Delta\left(\theta_{0}, \delta_{0}\right), a_{j}\right)+\frac{l+1}{l}\left(\frac{1+\alpha}{\alpha}\right) n\left(\lambda^{2 \alpha} r, \Delta\left(\theta_{0}, \delta_{0}\right), \widetilde{R}_{z}\right) \\
&+\left(q-2-\frac{2}{l}\right) S\left(\lambda^{\alpha}, \bar{\Delta}\left(\theta_{0}, \delta\right), w\right)+\frac{2 A}{(1-\kappa) \log \lambda} \log ^{+} r
\end{aligned}
$$

If $r<r_{1}$, the above inequality is obviously true. The Lemma is complete.
LEMMA 4. Suppose that $w=w(z)(|z| \leqslant R)$, defined by (1), is a ν-valued algebroid function with finite lower order μ, and satisfies

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\limsup } \frac{T(r, w)}{(\log r)^{2}}=\infty \tag{9}
\end{equation*}
$$

Let $l(>2 \nu), m(>1)$ be both positive integers, and

$$
\eta_{0}=0, \eta_{1}=\frac{2 \pi}{m}, \ldots, \eta_{m-1}=(m-1) \frac{2 \pi}{m}, \eta_{m}=0
$$

Then there must exist a $\Delta\left(\eta_{i},(2 \pi) / m\right)$ in $\left\{\Delta\left(\eta_{i},(2 \pi / m)\right)\right\}_{i=0}^{m-1}$ such that

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}^{n}\left(r, \Delta\left(\eta_{i},(2 \pi / m)\right), a\right)}{T(r, w)}>0
$$

holds for any $a \in \bar{C}$ except at most 2ν possible exceptions.
Proof: Suppose that the conclusion is false. Then for any $\Delta\left(\eta_{i},(2 \pi / m)\right)(0 \leqslant i$ $\leqslant m-1)$, there exists $q=2 \nu+1$ exceptional values $\left\{a_{i}^{j}\right\}(j=1, \ldots, 2 \nu+1)$ such that

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}^{l)}\left(r, \Delta\left(\eta_{i},(2 \pi / m)\right), a_{i}^{j}\right)}{T(r, w)}=0
$$

Thus there exists R_{0}, when $r>R_{0}$,

$$
\begin{equation*}
\bar{N}^{b}\left(r, \Delta\left(\eta_{i}, \frac{2 \pi}{m}\right), a_{i}^{j}\right)=o(T(r, w)) \tag{10}
\end{equation*}
$$

holds for i, j uniformly.
Let α is any positive integer. Put $\eta_{i, k}=(2 \pi i / m)+(2 \pi k) /(\alpha m)(0 \leqslant k \leqslant \alpha-1)$. Given any constant $\lambda(>1)$ and $r>R_{0}$, let $\Delta_{i, k}=\left\{z| | z \mid<\lambda^{2 \alpha} r, \eta_{i, k} \leqslant \arg z<\eta_{i, k+1}\right\}$. Then

$$
\sum_{k=0}^{\alpha-1} \sum_{i=0}^{m-1} \Delta_{i, k}=\left\{|z|<\lambda^{2 \alpha} r\right\}
$$

for which the component is non-empty. Without loss of generality, we assume that $k=0$ such that

$$
\sum_{i=0}^{m-1} n\left(\triangle_{i, 0}, \widetilde{R}_{z}\right) \leqslant \frac{1}{\alpha} n\left(\lambda^{2 \alpha} r, \widetilde{R}_{z}\right)
$$

Set

$$
\begin{aligned}
& \bar{\triangle}_{i}=\left\{z \mid\left(\eta_{i, 0}+\eta_{i, 1}\right) / 2 \leqslant \arg z \leqslant\left(\eta_{i+1,0}+\eta_{i+1,1}\right) / 2\right\} \\
& \triangle_{i}=\left\{z \mid \eta_{i, 0}<\arg z<\eta_{i+1,1}\right\}
\end{aligned}
$$

Since $\left\{\triangle_{i}\right\}_{i=0}^{m-1}$ overlays $\left\{\triangle_{i, 0}\right\}_{i=0}^{m-1}$ only twice, we have

$$
\begin{equation*}
\sum_{i=0}^{m-1} n\left(\lambda^{2 \alpha} r, \triangle_{i, 0}, \widetilde{R}_{z}\right) \leqslant\left(1+\frac{1}{\alpha}\right) n\left(\lambda^{2 \alpha} r, \widetilde{R}_{z}\right) \tag{11}
\end{equation*}
$$

