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FORMULAS FOR BROWN-PETERSON OPERATIONS 

ZAIQING LI 

ABSTRACT. We introduce a new method to calculate compositions of Brown-
Peterson operations. We derive a formula for r" and a formula for commutators. 

1. Introduction. The Quillen theorem [Q] determines the Brown-Peterson algebra 
of operations BP*(BP) as a Hopf algebra over the coefficient ring 7r*(BP). But the 
calculation of the composition of any two specific Brown-Peterson operations and the 
nature of further algebraic structure remains difficult. Few results have been obtained, 
although one has the Zahler method [Z] which still has disadvantages in some aspects. 
For example, it involves recursive steps and calculates only up to a certain filtration 
level. 

In this paper we will describe a new method to calculate the composition of any two 
specific Brown-Peterson operations. A full description of this method is presented in 
§3.2. As will be seen, it is purely combinatorial and easy to implement. Examples are 
given in §4. The theoretical justification of this method is a composition law which is 
stated in §3.1 and proved in §7. Furthermore, we are able to show that the composition of 
basic Brown-Peterson operations is a finite sum over the basic operations. We will also 
introduce a set of rational generators {w/} in §5 to formulate the iterated composition 
r?. In §6, we will introduce a set of rational Brown-Peterson operations {qw} to prove a 
formula which generalizes one by Zahler in [Z]. 
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help over the last few years. Finally, I would also like to thank the referee for his valuable 
encouragement and suggestions, and Professor Denis Sjerve for his careful reading of 
the English in this paper. 

2. Background. We review the Quillen theorem and Zahler method for the Brown-
Peterson algebra. 

2.1. Basic notation. (1). p is assumed to be a fixed prime integer throughout the paper. 
Z is the set of integers, Z(p) is the set of p-adic integers, and Q is the set of rational 
numbers. 
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(2). By an exponential sequence R we mean a sequence of non-negative integers 
R = (n, r2, r3, • • •) such that Y[ / 0 for only a finite number of f s. The length t(K) is the 
largest / such that r, ^ 0. An exponential sequence can be multiplied by a non-negative 
integer and two exponential sequences can be added component-wise. The following 
notation is standard: 

\R\ := Y\ +pY2+p r3 + • • -, 

||/?||:=X;2rIV-l), 

R' :=(r2 , r3 , r4 , . . . ) , 

/? ( / ) :=(0, . . . ,0 , r 1 ? r 2 ? . . . ) , 
/ 

A/ :=(0 , . . . ,0 ,1 ,0 , . . . ) . 

(3). By a sequence of scalar parameters £ we mean a sequence £ = (£i, £2? £3, • • •) 
which is independent of the Brown-Peterson spectrum BP. We write £R for the monomial 

1 ^2 S3 

(4). We will use the notation to denote the coefficient of the monomial B in the 

expansion of the polynomial A in terms of a basis including B. Multinomial coefficients 
are denoted by [k\, hi,..., kn] throughout the paper. For example, 

Oi +x2 + --+xny 
M JC2 . . . Jcn 

k\+k2+---+k„ 

= [£i,/c2, •••,£«]• 

2.2. Quillen theoYem. The Brown-Peterson algebra BP*(BP) is the algebra of coho-
mology operations for the spectrum BP, the localization at/? of the Thorn spectrum MU. 
The coefficient ring 7r*(BP) has no torsion and is embedded in homology: 

7r*(BP) = Z(p)[vi, v2, v3,...] C #*(BP) = Z(p)[mi, m2, m 3 , . . . ] , 

TT*(BP) ® Q = #*(BP) ® Q = Q[vi, v2, v3,.. J = QNi, m2, m 3 , . . . ] , 

where the mk 
[c?pk~ k > 1, are a set of rational generators, and the v; are the 

Hazewinkel generators. Let rao = 1, vo = p. The degrees are deg (v*) = deg(m^) = 2(pk—1 ) 
for k > 0. The following are the Hazewinkel relations [W] : 

k-\ 

vk =pmk - Y, mtifk-h, (k > !)• 
h=\ 

D. Quillen [Q] and J. F. Adams [A] determined the Hopf algebra structure of BP*(BP). 
As an algebra over 7r*(BP), BP*(BP) has generators tt G BP2(/?,_1)(BP), / > 1, such that 

BP*(BP) = 7r#(BP)[r1,r2,r3,.-.]. 
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This also describes the left module structure over 7r*(BP). The coalgebra structure 

^:BP*(BP)—>BP*(BP) 0 BP*(BP) 
7T*(BP) 

is given by the following inductive formulas: 

*o = 1, 
Ei+j=k mMtjf = i:h+i+j=k mhr° ®t° , k > 1. 

