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Abstract

Additive manufacturing (AM) has transformed job shop production and catalysed the growth of
Makerspaces, FabLabs, Hackspaces, and Repair Cafés. AM has enabled the handling and
manufacturing of a wide variety of components, and its accessibility has enabled more individ-
uals to make. While smaller than their production-scale counterparts, the objectives of minim-
izing technician overhead, capital expenditure, and job response time remain the same. The
typical First-Come First-Serve (FCFS) operating model, while functional, is not necessarily the
most efficient andmakes responding to a-typical or urgent demand profiles difficult. This article
reports a study that investigated how AM machines configured with Minimally Intelligent
agents can support production in these environments. An agent-based model that simulated
5, 10, 15, and 20 AMmachines operating a 9 am�5 pm pattern and experiencing a diverse non-
repeating demand profile was developed. Machines were configured withminimal intelligence –
FCFS, First-Response First-Serve (FRFS), Longest Print Time (LPT), Shortest Print Time (SPT),
and Random Selection logics – that governed the selection of jobs from the job pool. A full
factorial simulation totaling 15,629 configurations was run until convergence to a ranked list of
production performance – min Job Time-in-System. Performance changed as much as 200%.
Performant configurations featured a variety of logics, while the least performant were domin-
ated by FCFS and LPT. All FCFS (a proxy for today’s operations) was one of the least performant
configurations. The results provide an optimal set of logics and performance bands that can be
used to justify capital expenditure and AM operations in Makerspaces.

Introduction

Affordable, capable, and flexible desktopmaterial extrusion (MEX) and vat photopolymerization
additive manufacturing (AM) technologies have transformed workshops and job-shops, enab-
ling them to rapidly respond to a diverse range of jobs. Workshops in an education setting
provide students with practical learning of manufacturing processes and prototype components,
and the ability to create products for their projects. Workshops in industry provide essential
services to prototype and test designs.

AM has also been a catalyst and, in some cases, revived the cottage industry with the
introduction of Makerspaces, FabLabs, Hackspaces, Re-Makerspaces, and Repair Cafés across
society (Scalfani and Sahib, 2013; Pryor, 2014; Nagle, 2021) (Fig. 1). Estimates suggest that there
are over 6,000 “Makerspaces” across the globe (NESTA, 2015; Anon, 2023a, 2023b). These
businesses provide societal value through the following:

• Education – by teaching society the art of “making”;
• Sustainability and the Circular Economy – by supporting the production of spare parts and

remanufacturing to maintain goods’ active use; and,
• Innovation – by supporting start-ups and entrepreneurs in creating products for society’s

consumption.

The reasons for AM’s proliferation and success in these environments include the democra-
tization of the manufacturing process through a fully digitized Design & Manufacture (D&M)
pipeline; the ability to support awide variety of designs andmaterial combinations; and the ability
to be deployed in a wide variety of environments and locations (Ford and Despeisse, 2016; Smith
and Mortati, 2017; Rautray and Eisenbart, 2021). Their small footprint and capital investment
have also enabled these environments to deploy multiple machines, providing them with a step-
change in production capacity.

It is therefore common for Makerspace environments to feature multiple AM machines that
need to be supported by the respective technical teams. The technical teams require deep-domain
skills to maintain and operate the machines as well as a wealth of knowledge on the design of
components that can be manufactured using the machines (Annear et al., 2023). While smaller
than their production-scale counterparts, the objectives of
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• minimizing technician overhead in managing job workflows so
technicians can spend more time deploying and sharing their
skills and knowledge;

• minimizing capital expenditure by achieving more with the
manufacturing capability; and,

• minimizing job response time to satisfy the clients of the service
remain the same.

Job management has typically followed First-Come First-Serve
(FCFS) principles (Gopsill and Hicks, 2018). Jobs are either queued
up based on submission or individuals coming into the space to
identify and check the availability of the machine(s) they wish to
use. The methods are easy to implement and reliable.

However, FCFS has also proven problematic with the increasing
variety and volume of jobs being received. This has resulted in low
user satisfaction and productivity, extended development lead
times, and difficulty in managing a-typical demand profiles or
demand spikes.

A concept that fits the job management requirements of Maker-
spaces is agent-based manufacturing and, in particular, Minimally
Intelligent agents (Gopsill et al., 2022). As the name suggests,
Minimally Intelligent agents feature the minimal intelligence
required to assess their own parameters, negotiate with other
agents, and make decisions to satisfy their goals (Cliff, 1997; Lomas
and Cliff, 2020). In the case of manufacturing, jobs and machines
are represented by agents. A Job agent’s goal is to have its
component(s) manufactured and a machine agent’s goal is to have
its machines manufacturing. Agents enter networks where they can
negotiate to resolve their goals.