For $\bar{\triangle}_{i} \subset \triangle_{i}$, applying Lemma 3, we have

$$
\begin{aligned}
\left(q-2-\frac{2}{l}\right) S\left(r, \bar{\triangle}_{i}, w\right) \leqslant 2 \sum_{j=1}^{q} \bar{n}^{l}(& \left(\lambda^{2 \alpha} r, \Delta_{i}, a_{j}\right)+\frac{l+1}{l}\left(\frac{1+\alpha}{\alpha}\right) n\left(\lambda^{2 \alpha} r, \Delta_{i}, \widetilde{R}_{z}\right) \\
& +\left(q-2-\frac{2}{l}\right) S\left(\lambda^{\alpha}, \bar{\Delta}_{i}, w\right)+\frac{2 A_{i}}{(1-\kappa) \log \lambda} \log ^{+} r
\end{aligned}
$$

Adding from $i=0$ to $m-1$, dividing both sides of this inequality by r and then integrating both sides from 0 to r, we obtain the following inequality

$$
\begin{aligned}
\left(q-2-\frac{2}{l}\right) T(r, w) \leqslant 2 \sum_{i=0}^{m-1} \sum_{j=1}^{q} \bar{N}^{l}\left(\lambda^{2 \alpha} r, \Delta_{i}, a_{j}\right) & +\frac{l+1}{l}\left(\frac{1+\alpha}{\alpha}\right)^{2} N\left(\lambda^{2 \alpha} r, \widetilde{R}_{z}\right) \\
& +\left(q-2-\frac{2}{l}\right) T\left(\lambda^{\alpha}, w\right)+O\left[(\log r)^{2}\right]
\end{aligned}
$$

It follows that by (2) and (9)-(11)

$$
\begin{equation*}
\left(q-2-\frac{2}{l}\right) T(r, w) \leqslant 2(\nu-1) \frac{l+1}{l}\left(\frac{1+\alpha}{\alpha}\right)^{2} T\left(\lambda^{2 \alpha} r, w\right)+o(T(r, w)) \tag{12}
\end{equation*}
$$

By Lemma 1 , there exists sequence $\left\{r_{n}\right\}$ and $\left\{R_{n}\right\}$ satisfying $R_{n}^{1-o(1)} \leqslant r_{n} \leqslant R_{n}$ ($n \rightarrow \infty$), such that

$$
\lim _{n \rightarrow \infty} \frac{T\left(r_{n}, w\right)}{\left(\log r_{n}\right)^{2}}=\infty, \quad T\left(\lambda^{2 \alpha} R_{n}, w\right) \leqslant \lambda^{2 \alpha \mu} T\left(R_{n}, w\right)(1+o(1))(n \rightarrow \infty)
$$

Thus we have

$$
\lim _{n \rightarrow \infty} \frac{T\left(R_{n}, w\right)}{\left(\log R_{n}\right)^{2}}=\infty
$$

Replacing r by R_{n} and dividing both side by $T\left(R_{n}, w\right)$ in (12), we obtain

$$
q-2-\frac{2}{l} \leqslant 2(\nu-1) \frac{l+1}{l}\left(\frac{1+\alpha}{\alpha}\right)^{2} \lambda^{2 \alpha \mu}
$$

when $n \rightarrow \infty$. Letting $\lambda \rightarrow 1, \alpha \rightarrow \infty$, respectively, we deduce $l \leqslant 2 v$ from $q=2 \nu+1$. This contradicts $l>2 \nu$.

3. Proof of Theorem 1

By Lemma 4, for any given positive integer m, there exists an angle region

$$
\Delta\left(\theta_{m}, \frac{2 \pi}{m}\right)=\left\{z| | \arg z-\theta_{m} \left\lvert\,<\frac{2 \pi}{m}\right.\right\}
$$

such that

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}^{l}\left(r, \Delta\left(\theta_{m},(2 \pi / m), a\right)\right.}{T(r, w)}>0
$$

holds for any $a \in \bar{C}$ with at most 2ν exceptions.
Let $E=\left\{\theta_{m}=\arg z_{m} \mid 0 \leqslant \theta_{m}<2 \pi, m=1,2, \ldots\right\}$, then there exists at least one accumulation point $\theta_{0}\left(0 \leqslant \theta_{0}<2 \pi\right)$ in E. Without loss generation, we assume $\theta_{m} \rightarrow \theta_{0}(m \rightarrow \infty)$. Then $J: \arg z=\theta_{0}$ is a T direction dealing with multiple value of $w(z)$. Otherwise there exists a $\delta(0<\delta<\pi / 2)$ and $2 \nu+1$ exceptional values $a \in \Delta\left(\theta_{0}, \delta\right)$, such that

