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email: beauge@oac.uncor.edu

Abstract. In this work, we review the analytical and semi-analytical tools introduced to deal
with resonant proper elements and their applications to the Trojan asteroids, the numerical
computation of synthetic proper elements for resonant and non resonant asteroids, and the
introduction of proper elements for planet crossing asteroids. We discuss the applications and
accuracy of these methods and present some comparisons between them.
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1. Introduction
Proper elements play a major role in the characterization of the long term stability

of asteroid orbits, as well as in the identification and definition of asteroidal families.
In recent years, the development of new analytical and numerical tools have allowed
to extend the computation of proper elements to huge sets of asteroid orbits including
main belt, resonant and planet crossing asteroids. This has had a deep impact on our
knowledge of the dynamical structure of the asteroid belt, and on the dynamical and
collisional processes taking place there.

Among these new tools, the semi-analytical model introduced by Beaugé and Roig
(2001) to deal with resonant proper elements represents a major advance in the field.
Their method allowed to determine the proper elements of the Trojan asteroids and to
confirm the existence of families among these bodies. A purely analytical method to deal
with resonant proper elements has been recently introduced by Miloni, Ferraz-Mello and
Beaugé (in preparation), who also presented a preliminary application of their method to
the Hilda asteroids. On the other hand, Knežević and Milani (2000) elaborated a synthetic
theory of the long term asteroidal motion that allowed the numerical computation of
highly accurate proper elements for non resonant and resonant asteroids, without the
typical limitations of the analytical or semi-analytical models previously used (e.g. Milani
and Knežević 1990; Lemaitre and Morbidelli 1994). Another major improvement concerns
the computation of proper elements for planet crossing orbits. This method has been
introduced by Gronchi and Milani (2001), and has been successfully applied to predict
planet collisions of Near-Earth Asteroids (NEAs).

Besides the theoretical development of all these techniques, the access to more powerful
computational resources at lower costs has allowed the computation of proper elements
(either analytical, semi-analytical or numerically) for very huge sets of orbits and for
very different populations, from the main asteroid belt to the trans-Neptunian region.
It is also possible to keep large databases periodically updated at the same rhythm of
discovery of new asteroids (Knežević and Milani 2003). This has had a major impact
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in our knowledge of the dynamical structure of the asteroid belt, and especially in the
detection of asteroid families.

In this contribution we review these issues. The paper is organized as follows: in Sect.
2 we provide the basic theoretical background about the computation of proper elements.
Section 3 is devoted to describe the method of Beaugé and Roig (hereafter B-R). Section
4 summarizes the method of Miloni, Ferraz-Mello and Beaugé The synthetic theory of
Knežević and Milani (hereafter K-M) is presented in Sect. 5. In Sect. 6 we present an ap-
plication of the B-R and K-M methods to the Trojan asteroids. Finally, Sect. 7 describes
the method of Gronchi and Milani.

2. Theoretical background
In a strict sense, proper elements should be integrals of motion of the dynamical system

representing the motion of an asteroid under the perturbation of the planets. Since this
system is not integrable, integrals of motion do not exist at all, but in most cases it is
possible to compute quantities that are close to these integrals in the sense that they
vary very little over very long time scales. These quasi-integrals of motion are referred
to as “the proper elements”.

The idea behind the computation of proper elements is to perform a canonical transfor-
mation (or a set of canonical transformations) such as to reduce the original Hamiltonian
of the system to an integrable approximation. Schematically, suppose that the Hamilto-
nian can be separated as follows

F (θ, J) = F0(J) + εF1(θ, J)

where F0 is an integrable part, F1 is a perturbation of order ε � 1, and θ, J are the
angle-action variables of F0. We search for a canonical transformation

(θ, J) → (θ∗, J∗)

such that the new Hamiltonian becomes

F ∗(θ∗, J∗) = F ∗
0 (J∗) + εnF ∗

1 (θ∗, J∗)

with n > 1. If the reminder of O(εn) can be neglected, then the new actions J∗ are the
proper elements we are looking for.

In practice, this procedure is accomplished by the computation of a time averaging that
eliminates the angular dependence of the Hamiltonian. The final result of this averaging
method strongly depends on the choice of the averaging “kernel” (the Hori’s kernel),
that is F0, which determines how the angles actually vary with time. This choice must
be done in such a way that F0 accounts for the basic dynamical features of the system,
or in other words, for the basic topology of the phase space. Thus, the key problem when
dealing with the computation of proper elements is how to split the Hamiltonian for a
suitable averaging.