BP*(BP) is the dual Hopf algebra of BP*(BP) over 7r*(BP). For each exponential 
sequence R, there is a basic Brown-Peterson operation rR G BP*(BP) dual to the mono­
mial tR. The degree of the operation r# is given by deg(r#) = \\R\\. Any Brown-Peterson 
operation is a sum, having a possibly infinité number of terms, of the form: 

E c*v^ c* e ^*(BP) = BP"*(pt) C BP"*(BP). 
R 

The following theorem determines the composition of any two basic Brown-Peterson 
operations: 

THEOREM 2.1 (QUILLEN). Let £ = (£i, £2,£3, • • •) and 77 = (771,772,773,...) be two 
sequences of scalar parameters (£0 = Vo = 1 )• Define the Quillen polynomials O = 
(Oj, O2, O3,...) inductively by the Quillen relations: 

* o = l , 
Y,i+j=hm&j =T,h+i+j=kmhÇi ïïj ? * > 1. 

Then 

RS T 

2.3. Zahler method. Because the Quillen relations are inductive, the actual expression 
of compositions of Brown-Peterson operations is very difficult to explicitly write down. 
R. Zahle [Z] made a key observation in his calculation of the compositions. The key to 
his method is the following 

LEMMA 2.2 (ZAHLER). 

(0 if\\E\\ > \\F\\; 
rEmF = I 0 if\\E\\ = \\F\\, and E j£ F; 

i l ifE = F. 

The Zahler method to calculate rE • 17? for any two exponential sequences is: 
1. rLrR is a finite linear sum of distinct basic operations: 

rL • rR = E CE*E, cE G TT*(BP). 
E 

where deg(rE) — deg(cE) = deg(rL) + deg(r^). Alternatively, one has ||2s|| > ||L|| + \\R\\ = 
\\L + R\\. The cE are the coefficients to be determined. 
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FsBPn(BP):={YJcErE 

2. Applying Lemma 2.2 to the monomial mF with ||F|| = \\L + R\\, one has 

CF = rL(rRmF) G T^y 

3. By induction, one supposes that all coefficients cE with \\E\\ < \\F\\ are calculated. 
One can then calculate the coefficient cF by applying Lemma 2.2: 

CF = rLrRmF - J2 cE*EmF • 
\\E\\<\\F\\ 

4. The above procedure terminates and one has a complete result for the composition, 
if one finishes the calculation at all levels of the following filtration of the algebra 
BP*(BP): 

cE e TT*(BP), rE G BP*(BP) 
deg(r£) - deg(cE) = n, 
deg(r^) > s, for all E 

REMARK. Zahler used this method in his paper [Z] to produce a composition table 
of Brown-Peterson operations up to filtration 14 for p = 2. One thing which should be 
noted is that he used a different set of integral generators than the set of Hazewinkel 
generators. 

3. Composition law. We state our composition law for Brown-Peterson operations 
and describe our method in calculating the composition of any two specific operations. 
Examples are given in the next section. The proof is deferred to §7 to avoid tedious 
details for the moment. Due to the complex nature of the composition itself, we have to 
use a great deal of notation in order to state our method. 

3.1. Notation and statement. There are two sets of notation used for the composition 
law, both mimicking the Milnor notation in [M] for exponential sequences. We use [, ] 
as a superscript for weighted sums and (, ) for un-weighted sums. 

3.1.1. Reduced cubic exponential matrices. Assume X is a "reduced cubic expo­
nential matrix", that is, a triply-indexed sequence (x^ij)h,ij>o of non-negative integers 
such that: (a.)(reduced): JC 0̂,O = 0, for h > 0; (b.)(exponential): xhjj ^ 0 for only a 
finite number of triples (/z, ij). The length £(X) is then defined to be the maximal integer 
h + i+j such thatx^ij 40. Associated withXare the following: 

• Row or Column Sums: 

h J h J ij 

• Diagonal Sums: 

Multinomial Coefficients: 

T(X)k - ^2 xhjj 
h+i+j=k 

{T(X)k)l 

Yih+i+j=k xhjj • k>\ 
B(X)k = ^ -^ - ? , B(X)=UB(X)k. 
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A reduced cubic exponential matrix X can be represented by a lattice in the first octant 
of h-i-j-spacQ, where the number X^JJ is located at the point (/z, ij): 

1 XhjJ 

h 

Therefore row and column sums correspond to the weighted or unweighted sums of 
numbers on the vertical or horizontal planes; and the diagonal sums and the multinomial 
coefficients are determined by the numbers on the diagonal planes. Given exponential 
sequences L and R we say a reduced cubic exponential matrix X is (L, 7?)-feasible if 
S[VU3\X) = L md S[lU2\X) = R. 

3.1.2. Reduced exponential matrices. Assume y is a "reduced exponential matrix", 
that is, an infinite matrix ( J A ^ A ^ O of non-negative integers, such that: (a.)(reduced): 
y\,o = 0> a nd vo,M = 0 for A, /z > 0. (b.)(exponential): y\^ ^ 0 for only a finite number of 
pairs (A, /z). The length l(Y) is defined to be the maximal integer A + /z such that y\^ ^ 0. 
Associated with Y are the following 

• Weighted Column Sums: 

A 

• Un-Weighted Row Sums: 

• Diagonal Sums: 

• Combinatorial Coefficients: 

A 

S(2)(>0A = I > A , ̂  
V 

T(Y)k = £ yx.» 