Minimally intelligent agents require little configuration and
maintenance, making them ideally suited to Makerspaces (Giunta
et al., 2022, 2023). Their computational requirements are also
minimal, enabling them to be placed on computationally con-
strained resources, such as the spare computational resource avail-
able on AMmachine microcontrollers (Chung and Cheol-HeeYoo,
2013; Purusothaman et al., 2013; Pantoja et al., 2018). An
unanswered research question lies in understanding how the con-
figuration of agents across a set of AM machines experiencing an

a-typicalMakerspace demand profile affects the performance of the
Makerspace to deliver components to its customers.

This article answers this question by modeling the responsive-
ness of Minimally Intelligent agents experiencing a diverse Maker-
space demand profile. The configurations were ranked according to
the sum Job Time-in-Pool (TiP) scores. Correlations between
number of messages and rejections, machine utilization, job char-
acteristics, and system response were also examined.

The article continues with a related work section that reviews
Makerspace and Makerspace-like environment practices (herein,
referred to as Makerspace environments), the demand profiles they
experience, and research into Minimally Intelligent agent manu-
facturing systems (section “Related work”). The article then
describes the model used to investigate the responsiveness of alter-
nateMinimally Intelligent agent configurations for diverse demand
(section “Numerically modeling a Minimally Intelligent Agent-
Based Makerspace”). The details of the full factorial study are then
reported where the model was used to simulate Makerspace envir-
onments featuring 5, 10, 15, and 20 machines, operating 9 am–

5 pm, and configured with one of five logics (section “Examining
Minimally Intelligent Makerspace manufacturing performance”).
The data was used to rank theMinimally Intelligent configurations,
analyze the nature of the ranking, and assess responsiveness from a
system, machine, and job perspective (section “Results”). This is
followed by a discussion of the significance of the findings and how
they can be used to support Makerspace environment setup, con-
figuration, and operation (section “Discussion”). The article then
concludes with a summary of the scientific contributions
(section “Conclusion”).

Related work

To situate thework, this section provides a summary ofMakerspace
environment operations, including the scheduling methods
deployed and the increased application of AM. The section then
summarizes research into Minimally Intelligent agent manufactur-
ing systems.

Figure 1. Examples of Makerspace environments.
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Makerspace environments

Makerspace environments are used for a wide variety of making
applications, ranging from Student Projects and Hackathons to
manufacturing Personal Protection Equipment during the corona-
virus pandemic (Daoulas et al., 2021; Longhitano et al., 2021;
Goudswaard et al., 2022). The diverse use cases naturally manifest
diverse demand profiles that exhibit a large variance in the type,
quantity, and arrival time of jobs that need making. This is corrob-
orated by Wilczynski’s (2015) review of Makerspaces in Engineer-
ing Design that highlighted the diverse composition of
manufacturing capability, job requirements, and submission pro-
files environments. Wilczynski (2015) also highlighted there is
rarely any consistency or repeatability in the submission profiles.
This makes effective management of job flows a challenge and
requires a Makerspace to be responsive.

Heragu et al. (2002) discussed how existing job-shop scheduling
methodologies that “type” jobs via means of hierarchical structures
can be quickly “undone” by the diversity of jobs submitted to
Makerspaces (Lu et al., 2014). This is because the means of classi-
fying the diverse set of jobs is non-trivial and often shifts the
problem to developing and testing various classifications with
alternate job-shop scheduling methods to find an optimum con-
figuration. There is also nomeans to handle jobs that have “yet to be
observed,” and determine how they should be classified and
whether continuous re-classification is required for a scheduling
method to maintain optimal operation.

Basuki et al. (2020) recognized the often unique composition of
the low technician to machine/manufacturing process ratio across
Makerspaces. They noted that technicians spendmuch of their time
maintaining the capability rather than sharing their knowledge and
manufacturing know-how with users of the service. In addition,
there is little capacity and funds available to maintain and manage
platforms aimed at managing job workflows (Schonwetter and Van
Wiele, 2018; Mersand, 2021).

Job scheduling in Makerspaces has often operated an FCFS
model or a variation of it. The rationale is that it offers an easy-
to-understand interface which increases the likelihood of uptake
and adoption by the community. Simplicity is a further reason why
formalized production-based process workflows have gained little
traction. However, it does prove problematic, with Makerspaces
being unable to cope with the often chaotic and diverse demand.
The result is delay that leaves users frustrated.

Interest in this problem has grown with recent research looking
at optimizations in AM machine–job workflows (Oh et al., 2020).
One of the first challenges in the workflow of jobs through AM

machines was the identification of failed prints in order to eliminate
material waste and lost print time. This has been tackled through a
few different approaches. Computer vision has been used to evalu-
ate layer adhesion can be monitored and identify “spaghetti” 3D
prints (Baumann and Roller, 2016; Paraskevoudis et al., 2020;
Petsiuk and Pearce, 2020). And, filament spool sensors have been
deployed to monitor for jams in filament extrusion (Aidala et al.,
2022).