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}^{l)}\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)}{T(r, w)}=0
$$

For sufficiently large m, we have $\Delta\left(\theta_{m},(2 \pi / m)\right) \subset \Delta\left(\theta_{0}, \delta\right)$. Then

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}^{l}\left(r, \Delta\left(\theta_{m}, 2 \pi / m\right), a\right)}{T(r, w)}=0
$$

This contradicts the choice of $\left\{\theta_{m}\right\}$. This completes the Theorem.
Remark 1. If $w(z)$ has finite positive order ρ, that is, $\limsup \left(\log ^{+} T(r, w)\right) / \log r$ $=\rho(0<\rho<\infty)$, then its Borel direction of the largest type (see [1]) is also the T direction. Thus there is a sequence filling disks in any T direction (dealing with multiple value)(see [1, 15]).

Remark 2. It remains open, whether the T direction(dealing with multiple value) of $w(z)$ exists, when the lower order of $w(z)$ is infinite; that is,

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{+} T(r, w)}{\log r}=\infty
$$

Remark 3. If $a(z)$ is a function such that $T(r, a)=o(T(r, w))$, is it true that

$$
\limsup _{r \rightarrow \infty} \frac{N\left(r, \Delta\left(\theta_{0}, \delta\right), a\right)}{T(r, w)}>0
$$

with the possible exception of at most 2ν small functions $a(z)$?

References

[1] Z.S. Gao and D.S. Sun, 'On the Borel direction of the largest type of algebroid functions', (in Chinese), Chinese Ann. Math. Ser.A 6 (1997), 701-710.
[2] Z.S. Gao and F.Z. Wang, 'Theorems of the covering surfaces and multiple values of the algebroid functions', (in Chinese), Acta. Math. Sinica. 44 (2001), 805-814.
[3] H. Guo, J.H. Zheng and T. Ng, 'On a new singular direction of meromorphic functions', Bull. Austral. Math. Soc. 69 (2004), 277-287.
[4] W.K. Hayman, Meromorphic functions (Clarendon Press, Oxford, 1964).
[5] Y.Z. He amd X.Z. Xiao, Algebroid functions and ordinary differential equations, (in Chinese) (Science Press, Beijing, 1988).
[6] K. Katajamäki, 'Algebroid solutions of binomial and linear differential equations', Ann. Acad. Sci. Fenn. Ser. A I Math. 90 (1993).
[7] Y.N. Lü, 'On the Julia direction of meromprphic functions and meromorphic algebroid functions', (in Chinese), Acta Math. Sinica 27 (1984), 368-373.
[8] Y.N. Lü and Y.X. Gu, 'On the existence of Borel direction for algebroid function', (in Chinese), Chinese Sci. Bull. 28 (1983), 264-266.
[9] Y.N. Lü and G.H. Zhang, 'On the Nevanlinna direction of meromorphic functions', Sci. China Ser. A. 3 (1983), 215-224.
[10] H.L. Selberg, 'Über eine Eigenschaft der logarithmischen Ableitung einer meromorphen oder algebroiden Funktion endlicher Ordnung', Avh. Norske Vid. Akad. Oslo I 14 (1929).
[11] H.L. Selberg, 'Über die Wertverteilung der algebroiden funktionen', Math. Z. 31 (1930), 709-728.
[12] E. Ullrich, 'Über den Einfluss der Verzweigtheit einer albebroide auf ihre Wertverteilung', J. Reine Angew. Math. 167 (1931), 198-220.
[13] G. Valiron, 'Sur les fonctions algébroïdes méromorphes du second degré', C. R. Acad. Sci. Paris. 189 (1929), 623-625.
[14] G. Valiron, 'Sur les directions de Borel des fonctions algébrodes méromorphes d'ordre infini', C. R. Acad. Sci. Paris 206 (1938), 735-737.
[15] Z.X. Xuan and Z.S. Gao, 'The Borel direction of the largest type of algebroid functions dealing with multiple values', Kodai Math. J. 30 (2007), 97-110.
[16] J.H. Zheng, 'On transcendental meromorphic functions with radially distributed values', Sci. China Ser. A. 47 (2004), 401-416.

LMIB \& Department of Mathematics	Department of Mathematics
Beihang University	Beihang University
Beijing, 100083	Beijing, 100083
People's Republic of China	People's Republic of China
e-mail: wsmin@ss.buaa.edu.cn	e-mail: zshgao@buaa.edu.cn

[^0]: Received 21st November, 2006
 The project is supported by National Basic Research Program of China(973 Program, Grant No. 2005CB321902).