B(Y)k = T{Y)hl B(Y) = J ] B(Y)k 
Ll\+H=ky\,n}- k>\ 

B(X, Y)k = B(X)k • [T(X)h T(Y)k] • B(Y)kl [T(X), T(Y)] = I I^PO*, T(Y)k] 
k 

B(X, Y) = B(X) • [T(X), T(Y)] • B(Y). 

For exponential sequences T and W we can represent the pair ( W, Y) by a table of the 
following form: 
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1 wi w 2 W3 • • • 

\y\A y\,2 y\,3 • • • 

\yi,\ };2,2 J2,3 ' • • 

The pair (W, Y) is called T-feasible if T + 7(7) = W + S[1](F); or equivalently, from the 
table, if the weighted column sums of the (W, y)-part, minus the diagonal sums of the 
7-part, are the numbers for the sequence T. 

3.1.3. Theorem. Our main theorem in this paper is the following composition law 
for Brown-Peterson operations. 

THEOREM 3.1. Given exponential sequences L and R, 

rL-rR = E 
XJ 

S^(X)=L 
S[]]-[2](X)=R 

B(X, Y) • m 
5 ( 2 ) . ( 3 ) ( X ) 

i-m) &
2XY) rT(X)+T(Y)-SW(V)' 

The proof of this theorem will be given in §7. It is not readily apparent that the 
summation on the right hand side of the above formula is finite; but we prove this in 
Lemma 7.1. As a corollary we get the following theorem of Kane [K]. 

COROLLARY 3.2 (KANE). Let L, R be exponential sequences. Let R(A), S(A), b(A) and 
T(A) be the Milnor notation in [M]. Then 

rL-rR= X) b(A) ' rnA) modOi, v2, v3 , . . .)• 
S(A)=L 
R(A)=R 

3.2. Our method. The composition law 3.1 is very complicated in its appearance. In 
practice, we adopt the following steps and use the rational operations q^ in §7 as a bridge 
in our calculation to work out a complete result. 

Suppose we are given exponential sequences L and R and we want to calculate the 
composition r^ • r# in terms of the basic operations iv . 

STEP 1. Calculate rL • rR in terms of the rational operations q^. By Theorem 7.2, 

(L,/?)-feasableX 
B ( X ) - / M f f l q w ) . 

An obvious (L, 7?)-feasible reduced cubic exponential matrix is 

n + 
• • • ? • ( ) 

- • — 1 

where L is on the /-axis, 
R is on they-axis, and 
0 is elsewhere. 
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To find all (L, 7?)-feasible X, we start with this reduced cubic exponential matrix, and 
perform the following algorithm: 

• (Phase I): Suppose X - (xhJj) is (L, 7?)-feasible and xhJj = 0 for all h ^ 0. Select 
OWo),7o ¥ 0, such that*o,lWo > p. If *O./0+KO > 1, then define X' = (x'hiJ) by: 

KhJJ 

XhjJ-P 

XhJJ+P 

< xhJJ + 1 
Xh.iJ - ! 

I Xh.ij 

if (h, 1,7) = (0, i'o,7o), 
if(A,/,7) = (0,/o,0),and/0^0, 
if(/i,/,7) = (0,/o+l,7o), 
if(/i,/,7) = (0,/0 + l,0), 
otherwise. 

Then X' is (L, /?)-feasible. 
• (Phase II): Suppose X = (xhJj) is (L, /?)-feasible. Select a triple (/z0, *WoX 'o+/o 7̂  0> 

such that xhojoJo > p. Define X' = (x^v) by: 

r *A,lV - /? if (A, /,7) = (ho, kjo), 
x'hjj = \ xh.i.j + ! i f ( ^ U ) = (Ao + 1, *o,7o), 

I *hjj otherwise. 

Then X' is (L, fl)-feasible. 

7o ..*?. 

- # * -
*o «o+l 

/zo+1 
Phase I Phase II 

Now for each (L, /?)-feasible X, read off T(X) and Z?(X) from the diagonal planes, and 
£(2),(3)pQ ^ r o m the planes perpendicular to the /z-axis. Calculate Z?(X) • ral S{2U3)(X) 

- qrw. 

STEP 2. Calculate q^ in terms of the basic operations r^ for each T = T(X) obtained 
in Step 1. By Theorem 7.3, 

qT= £ [7\ T(Y)] • B(Y) • (-m) 
r-feasable(W,K) 

An obvious T-feasible pair (W1 Y) is given by 

\t\ t2 h * • • 

S(2\Y) 
• *W-

0 0 0 -
0 0 0 -

All T-feasible pairs (W, Y) are generated from the above pair by the following process: 
(1). Expand t\ to the first column in base p: 

t\ = w\ + py\,\ +p j2.i + • WljA./i > 0 . 
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(2). Modify the remaining numbers tk by setting t[ := tk + ykA, for all k > 2. 
(3). Expand t'2 to the second column in base/? as in (1): 

h = W2+W1.2+P yi2 + ' W2,y\4i >o. 