With the increasing confidence that prints will succeed first-
time, Gopsill and Hicks (2016, and 2018) turned to the develop-
ment of methods to optimize print operations. They started with
the extraction of individual part G-Code from multi-part G-Code
files in a job pool (Fig. 2). The parts were then re-positioned to
optimize the utilization of AM bed space. This minimized change-
over times and technician/user interaction, with the system result-
ing in increased productivity with machines manufacturing for
longer portions of the day.

The industry has also been creating solutions for managed AM,
see for example theUltimaker Digital Factory, that provide facilities
with top-down management for AM machines (Ultimaker, 2023).
However,many interface onlywith a specific set ofmachines, which
leads to challenges when Makerspaces offer capability from mul-
tiple AM suppliers.

In summary, the related work inMakerspaces highlights that the
environments provide a unique job-scheduling problem due to the
diversity in demand and manufacturing capability. The introduc-
tion of AM has provided a means to handle this diversity, although
optimal operation of AM machines in these environments has yet
to be developed and adopted. Table 1 summarizes the features and
the consequence they have on job scheduling that makes the
problem interesting, unique, and non-trivial to solve using existing
adopted methods.

Minimally intelligent agent-based manufacturing systems

Minimally Intelligent Agent-Based Manufacturing Systems intro-
duces the concept of manufacturing machines and jobs that indi-
vidually reason and decide their own strategies for processing work
through the system (Priore et al., 2001, 2014). This is diametrically
opposed to the dominant industry practice of centralized manu-
facturing system control and governance (Eyers, 2018; Chen, 2019).
Further, Minimally Intelligent agents refer to the ability to embed
the capability on machine microcontrollers, which are resource-
constrained and thereby unlikely to be able to deploy large Artificial
Intelligent (AI)models, such as Deep LearningNeural Networks, in

Figure 2. Re-packing parts from multiple G-Code submissions (from: Gopsill and Hicks (2018)).
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the near term. The vision therefore attempts to make the most out
of the compute resource available rather than require additional
resource to operate (e.g., cloud high-performance computing1).

Ma et al.’s (2021) numerical model of a Minimally Intelligent
Agent-Based manufacturing system showed it to be more robust,
resilient, and responsive compared to centralized control. Gouds-
waard et al. (2021) focused on sudden changes in demand behavior
with a numerical model of a Minimally Intelligent Agent-Based
manufacturing system configured to handle a steady-state demand
input that then experienced a step, ramp, or saw-tooth change
(Fig. 3a). The study revealed that different configurations were
required to respond effectively to different changes in demand.

Obi et al. (2022) demonstrated how minimal intelligence logics
that switched job priority based on the composition of the incoming
demand were able to respond to sudden changes in job submissions
(Fig. 3b). Following the demand change, the system would slowly
return to its original state, although some configurations resulted in
moremachines remaining on one type of job even though there was
a steady-state stream of jobs equally distributed across the job types.
The study highlighted that the configuration can affect the behav-
ioral stability of the system and that it may not return to its original
state post a sudden change in demand.

In summary, Minimally Intelligent Agent-Based manufacturing
offers low overhead and extensibility, which are features that could
fulfil the needs of Makerspaces. This was the rationale for consid-
ering them in the study. The studies reported demonstrated that the
emergent behaviors of Minimally Intelligent Agent-Based manu-
facturing systems are not easy to predict and quantify a priori. This
highlights the need for numerical studies that examine their utility
in specific contexts and scenarios. The context and scenario of
interest in this study are Makerspaces experiencing diverse non-
repeating demand profiles.

Numerically modeling a Minimally Intelligent Agent-Based
Makerspace

The numerical model was split into two elements. The first element
represented the environments as a Minimally Intelligent manufac-
turing system. The second element formed the diverse non-

repeating demand profile. Each element is now described starting
with the theory followed by the implementation.

A Minimally Intelligent Makerspace manufacturing system

The agent-based model featured two agent populations –Machine
and Job – and a single Broker agent (Fig. 4). The Machine agents
represented the AM machines and featured necessary information
to represent the manufacturing capability. It was assumed that the
machines could manufacture all of the jobs entering the system
(i.e., Boolean checks would have been performed prior to the job
entering the network, such as volume and material selection), any
change-over time was constant, and the machines printed right
first-time. No additional maintenance or checks were considered in
the model. The Job agents represented the jobs that need to be
manufactured and featured a job time that was defined randomly
on creation. The Broker agent represented the network (i.e., cloud
or local server) resources that would be required to maintain and
facilitate communications and brokered connections and commu-
nication between the Machine and Job agent.2 The Broker agent
permitted direct and broadcast communication. Communication
can be configured between Machine–Machine, Job–Job, Machine–
Job, and Job–Machine.