In the asteroidal problem, it is possible to separate the angular dependence of the
Hamiltonian according to the different time scales of the perturbations, leading to a set
of “fast” and “slow” angles. The first ones are related to the mean longitudes of the
asteroid (λ) and the planets (λi), while the second ones are related to the longitudes
of perihelia (�,�i) and nodes (Ω,Ωi). Thus, for example, the classical definition of
asteroids proper elements, based on Yuasa’s theory (Milani and Knežević 1990), involves
two averaging: the first to eliminate the fast angles and the second to eliminate the slow
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ones. Schematically, we first write

F = F0(L,Li) + εF1(λ,�,Ω, λi,�i,Ωi, L,W,Z,Li,Wi, Zi)

where F0 basically represents the two body problem, and ε ∼ mi, which are the masses of
the perturbing bodies. Here, L,W,Z are the canonical momenta conjugated to λ,�,Ω,
respectively. Then, we introduce a canonical transformation

(�,Ω,�i,Ωi,W,Z,Wi, Zi) → (�̄, Ω̄, �̄i, Ω̄i, W̄ , Z̄, W̄i, Z̄i)

from “osculating elements” to “mean elements” through a first averaging that elimi-
nates λ, λi, assuming that these angles vary with time following the solution of F0. The
“averaged” Hamiltonian takes the form

F̄ = F̄0 + εF̄1(�̄, Ω̄, �̄i, Ω̄i, W̄ , Z̄, W̄i, Z̄i)

where F̄0 is a constant that can be disregarded. The averaged perturbation can the be
re-written as

F̄1 = F̄10(�̄, Ω̄, �̄i, Ω̄i, W̄ , Z̄, W̄i, Z̄i) + εF̄11(�̄, Ω̄, �̄i, Ω̄i, W̄ , Z̄, W̄i, Z̄i)

where, again, F̄10 is an integrable part basically represented by an harmonic oscillator
with a forced term, and ε is a small parameter somehow related to the high powers of the
eccentricities and inclinations of the bodies. The second averaging is performed assuming
that the mean angles vary linearly with time with frequencies given by the fundamental
frequencies of F̄10. After the averaging, we arrive to an integrable Hamiltonian and the
proper elements are given by the actions of F̄10 plus a correction of order ε arising from
F̄11. The proper frequencies are also given by the fundamental frequencies of F̄10 plus
a correction of order ε. It is then usual to proceed in an iterative way by repeating the
average using these corrected frequencies until their values converge.

Other problems in asteroidal dynamics are treated in a similar way. The only differences
arise from the form in which the integrable part of the Hamiltonian is separated at the
different stages of the procedure, and also the form in which the average is done. Three
cases are of particular interest:
• When the asteroid orbit is in a mean motion resonance, some linear combination of

the mean longitudes λ, λi has a frequency close to zero. This linear combination consti-
tutes the resonant angle, which has to be isolated, so the first average is performed only
over the non resonant angles. This procedure leads to an averaged Hamiltonian, where
F̄0 has the basic features of a pendulum (actually, an Andoyer Hamiltonian). This must
be taken into account when performing the second average, which introduce additional
complexity to the problem.
• When the asteroid orbit is in a secular resonance, the corresponding resonant angle

has to be isolated from F̄1, and the second average is performed only over the non
resonant angles. This procedure leads to an averaged Hamiltonian, where F̄10 has the
basic features of a pendulum (Morbidelli 1993).
• When the asteroid is in a largely eccentric or largely inclined non resonant orbit, the

separation of the averaged Hamiltonian in F̄10 and F̄11 is no longer valid because ε is not
small. Other re-arrangements are possible in this case (e.g. Lemaitre and Morbidelli 1994),
but the corresponding results are always restricted to limited ranges of the eccentricity
and inclination.
• When the asteroid is in a planet crossing orbit, the first average cannot be performed

because there is a singularity along the integration path.
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In any of these cases, the classical theory to compute proper elements will fail. There-
fore, specific techniques have to be developed to treat them, as we will show in the
following.

3. Proper elements for resonant orbits
When dealing with resonant orbits in the framework of the restricted three body

problem, the Hamiltonian obtained after the elimination of the fast angles has the form

F̄ = F̄0(σ̄, L̄, W̄ , Z, W̄ ′, Z̄ ′) + εF̄1(σ̄, �̄, Ω̄, �̄′, Ω̄′, L̄, W̄ , Z̄, W̄ ′, Z̄ ′) (3.1)

where F̄0(σ̄, L̄, W̄ , Z̄, W̄ ′, Z̄ ′) is a pendulum-like Hamiltonian, ε is proportional to the
eccentricity and inclination of the perturbing body, σ̄ is the resonant angle that librates
around a certain value σ̄c, L̄ is the canonical momentum conjugated to σ̄, and primed
variables refer to the perturber. In order to apply a second averaging to eliminate all
the angles, we have to take into account that �̄, Ω̄, �̄′, Ω̄′ are linear functions of time
but σ̄ is not. Therefore, the time averaging cannot be directly replaced by an average
over σ̄. A possible solution is to introduce a canonical transformation to find the action-
angle variables of F̄0. This is usually accomplished by solving the equations of motion
for F̄0 numerically, substituting this solution in F̄1, and computing the time average
with a numerical quadrature. However, this has the drawback of being very CPU-time
consuming, and does not explicitly yield the proper element associated to the pair σ̄, L̄.