(4). Modify the remaining numbers t'k,k > 3 as in (2). Proceed with the next tk. 
(5). If we reach a zero column, let W be the sequence in the first row and Y be the 

remaining matrix. Then (W, Y) is T-feasible. The diagonal and the row sums can be 
easily calculated for the coefficient of i>. 

wi t'2 t\ 2 '3 

y\.\ o o 
3>2,1 0 0 

W\ VV2 ^ 

Ji , i 3̂ 1,2 0 

^2,1 J2,2 0 

STEP 3. Calculate the total sum for the composition rL • rR. If needed, the result 
can be transformed to an expression where all the coefficients are polynomials in the 
Hazewinkel generators vi, V2, V3, For example, the Hazewinkel relations imply that, 

m\ = 
vi 

rri2 
v2 

J+p 
HÏ3 

P 

v,vÇ + vfv2 v\+p+pl 

On the other hand, if we need the result only up to a certain degree, the following formula 
will help to eliminate many terms in the generating process: 

deg(iv) = £2(p k - \)T(X)k + ^2(px- l)yAi„. 
k \^L 

This completes the description of our method. 

4. Examples. We now present two examples in calculating compositions of Brown-
Peterson operations. We assume p = 2 for convenience. It is clear that the case when/? is 
an odd prime integer can be handled in the exact same way. The first example is simple 
so as to show the basic ideas and techniques of computation. Whereas, in the second 
example, there are 12 feasible reduced cubic exponential matrices X, 31 feasible pairs 
( W, Y), and 9 distinct basic operations in the final expression of the composition. This is 
truly marvelous. 

4.1. Example: r2,i • T\. 

X: 
T(X) = (3, 1), 
coeff. of qj(x) 3! 1! 

2!1! 1!0! 
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W: 
—m\ Y : 
—ra2 

3 1 0 1 2 0 1 0 

1 1 

[T(X), T(Y)]B(Y)(-mf ( X W : r3,i -2m{rL2 2m\x 

So, q3.i =r 3 . i - 2 m i r i , 2 + 2mfri,o,i. 

l i 
X: m 

-+ 7(X) = (1,2), 
1 coeff. o f qT(X) = ÔTTTTTTT * m i -

-m\ 
-ra2 

W: 
Y: 

\Si2)(X) 

1 2 0 1 0 1 

[T(X), T(Y)]B(Y)(-my wrw : r u -mm.o j 
So, 

qi.2 = ri,2 — miri.oa-

Hence, the product 

r2.i -ri =3r 3 J - 4m\rU2 + 4m?ri.0,i = 3r3,i - 2viri.2 + vfrK0.i. 

4.2. Example: r2 • r4. 

STEP 1. All possible (2,4)-feasible cubic exponential matrices X are: 

(A-l): (A-2): (A-3): 

. r ^ 

15 6m i rat 

(A-4): (A-5): 

4f 

m\ 

(A-6): 

2m^ 
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(A-7): (A-8): (B-l): 

m\ni2 

781 

(B-2): (C-l): 

* 2 

(C-2): 

2m i m\ 

STEP 2. The (W, y)-tables are listed below: 
(1). For(A-l): 

6 0 0 

T6 

2 0 1 

P 
1 

4 1 0 
1 

—m 11*4,1 

0 3 0 
3 
0 

(2). For (A-2) and (A-5): 

|4 1 0 

-râfru 

2 2 0 
2 

" ^ 2 , 2 

0 1 1 
3 1 
0 

^ 0 , 1 . 1 

2 0 1 
2 1 

m\Y2^\ 

0 1 1 

wira2ro,i,i 

2 2 0 2 0 1 
1 1 

r 4, l 

0 3 0 

—2m\Y22 

0 1 1 
2 1 
0 

2mfr2,o,i 

|0 1 1 

3mfr0.3 -3m]r0AA -m2r0AA 
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(3). For (A-3) and (A-6): 

|2 2 0 0 3 0 2 0 1 0 1 1 

1 0 1 1 1 

(4). For (A-4): 

T2.2 -3mir0.3 -

2 0 1 0 1 1 

3mfr0.i.i 

1 

1*2.0.1 -wiro.i.i 

(5). For (A-7): 

(6). For (A-8): 

(7) .For(B-l ) : 

(8). For (B-2): 

(9) .For(C-l ) : 

(10).For(C-2): 