No precedence exists between Machine and Job agents, making
the system “queueless” with jobs representing a pool of work
(Gopsill et al., 2022). The determination of which job will be
manufactured by which machine is based on the minimal intelli-
gences and communication strategy employed. The combination of
machines,m, and Minimally Intelligent logics, n, affords consider-
able system configurability – m×n. And it is the optimal configur-
ation of the system for diverse demand that the study aimed to
solve.

The model was implemented in Anylogic, which enabled a user
to define the working pattern of the system (e.g., 9 am–5 pm) and
the number of machines and logics, respectively. Five minimal
intelligence logics were selected from existing job-scheduling
research, and all could operate using only print time as the decision
variable (Goudswaard et al., 2021). The logics were as follows:

• First-Response First-Serve (FRFS): Selects the first job that
replies to its request;

• First-Come First-Serve (FCFS): Selects the job that was submit-
ted earliest;

• Longest Print Time (LPT): Selects the job with the longest print
time;

• Shortest Print Time (SPT): Selects the job with the shortest print
time; and,

• Random: Randomly selects a job using a uniform distribution.

Figure 5a shows the main model view, which contains the
parameters, agent populations, and metrics that were captured
during the simulation.

Figure 5b shows the Job agent’s logic flow. Job agents were
created based on a pre-defined demand profile that was read in
from a plain-text text file. On creation, Job agents enter the
AVAILABLE state where they listen and respond to requests from
Machine agents asking whether they are available. The agents also
listen for messages from Machine agents to say whether they have
selected the job, and if received, the Job agent moves to the
SELECTED state. The Job agent will remain in this state until it

Table 1. Features that make Makerspaces a unique and challenging job-
scheduling problem

# Feature Consequence on scheduling

1
2

Diverse demand profiles
Non-repeating demand

profiles

Difficult to impossible to forecast and
plan schedules of work ahead of
time. A scheduling method would
have to react in real-time

3 Low technician support to
manufacturing
capability ratio

Scheduling methods should be
automated and require as little
human intervention as possible

4 Minimal spare resource to
support production-
oriented scheduling
tools

Scheduling algorithms need to be
lightweight and be able to process
on the existing available resource

5 AM machines supplied
from multiple suppliers

Scheduling methods need to be made
open and be able to interface with
all manner of AM machine

1Please see Hui et al. (2021) for an example application exploiting cloud
compute for smart scheduling.

2Please see Giunta et al. (2023) for more information on a real-world
implementation.
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receives a “complete”message from the Machine agent. On receiv-
ing the message, the Job agent moves to the COMPLETE state,
which renders it inert for the rest of the simulation.

Figure 5c shows the Machine agent’s logic flow. The agent starts
as AVAILABLE before proceeding to check whether the time is
currently within a working day. If it is in the working day, the
Machine agent broadcasts amessage through the Broker agent to all
Job agents asking if they are available. The Machine agent then
waits for a pre-defined time for responses. The Machine agent then
selects a Job agent from the response set based on its minimal
intelligence and sends a “selected”message to the Job agent where it
then waits to receive a confirmation. Confirmation is required for
cases where anotherMachine agent may have selected the Job agent
whilst the Machine agent had been deliberating. If the Job agent
confirms the selection, the Machine agent moves to the manufac-
turing state and returns a “complete”message to the Job agent when
finished. A typical communication pattern between Machines and
Jobs is shown in Figure 6.

The model was validated in a previous study using a Living Lab
empirical experiment that confirmed it approximated real-world
operations (Giunta et al., 2023). With the model formed,
section “Numerically modeling a Minimally Intelligent Agent-

Based Makerspace” continues to describe how a demand profile
for diverse demand was created.

Modeling demand

As mentioned in the introduction and related work, the demand
profile received byMakerspaces varied, was inconsistent, and rarely
repeated themselves. To model this, the study exploited the unique
characteristics of irrational numbers to seed the volume and inter-
arrival time profiles of jobs entering the system.

Irrational numbers provide an infinite non-repeating pattern of
numerical values. Examples include π, ε, the golden ratio, and the
square root of primes. Further, it is deterministic, which affords
repeatability. Non-repeating patterns could also be achieved
through pseudo-random values taken from a uniform distribution,
but assurances must be made to use the same seed and implemen-
tation of the pseudo-random algorithm to achieve repeatability.
Irrational numbers remove this dependency.

Themethod takes an irrational number and iterates through the
sequence of values. The value is multiplied by a coefficient α1,
resulting in a non-repeating inter-arrival time. A further irrational
number (or another point in an irrational numbers’ sequence) is
taken and iterated through to determine the volume of jobs. A
coefficient α2 is applied to scale the volume of jobs. Diversity in Job
Time was modeled through a seeded probability distribution of
manufacturing times fromproduct history. The demand profile can
then be tuned through α1 and α2 to provide the desired “loading”
on a system.

Figure 7 provides an example demand profile generated using π
as the seed with index of 0 and 1,000 for the starting points for the
inter-arrival time and volume; α1 and α2 were set to 1 and
20, respectively. The demand profile was generated using a Python
script that outputted a pre-defined list of job submissions. This was
then used in the agent-based simulation.

Examining Minimally Intelligent Makerspace manufacturing
performance

The study ranked the responsiveness of a Makerspace with 5, 10,
15, and 20 AMmachines operating 9 am–5 pm. Themachines were

Figure 3. Studies into Minimally Intelligent Manufacturing Systems.

Figure 4. Agent-based model of a Minimally Intelligent Agent-Based manufacturing
system.
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configured with one of five logics – FRFS, FCFS, LPT, SPT, and
Random selection – resulting in a full factorial study of 15,629
configurations. It was assumed all brokered jobs were printed
successfully at their first attempt.

The demand profile was generated as a f πð Þ for both the inter-
arrival time and the volume of jobs, with α1 and α2 set to values
detailed in Table 2 for each scale, respectively. Job manufacturing
times were randomly selected from a triangular distribution whose
lower, upper, and middle bounds were set to 48, 600, and

240 minutes, and represented typical print times for objects being
submitted to a Makerspace and included the change-over/re-
configuration time, which was considered constant for all jobs
(Novak and Loy, 2020). The combined α1 and α2 values and job
manufacturing time gave an approximate sum job print time in the
pool of 94,000 min/machine across all scales.

The random selection from the triangular distribution used
a fixed seed, enabling the profile to be re-created for future
experiments. A copy of the demand profile can be found in

Figure 5. Images of the AnyLogic model used in the study.
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https://github.com/jamesgopsill/mi_aiedam_model and is visual-
ized in full in Figure 8.

The primary criterion used to assess responsiveness was Job
Time-in-Pool (TiP). Time-in-Pool is the time a job spends in the
pool “waiting” to be manufactured and is the difference between
time in ( ti) and time out ( to) minus the manufacturing time ( tm).

TiP¼ to� tm� ti: (1)

Manufacturing time is subtracted as the system has no control
over the feature. The minimum, median, mean, standard deviation,
and maximum TiP values give an insight into how the system is
responding to the demand. A high-performing system should
minimize TiP such that jobs are shipping to the customers as
quickly as possible.

To determine whether configurations consistently outper-
formed one another, a rank order according to ΣTiP of jobs that
had been completed or were still in the pool was calculated after
each simulated day. It can be considered equivalent to a football
league table with the score being the ΣTiP. The edit distance (Deibel
et al., 2005) – the number ofmoves and their distances up and down
the ranking required to transform one ranking to another –

between adjacent daily rankings was performed. This provided a

Figure 7. Modeling workshop demand.

Figure 6. An example of the typical communication pattern between the Machine and Job agents.

Table 2. α settings to achieve the desired loading on the Makerspace

Scale

5 10 15 20

α1 20 20 20 20

α2 0.4 0.7 1 1.3

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7
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global convergence criterion that was normalized against the largest
change in the league table (i.e., the change between day 0 and day
1 where day 0 featured the configurations in a randomly generated
order). Normalizing the edit distance produced a ratio that !
0 when no change in the ranking occurs.

The global convergence was further supported by a local con-
vergence criterion. The local convergence criterion evaluated the
number of configurations entering and exiting the top and bottom
100 of the ranked list. The hypothesis was that performance across
configurations would be normally distributed, and, as a result, the
edit distance would never fully reach 0, with configurations regu-
larly changing places with their neighbors who were close on
performance. Thus, if this top 100 became consistent then one
can confidently claim that the set of top-performing configurations
had been determined.

Having checked for convergence, an analysis of the system,
machine, and job behavior was performed. The system behavior
was examined via the distribution of logics across 5% ranked
percentiles with the hypothesis that some logics may appear more
prominently in the most and the least responsive systems. The
distribution of ΣTiP, messages sent, number of rejections, and
time spent printing across all the system configurations were also
analyzed.

Machine agent behavior was analyzed by taking the most and
least responsive systems and evaluating individual machine utiliza-
tion. The hypothesis was that the distribution of work across the
machines would be different for most and least responsive system
configurations.

Job agent behavior was analyzed through histograms of TiP for
the most and least responsive systems. Job print times and

submission times were then correlated with the TiP as it was
hypothesized that some system configurations would favor par-
ticular jobs over others.