0 3 0 0 1 1 

1*0.3 -miroj.i 

0 1 1 

3 1 0 

1*0.1.1 

1 2 0 1 0 1 

1 1 

1*3,1 -2m\r m.2 2mfr l r1.0,l 

1 2 0 1 0 1 

1*1.2 

0 2 0 

-"M n.o,i 

0 0 1 
1 

1*0.2 -w ii*o,o.i 

0 0 1 

1*0.0.1 
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Hence: 

r2 r4 = The Total Sum 

= 15(r6 - m i r 4 j + Wir2,2 - (m] + m2)r2,0.i - mfr0,3 + (m? + wi/w2)r0,i,i) 

+ (6mi +mj) • (r4J - 2mjr2.2 + 2ra^r2,0.i + 3raj r0,3 - (3m,+m2)r0,i,i) 

+ (mj + 2mi) • (r2,2 ~ 3rair0.3 - wir2,0.i + 3m?r0.i,i) 

+ mi • (r2,o,i - mir0,i,i) + 3mf • (ra3 - mir0j.i) 

+ mim2 • r0.i,i +3 • (r3.j - 2m\T\a + 2m?ri,0,i) 

+ 2mj • (rK2 -miri,o,i) + (r0,2 - mir0,o,i) + m -r0,oj. 

= 15r6 — 8mir4j +4m^r2>2 — (14m2 + 4m^)r2,0.i 

+ 8mim2r0,i,i + 3r3.i - 4miri,2 + 4mfri.0.i + r0.2 

= 15r6 - 4vir4,i + Vjr2.2 - (7v2 + 4v^)r2,0,i 

+ vj(2v2 + vf)r0,i.i + 3r3J - 2virK2 + vfrK0,i + r0,2. 

5. Iterated products. We define the weighted symmetric polynomials which will 
be used to express the iterated products of Brown-Peterson operations. We then introduce 
a new set of rational generators for 7r*(BP), and use it to calculate the product r^ . 

5.1. Weighted symmetric polynomials. 

DEFINITION. Suppose a\, a 2 , . . . , an are scalar parameters. The weighted symmetric 
polynomials for a\, a 2 , . . . , an are defined to be 

f o\ = ot\ + a2 + • • • + an 

cr2 = a^oti + • • • + otpan + oPjOLs + • • • + oP xan 

an = ap ap
2 • • • an. 

Notice the similarity with the well-known elementary symmetric polynomials. Denote 

by of the weighted symmetric polynomials for the parameters c ^ , c ^ , . . . , a j . Let 

a ^ O i f i ^ a n d a J f ^ l . 

THEOREM 5.1. Define polynomials Q^ in the parameters a, with coefficients in 7r*(BP) 
by: 

Qo = 1 
Zl+J=k miStif = Zl+j=k m^p, k > 1. 

Then 
E rrn • • Tr2 • rri • a\ar{ • • • o# = X > r • a

r . 
r].r2 rn>0 T 

REMARK. The operations rn are in a reverse order. There is a similar formula for 
iterated products of rnAl for any / > 1. The weighted symmetric polynomials cr, occur 
also in a formula for iterated products of Steenrod operations. We will treat this topic 
along with applications in a separate paper [L]. 
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PROOF. It is observed that the Quillen relations are equivalent to the matrix equation: 

/ O 0 0 0 

0 2 <^ og2 

03 <&, of 

\ : 

• \ 

• / 

/m0\ 
m\ 
ra2 

ra3 

\ : I 

im o o 

m rfx rf0 

\ : : : 

\ / £ o 0 0 

/ 

CP fP 6 ^ tf 
\ : : : 

\ / m o \ 
mi 

m 3 

/ \ : / 

Write <D = £ * 77. We then find that this star operation is associative: (£ * ry) * ( = £ * (7/ * Q 

and has an identity 0 = ( 0 , 0 , 0 , . . . ) : £ * 0 = 0 * £ = £. An obvious induction from the 

Quillen theorem 2.1 shows that 

E 
«(l),R(2),...,fl(n) 

r W ) r R ( 2 ) • • • r ^ f ^ f ® • • • (ft? = £ r r(É ( 1 ) * Ç(2) * • • • * C(n,)7 

In particular, if £(l-) = (a n _/+ i ,0 ,0 , . . . ) , / = 1,2,. 

polynomials Q; := (£ ( D * £(2) * • • • * £(„>),• is 

, /i, the matrix equation for the 

/ 1 0 0 

Qi 1 0 

Q2 ft? 1 
Q3 ^ o f 

\ i ! ! 

\ /mo\ 
m\ 
m2 

rriT, 

I \ ' I 

/ 1 0 0 

«i 1 0 
0 ap 1 

0 0 apl 

V i ! i 

• \ 

/ 

/ 1 0 0 
an 1 0 
0 aPn 1 

0 0 aP2 

\ : : : 

mi 

ÏYÏ2 

m3 

• / \ : / 

This can be solved for Q/ inductively and is equivalent to the set of relations declared in 

the theorem. 

5.2. r«A/. 