Results

The study was run on a dual 12-core Intel Xeon 256GB RAM
workstation, took 3 hrs to complete, and resulted in a 4GB data
log. Section “Convergence” presents the convergence results across
the systems and sections “System behavior,” “Machine behavior,”
and “Job behavior” present the system behavior from the perspec-
tive of a system, jobs, and machines, respectively.

Convergence

Figure 9a shows the convergence to a ranked list of responsive
configurations for all scales. The edit distance scores fluctuate for
the first few simulated days before dropping suddenly at day 10.
This behavior was consistent across all system sizes.

Beyond day 10, the edit distance remains low, confirming the
ranking has moved to a steady-state condition with configurations
trading places with nearby ranks rather than distant ranks. There
was a rise in the 5-machine league table at day 14 and 18 marks,
suggesting the behavior of the system is more chaotic and easily
perturbed favoring different configurations from day to day. Larger
systems offer more consistency in their behavior from day to day.

Figure 9b shows the local convergence of the top and bottom
100 for the 15 machine set of configurations. The results corrob-
orate the global convergence of the ranked list and shows by day
20 that little to no changes to the top and bottom 100 are made.

Figure 9. Convergence to a ranked list of performant configurations.

Figure 8. Diverse demand profile used in study.
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Therefore we can be confident that we ascertained the most and
least responsive configurations for a set of Minimally Intelligent
machines experiencing diverse demand.

System behavior

Figure 10 shows the responsiveness of the system with respect to
scale based on ΣTiP. Figure 10a shows there is a steady trend of
increasing TiP as the size of the system increases. Figure 10b shows
TiP normalized to themost responsive configuration for each scale.
The normalization reveals that the systems exhibit the same under-
lying behavior and distribution of responsiveness, albeit with an
increasing least-performing configuration tail as size increases.
This suggests a relatively scale-free behavior for Minimally Intelli-
gentManufacturing Systems. The range of responsiveness increases
beyond two- and three-fold for the large systems and demonstrates
that greater gains/losses in responsiveness can be achieved as scale
increases. The median is within 25% of the most responsive con-
figuration and suggests that Makerspaces randomly selecting a
configuration are likely to perform reasonably well.

Figure 11 provides matrix plots of the converged league
tables for each system size. The configurations were grouped by

5 percentile and the ratio of logics presented across the configur-
ations plotted. The larger systems (15 and 20) are more consistent
in terms of system configuration trends, with the most responsive
configurations consisting ofmostly Random logic and a selection of
other logics. The least-performing configurations consisted of no
Random logics and a high number of FCFS logics.

The smaller system sizes (5 and 10) are more chaotic in their
configuration of logics, making it harder to form any general
heuristics. Nonetheless, the most responsive configurations tended
to consist of a breadth of logics, while the worst performing
configurations featured few to no Random selection logics.

Table 3 details the five most and least responsive configurations
for each of the system scales. There is a consistency across the scales
for most responsive configurations to feature a variety of Minimally
Intelligent logics. There is also a trend to increase the number of
Random logics as system scale increases. The least responsive system
commonly feature a single logic which is consistently LPT or FCFS.

Figure 12 plots system behavior in terms of the messages sent,
rejections, and time spent printing. Figure 12a shows that there is a
steady increase in the message count as the configuration moves
down the ranking followed by a sharp increase at the least respon-
sive configurations. This is the same for all cases but less apparent

Figure 11. League tables represented as a matrix and aggregated in 5% percentiles. The colorbar summarizes the number of machines using the logics.

Figure 10. Responsiveness at scale.
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for 5 machines. It was noted that message count power-law scales
with system size (N.b., use of log-scale on the y-axis).

Figure 12b shows a relatively even number of rejections across
the configurations for all system sizes with a slight decline when
reaching the least responsive configurations and then an abrupt
increase for the very least. The variance in rejections also increases
when moving from the most to least responsive configurations.

Figure 12c plots the sum time spent printing across the
machines with the most responsive configurations spending the
most time printing, with a slow decline in time printing before a
sudden drop for the least responsive configurations, although the
log-scale does minimize the impact of the drop. The steady nature
of the time printing shows that all the systems are busy processing
jobs. Therefore, it is the order in which they are processing the jobs
that the configurations have control over and enables the respon-
siveness of the system to be manipulated.

Machine behavior

Figure 13 compares the machine utilization for the most and least
responsive configurations in responding to the diverse demand
profile. The utilization has been normalized against the sum of

the simulated working day hours. Both the most and the least
responsive configurations feature machines that operate beyond
the working day (i.e., machines have managed to select a job to
continue printing into the night). In the least responsive configur-
ations, all machines work beyond the working day, while the most
responsive configurations see the SPT machines working 9 am–

5 pm. This is a logical output as small job times are unlikely to take
the machine late into the evening.

The least responsive machines feature a relatively even loading
across their machines. In comparison, the most responsive config-
urations feature machines that experience much greater utilization
than others. This is correlated with the logic placed on themachine,
with LPT machines working much longer than their SPT and RAN
partners. This is, again, logical as they are likely to select jobs that
can take them long into the night.

Job behavior

Figure 14 shows the job TiP distributions for the most and least
responsive configurations. The least responsive configurations are
penalized heavily by having jobs that stay in the pool for multiple
days. In all cases, there are jobs that are waiting in the system for

Table 3. The most and least responsive configurations across the system scales

Scale (# Machines)

5 10 15 20

# FRFS LPT SPT FCFS RAN FRFS LPT SPT FCFS RAN FRFS LPT SPT FCFS RAN FRFS LPT SPT FCFS RAN

1 2 1 1 1 0 1 3 1 0 5 2 3 6 0 4 0 4 4 0 12

2 0 0 1 1 3 0 3 3 0 4 0 2 3 6 4 0 5 4 1 10

3 0 3 2 0 0 3 5 2 0 0 5 3 5 0 2 0 5 1 2 12

4 2 1 2 0 0 0 2 3 1 4 2 2 4 0 7 1 5 3 0 11

5 3 1 1 0 0 0 3 5 1 1 0 3 5 0 7 1 5 4 2 8

…

�5 1 0 4 0 0 0 0 9 1 0 1 14 0 0 0 2 18 0 0 1

�4 3 0 0 2 0 0 1 8 0 1 0 15 0 0 0 0 19 0 1 0

�3 0 0 4 1 0 0 10 0 0 0 0 0 0 15 0 0 19 0 0 1

�2 0 0 0 5 0 0 0 0 10 0 0 0 0 14 0 1 19 0 0 0

�1 0 0 5 0 0 0 1 9 0 0 0 14 0 1 0 0 20 0 0 0

Figure 12. System behavior through the lens of messages sent, job–machine rejections, and time spent printing.
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Figure 13. The individual machine utilization for themost and least responsive system at the different scales. Themachines have been placed in rank utilization order and the logic
being used by the machine detailed at the top each figure. The top set of logics in each figure refer to the most responsive configuration and the bottom set to the least responsive
configuration.

Figure 14. Job TiP Distribution across the system scales. Notice the steps in the distribution indicating that a day has passedwhere the job has beenwaiting and that the tail extends
across multiple days for the least responsive configurations.
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more than 5 days. The most responsive configurations are able to
complete the majority of jobs within a day of being submitted.

Figure 15 shows the correlation between job print time and TiP
for the most and least responsive configurations. The most respon-
sive configurations show little to no bias towards jobs of particular
durations and are consistent across the scales studied.

In contrast, the least responsive configurations show bias, and
the bias is different across the system scales. Five and 10 machines
scales favor small print time jobs, while 15 and 20 machine jobs
favor longer print time jobs. This is in agreement with the config-
uration of logics as the worst performing configurations for 15 and
20 machines, which feature many LPT logics. The LPT logics focus
on the long print time jobs at the detriment of the shortest
print jobs.

Figure 16 shows the correlation between submission time and
TiP. No correlation was observed across the system scales, suggest-
ing there is no preferential treatment for jobs being submitted at
particular times of the day.

Discussion

The results show that Minimally Intelligent Agent-Based manu-
facturing system configurations converge to a steady-state ranking
and the convergence occurs relatively quickly (approx. 10–20
simulated days). This is interesting as it shows that a Makerspace
experiencing a diverse demand can select a single optimal config-
uration and the system will continue to operate in an optimal
operating window thereafter.

The results have also shown that configuration performance can
vary by up to 200%. If an environment were to randomly select a
configuration then it would likely perform 25–50% from the opti-
mal configuration. The result highlights the benefit of numerical
studies in providing an appropriate list of configurations for

Makerspace operators wishing to take a Minimally Intelligent
Agent-Based manufacturing systems approach.

The results also showed a tendency for TiP to increase with
system size (scale). This is likely due to the increased chance for
machines to bid for the same work, thus resulting in a greater
number of rejections, which adds delay to the system. Normalizing
the result showed that the behavior is scale invariant across the
configurations and suggests that results from small-scale system
studies could inform and support the operation of larger-scale
systems.

The league tables and percentile matrices (Table 3 and Fig. 11)
also confirmed this behavior with the most responsive configur-
ations featuring a variety of logics, with the proportion of Random
logic machines increasing inline with system scale. The reasoning is
that featuring a variety of logics ensures machines are targeting
different areas of the demand profile and, thus, are less likely to
compete with one another. Random logic further reduces the
likelihood of machines targeting the same job during the bidding
process. In comparison, the least responsive configurations feature
predominately single logics, LPT and FCFS in particular, that would
result in machines competing with one another and, thus, slowing
down the response of the system. Therefore, for operators of new
Makerspaces, having machines with a range of logics is a good
starting position and machines that are added over time should
automatically start with Random selection logic.