DEFINITION. Introduce elements wk e 7r*(BP) ® Q by: 

w0 = 1 
2 k 

Wk + w£_1mi + H^_2ra2 + • • • + wg m^ = 0, fc > 1. 

It is easy to see that {wi, vv2, vv3 , . . .} is also a set of rational generators for 7r*(BP). 

We find it useful to replace the generators {m\, ra2, m 3 , . . . } of 7r*(BP) 0 Q by this set. 

THEOREM 5.2. Let / > 1. Suppose that s\, s 2 , . . . , sn are integers such that 0 < si < 

p — 1, / = 1, 2 , . . . , n. Then 

In particular, we have 

' r ^ A z = X I [s\, 5 2 , • • •, sn] • w r • r7 ( / ) 

r =5 1 +59+-"+i'n 

r"A/=5>!V • ^ n 

m=« 
• ^ 

|r|=sl+.s'2+---+.s7, 
[ s i , s 2 , . . . , 5 W ] • w - r 7 . 
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PROOF. For brevity, we prove only the case where 1=1. This we do by applying 
Theorem 5.1. The general case can be proved by making the same kind of argument using 
a formula for iterated products of rr.&r In Theorem 5.1, rSn 

a\[ a^ • • • as
n
n on the left hand side. On the right hand side, 

r52 rS] is the coefficient of 

T 
rT. 

We want to find the coefficient 

Let a := G^ = a\ + «2 + • • • + ocn. Then Q.\ = a. 

We consider polynomials in the a, with coefficients in 7r*(BP) (g) Q. Denote by / 
{ap

v . . . , ocp
n) the ideal generated by o^, o^ , . . . , aPn. Trivially, we have 

T(p*) Jpk) 

Hence, 

0 (mod /), k > 1; cff } = 0 (mod /), k > 0, i > 1. 

Q2 + Ql[m\ = 0 

^ 3 + QF2m{ + o f m2 = 0 

£lk + Q?,mi + • •• + Q? m^_i = 0 

(mod/) 

A simple induction shows that 

k—i 

Çlk = ap wk_\ (mod/), £ > 1 . 

Thus 

= amwr (mod/). 

Let 0 < s\, S2,...,sn <p — I. 

(JC i Ct /^ • • • C t 

[ J I , J 2 , • - - 7 ^ ] • w r if \T\ = s\ + s 2 + ' - • + •*„, 

0 otherwise. 

This gives the formula for the product rSn • • • r̂ 2 r^.We see that the rs, s = 0 , 1 , . . . , p — 1, 
commute with each other. Therefore the formula in the theorem follows immediately. 
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REMARK. We see from this theorem that the set {r^ }„>o is linearly-independent 
over 7r*(BP). Also, we know that the coefficient [s\, s2l..., sn] • wT G 7r*(BP) for any 
T, since any composition of Brown-Peterson operations can be written as a sum of basic 
Brown-Peterson operations with coefficients in 7r*(BP). We can make this convincing by 
noting two facts: 

(1). The largest power of p in the prime decomposition of the integer ml for the case 
of m = \T\ = s\ + s2 + • • • + sn, is greater than or equal to 

t2 + (1 + p)t3 + (1 +/? + p2)h + • • • + (1 +P + • • • + pk~l)tk+\ + • • •. 

(2). An inductive argument shows, by the Hazewinkel relations, that 

p k m k G T T * ( B P ) , p
]+P+-+Pk~l • Wk G TT*(BP), k > 1. 

6. Formulas for commutators. Let [x, y] = xy — yx denote the commutator in 
BP*(BP). In [Z], Zahler showed that [rj, r^] = *(N-P,\ $....)- In this section, we generalize 
this result and introduce a new set of rational Brown-Peterson operations {qr}. 

6.1. Rational Brown-Peterson operations. Recall that BP*(BP) = 7r*(BP)|>i, t2. h,...]. 
Let 

sk = tk+m\fky+m2fk_1 + -'- + mk-\tf , k>\. 

Then BPQ*(BP) = TT*(BP) <g> Q[si,s2,s3,. • •]• One knows that BPQ*(BP) is dual to 
BP Q*(BP) over TT*(BP) 0 Q. We define the operation qT G BP Q*(BP) by taking the dual 
element of sT G BPQ*(BP). Hence, any operation from BPQ*(BP) can then be written 
as a (possibly infinite) sum of elements from {qr}r with coefficients in TT*(BP) 0 Q. 

We define the polynomials H^ by splitting the Quillen relations: 

[vk = ®k + ml&k_l+.'- + mk-Xrf~\ 

\*¥k = n+l+j=u+j>i mhi
phr(+\ k>\. 

Since Oi = 4*1, we can solve for each <bk as a polynomial in the 4V In turn, each <£>k is 
a polynomial in the £/ and r̂ -. 