The observed range in performance (Fig. 10) can be attributed to
the significant penalty placed on a job if it goes beyond multiple
days of not being manufactured. This is a result of the 9 am–5 pm
working pattern and confirmed by the job distributions with the
least responsive configurations having a long-tail of jobs with a 3–
5 day wait.

Further, the FCFS approach commonly employed by Maker-
spaces is analogous to an all FCFS configuration. This configuration
consistently performed poorly and featured at the bottom of the

Figure 15. Print time correlation.
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league tables (Table 3 and Fig. 11). Therefore, many Makerspaces
are currently operating far from their full capacity or maximal
responsiveness. It also highlights that almost any configuration of
Minimally Intelligent agents would offer an improvement over
existing practice.

An interesting feature of the system dynamics is that both the
most and the least responsive configurations feature a high number
of job rejections. This highlights that machines are bidding for the
same work with one machine winning and the others losing out. In
the case of the most responsive configurations, it is likely that the
job pool was near-empty and themachines were scrabbling over the
few remaining jobs. In the case of the least responsive configur-
ations, the machines were likely identifying and bidding for the
same job at the same time, even though there are plenty of other
jobs in the pool.

The machine utilization results (Fig. 13) highlighted a disparity
in utilization across the machines in the most responsive configur-
ations. This would be important to monitor as the machines will
likely degrade differently over time so the operators may likely need
to swap machine logics to balance the loading to extend the oper-
ating life of the system without incurring maintenance. This would
be an interesting extension to this work and might further explore
whether agents could communicate and make decisions by swap-
ping their selection logics to extend system operating life.

The job behavior analysis (section “Job behavior”) revealed that
themost responsive configurations featured no correlation between
job parameters, print time and submission time, and likely time in
the pool. This is beneficial to individuals submitting to the Maker-
spaces as their job will not be unfairly disadvantaged by any of these
characteristics. In contrast, the least responsive configurations
introduced bias, with short print time jobs being disadvantaged
as the machines were focused on delivering the longer print
time jobs.

Limitations of the work are bounded by the scale of system
studied, the data used to evaluate decisions, and the logics con-
sidered. The trend of featuring more Random logics needs to be
verified through simulations of systems containing more machines.
The data used was purely print time, and constraints, such as the
availability of filament, filament types, multi-material printing, and
print volumes, would need to be taken into account inmore complex
Makerspace environments. Themodel also assumed perfect printing
the first time around, which may not always be the case. It would be
interesting to add and vary print success rates to understand the
trade-offs between improving right first-time printing and the opti-
mal configuration of logics of a particular demand profile.

Five logics were evaluated in this study, and there could bemany
others that could feature on these machines that could further
improve the performance of the system; for example, where
machines are aware of the time of day and, as a result, bid for
different types of job, and the ability to batch select and queue up
multiple jobs for the machine the AI agent is representing. Further
trade-offs between optimally operating an existing set of machines
and/or simply purchasing more machines could also be considered
as well as how different job print distributions could affect which
configurations are optimal.

Future work could investigate how a dynamically changing set
ofmachine logics could provide further improve ΣTiP. Future work
could also build on the results, including expanding the analysis to
consider negotiation protocols beyond coordinated manufacturing
where the job has a larger role in the decision-making process. This
may be required in scenarios where users wish to submit to one of
many workshops that are managed by different firms and poten-
tially in competition with one another. Also, while the model was
validated through a Living Lab experiment, more work could be
done to capture and monitor workshop practice to provide empir-
ical datasets to test and validate models against.

Figure 16. Submission time correlation.
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Conclusion

Makerspaces, Hackspaces, FabLabs, and Work/job-shops are essen-
tial services supporting many aspects of Design & Manufacture
(D&M) from education and consumer items through to prototyping
the next innovation and producer of critical components in hard-to-
reach locations and developing countries. In each case, there is a need
tominimize the operational costs andmaximize the capability of the
suite of AMmachines being deployed to improve responsiveness and
throughput of revenue-generating work.

This article has reported a study that has defined a Minimally
Intelligent Agent-Based model for Makerspace environments and
ran a full factorial analysis of 5, 10, 15, and 20Minimally Intelligent
Agent AM machines. Optimally configured set of machines can
achieve a 200% improvement in responsiveness. Also, all FCFS
configurations – a proxy to current practice – consistently feature
in the least responsive configurations. The optimal configurations
for 5, 10, 15, and 20 were reported and can be used by Makerspaces
to significantly improve their performance. Optimal configuration
machine utilization is not evenly distributed across the machines,
resulting in machines possibly degrading at different rates.
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