THEOREM 6.1. (]). rw = £ r Ow qr, 

(2). rL • r/? = Er 

PROOF. Since the relations of the x¥k in terms of the O/ are the same as that of the sk 

in terms of the tt by definition, 

Dually, 

r / 
G 7T*(BP)® Q. We have s r = £v 

qr = E 
T 

q7. 

Hence (1) follows. 
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(2). Theorem 2.1 implies that 

Since 

w e-vR ryy. 

E 
T 

r v r l = 

E 
XJJS i if r = s 

0 otherwise, 

= £ 

= £ 

= E 
r L 

= E 

iLnR 

L„R 

E 
W L 

E 

rw 

\JjS 

y s v w L 

q r 

cb by(l), 

qs 
XIJS "1 

6.2. Commutators. We now prove a generalization of Lemma 5.10 in [Z]. 

THEOREM 6.2. For any k,l,N> 1, 

iTA r̂wA/. f r(yv-^).A/+A,+/ < y W > / A 
lO ifN<pk. 

As a result, 

[ri,rp] = r0,i, [ro,i,rp2] = r0,o,i, • • -fro o,i?i>] = r0,...,o, 

PROOF. From Theorem 6.1 we know that 

rA, ' ryvA/ = E to? 
r(yv-̂ )A/+A,+/ - Z) 

qr, T/VA, • rA» = £ 
r 

r v r l 

q ? , if/ M>pk. 

qT 

We need to compute the coefficients. On the one hand, if we work modulo the ideal 

(0>i,...,0/_!,0 /+1,...,<!>*+/_!,o£+/,0*+/+1,...) 
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then 

^n 

Hence, ifN>pk 

vj/r 

O ^ O , 0 
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0 1 < n < l 

ra„^,Of l<n<k + i 
nk 

mk<&] + 0^+/ n = k + l 

[ ran_/Of n> k + l. 

mk 

if T,j>i^~ltj = N, and u = 0, for / < /, 
otherwise. 

On the other hand, we can reduce coefficients modulo the ideal 

(£b • . .,£*-b£*+ï> . . .,771, . . .,77/_i,77/+i, . . .) 

in the polynomial algebra 7r*(BP) 0 Q[£i, £2, • • •, /̂i? ^2? • • •]• Then, for n > 1, 

*FW = mw_/7/f + m„_^f + mn-k-i(!£ iff . 

Define polynomials Fn in a and f3 by: 

^« = "fo-//: 
,n-k-l „„n-l 

+ m „ _ ^ + mn_k_iap ft n > 1. 

Then, for any positive integers M and TV, we have 

CM N 
FT 

aM/3N 

Likewise, if we define the polynomials G„ in a and /3 by 

«—/ n—k n—k n—k—l 

Gn = mn__iff + mn_ka
p + mn_k_iOcp (? , n > 1, 

we will have 

Furthermore, 

G r 

ccM(5N 

,n-k-l „nn-l 
Fn = Gn + mn_k_Acê> ff -aP jf ). 

Modulo the ideal ( a 2 ) generated by a 2 in 7r*(BP) ® Q[a, /3], 

uk+l 

Qtk+l 
[tk+ria^-Gt'r1] 

G k 
= 7 7 - • h+i • ocff 
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Also, if* <Z, 

Gn = \ : 
\<n<l,n^k 
n-k 

[mn-ipr n>l\ 

ifk = l, 
0 \<n<k 

Gn = < 
f3 + a n = k 
rrin-kfF" n > k, n ^ 2k 

. mkfF
k +a(fk n = 2k; 

and if k > /, 

1° \<n<l 
Gn = mn-xp- n > /, n ^ k 

. mk-i/y + et n-k. 

Therefore in all cases, 

So for any T, 

r 4>T l r vT l • F r ' G r FT-GT' 

Art. .tfV a/?" a ^ a/3N 

tfrik 

VJ/7 

Q>»-Pkto '*+/ 

0 

if N>pk
9 

if N<pk. 

This proves the formula in the theorem. 

7. Proof of the composition law. Finally, we prove the composition law for Brown-

Peterson operations that was stated in §3. 

7.1. Lemma onfiniteness. It is important to know that the composition of any two basic 

Brown-Peterson operations is a finite sum over the basic Brown-Peterson operations. In 

other words, the summation on the right hand side of the formula 3.1 is finite. This is the 

consequence of the following 

LEMMA 7.1. (J). For given exponential sequences L and R, we have only a finite 

number of{L, R)-feasible reduced cubic exponential matrices X. 

(2). For a fixed exponential sequence T, we have only finite number of F-feasible 

pairs (W, Y). 

PROOF. (1) is clear. For (2), we list the equations for 7 + T(Y) = W + S[]](Y): 

(Ei) 

(E2) 

t\ = w\ +#yi,i + p j2,i + •••, 

h + y u = w2 +py\a +p2y2i + • • •, 

(E3) tk + yk-\A +v*-2,2 + - " + v U - i =Wk+pyuk+p yi,k + -
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Since we are assuming that Y is an exponential matrix, the sum on the right hand side of 
each equation is finite. By taking the weighted sum Ei + pE2 +/?2E3 + . . . +pk~~]Ek, we 
have 

E px~ltx + E AA.. +/ËV:VA.2 + • • • +A2 É P W . 
A=l A=l A=l A=l 

= E / " 1 ^ + slll(iOi +P$1\Y)2 + • • • + / - 2 s m ( iV i . 

That is, 

EA'fA = EP*_1W*+A».. V+V*+..i + / % . , + • • • 
A=l h=l 

+pkyu-\2 +pk+xyk2 +Pk+2yM2 + • • • 

+ /?Vu + / + V * + P*+2)>3,*+3 + • • • • 

Hence, for any k > 1, 

E A ' ^ A >EA'wA, E / - ' / A > / M ï W 
A=l h=\ A=l 

Since T is an exponential sequence, the number on the left hand side of the above 
inequalities is bounded, and therefore we have only a finite number of pairs (W, Y) 
satisfying the equation W = T+T(Y) - S[{](Y). 

7.2. Proof of the composition law. The composition law 3.1 can be split into two 
theorems using the rational operations q^. 

THEOREM 7.2. 

r L - r * = £ B(X)msi2)-0)^qT(X). 
S[]W\X)=L 

S[]]-[2](X)=R 

THEOREM 7.3. 

V|/7 

qT= £ [^ T(Y)] • B(Y) • (-mf2)(Y} • rw. 

T+T(Y)=W+S[l] (Y) 

PROOF OF THEOREM 7.2. By Theorem 6.1 (2), we need to find the coefficient 

Instead, we prove the following formula for any exponential sequence T: 

4>r = £ B(X) • m^°'(x^snW,{XV'l[2Hx\ 
T(X)=T 

where X is a reduced cubic exponential matrix. For such X, i(X) depends only on 7, and 
equals the length l(T) of T. The case l(T) = 1 is trivial. Let T = (t{,..., tk, 0,.. .) be 
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any exponential sequence with l(T) = k > 2. Suppose the above formula is true for the 
sequence T = (t\,..., ^_i , 0,...) by induction: 

Vr= £ B(X).m^(3)w^[1U3,(V1L,21W. 
T(X)=T 

Since 
, — , „n „n+i 

**= E »»*#< < 
we have, by Newton expansion, 

Therefore, 

= ( E 5(X) • ^ ^ « ' ^ ^ - ( x A . / E ^ ^ 
yT(X)=T J Kh+i+j=kJ+j>\ J 

= £ fi(x).w^-,3,w^"-,3,<V"''2l<* 
7,(X)=r 

where X = Qchjj)hjj>o is the matrix with x̂  ^ = x^ij if h + i +j < k\ 0 if h + / +y > /:. (X 
has length l(X) = k.) This proves the theorem. 

£ 

PROOF OF THEOREM 7.3. The inverse relation to the one in Theorem 6.1(1) is qT = 

IV- An inductive argument of the same kind as in the proof of Theorem 7.2 w xpy 

shows that 

o w = ]T [r, r(y>] • #(>0 • (-mf2){Y)x¥T. 
T+T(Y)=W+SW(Y) 

The theorem follows. 
Finally, we prove Kane's Theorem: 

PROOF OF COROLLARY 3.2. Recall that 

TT*(BP) = Z(p)[vi, v2, v3,...] C TT*(BP) 0 Q = Q[mb m2, m 3 , . . . ] . 

Let / = (vi, V2, V3,...) be the ideal of 7r*(BP), generated by the elements v\, v2, V3, 
Then, by the Hazewinkel relations, / (g) Q = (mi, ra2, m3,...) is the ideal of 7r*(BP) ® Q 
generated by the elements m\, ra2, m3, Modulo / 0 Q, the formula in Theorem 3.1 
becomes: 

17,17? = J ] #(X, y) • rr(X)+r(r)_5(i](K). 
xj 

si ,i-<3>(X)=£,s , , ,-[2,(*)=* 
S<2W3)(X)=0,5(2)(JO=0 
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The relations S(2)'(3)(X) = 0, and S(2)(F) = 0 imply that yx^ = 0, and xhJJ = 0 if h > 1. 
Hence, Y = 0; T(F) = 0, S[l](Y) = 0. Let atJ = x0JJ and A = (ÛIV)IV>O. Then T(X) = 7(A), 
£(X, F) = /7(A) and 5[1](3)(X) = 5(A), 5[1]'[2](X) = R(A). 

*L*R = ]C ^ A ) ' rW), mod(mi, m2, m3 , . . .)• 
A 

S(A)=L,R(A)=R 

Since any product of Brown-Peterson operations can be written as a linear combi­
nation with coefficients in 7r*(BP), the relation above can be reduced to one modulo 
(vi, V2, V3,.. .)• The theorem follows. 
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