Another possibility has been introduced by Beaugé and Roig (2001), based on ideas
by Jupp (1969) for the Ideal Resonance Problem. This consists into find a canonical
transformation from (σ̄, �̄, Ω̄, L̄, W̄ , Z̄) to new variables (θ,�∗,Ω∗J,W ∗, Z∗) where all
the angles are non resonant. The idea can be summarized as follows: Let us think about
the libration region of a resonance as a set of invariant curves around the libration point
σ̄c. If we only concentrate on this region and disregard the structure of qthe phase space
outside the separatrix, we can think of these orbits as distorted circulations around a
center which is displaced from the origin of the coordinate system. Now, if we find a
canonical transformation (L̄, σ̄) → (J, θ) that is simply a translation of the origin to the
libration center, we will obtain a new angle θ having a frequency different from zero, and
the integral of J along any orbit will be the action of that trajectory. In other words, we
will have an angle σ̄ that librates transformed into another angle θ that circulates with
frequency νθ = νσ̄. These new variables will have properties of being “non-resonant”
(even though they are a simple translation), and we can use any classical averaging
method, such as Hori’s method, to determine the corresponding action-angle variables.

A simple way to determine (J, θ) is based on the following series of transformations:

(L̄, σ̄) → (K,H) =
√

2L̄(cos σ̄, sin σ̄)
(K,H) → (X,Y ) = (K − Kc,H − Hc)

(X,Y ) =
√

2J(cos θ, sin θ) → (J, θ) (3.2)

where (Kc,Hc) =
√

2L̄c(cos σ̄c, sin σ̄c) marks the center of libration. This center is noth-
ing but the equilibrium point of F̄0 and can be easily obtained numerically. Beaugé and
Roig (2001) introduced a slightly different procedure, in the sense that it can no longer
be thought of as a simple translation. The transformation in their case is represented by
the relationship:

X = Γ−1/2
(
K̂ −

(
K2

c − Ĥ2
)1/2); Y = Γ1/2Ĥ (3.3)

where (K̂, Ĥ) =
√

2L̄ (cos(σ̄ − σ̄c), sin(σ̄ − σ̄c)) and Γ = Γ(Kc) is a scaling factor which
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Figure 1. (a) A set of invariant curves representing Trojan-type librations. (b) The
corresponding transformation to local variables given by Eq. (3.3).

modifies the shape of the trajectories. This transformation is canonical and is valid as
long as |σ̄max − σ̄c| < π/2 (with both σ̄max and σ̄c defined between ±π). Since the
transformation is an explicit function of the center of libration, Beaugé and Roig called
Eq. (3.3) the local variables. An example of this transformation is shown in Fig. 1.

By means of this very simple and purely geometrical “banana-to-pear” transformation,
it is possible to bypass the difficulties generated by the libration of σ, and to define vari-
ables suitable for the application of Hori’s averaging method. The averaged Hamiltonian
can then be written in the form:

F̄ = F̄0(θ, J,W ∗, Z∗,W ∗′, Z∗′) + εF̄1(θ,�∗,Ω∗,�∗′,Ω∗′, J,W ∗, Z∗,W ∗′, Z∗′) (3.4)

and it would be ready to proceed with the second average.

3.1. Averaging Methods with Adiabatic Invariance
In order to treat the second average, Beaugé and Roig (2001) introduced a general pro-
cedure to analyze multi-dimensional Hamiltonian systems having a “hierarchical” sepa-
ration in time of the different degrees of freedom. The procedure can be summarized as
follows: Suppose a generic two degrees of freedom system defined by a Hamiltonian

F ≡ F (J, θ) = F0(J1, J2) + F1(J1, J2, θ1, θ2)

where (J, θ) are action-angle variables of F0. Assuming that neither θ1 nor θ2 are resonant
angles and that there are no significant commensurabilities between them, this system
can be solved using Hori’s averaging method. The transformation (J, θ) → (J∗, θ∗) up to
first order, is given by the equations:

Jk = J∗
k +

∂B1

∂θ∗k
; θk = θ∗k − ∂B1

∂J∗
k

(k = 1, 2) (3.5)

where B1 is the first-order generating function. The idea is to think about Eqs. (3.5)
as a system of 4 algebraic equations corresponding to two different sets of variables
(the degrees of freedom). Instead of taking all equations simultaneously, the system is
broken in two parts and a hypothesis of adiabatic invariance is adopted, assuming that
the unperturbed frequencies of each degree of freedom satisfy the condition ν1 � ν2. In
this way, the two equations corresponding to the first degree of freedom (k = 1) can be
solved separately, assuming fixed values for the second degree of freedom and writing the
solution in terms of these values.
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It is easy to show that this procedure is equivalent to solve the “one degree of freedom”
Hamiltonian

F ≡ F̃ (J, θ) = F̃0(J1;J2, θ2) + F̃1(J1, θ1;J2, θ2) (3.6)

where (J2, θ2) are fixed parameters. Note that F̃ is nothing but the original Hamiltonian
F split in a different way. The solution of F̃ by Hori’s method will provide certain values
(J̃∗

1 , θ̃∗1) of the action and angle, and the Theory of Adiabatic Invariants guarantees that
the difference between this solution and the solution (J∗

1 , θ∗1) of the real system in which
(J∗

2 , θ∗2) are slowly varying with time is such that

J̃∗
1 − J∗

1 ∝ ε K(J̃∗
1 , θ̃∗1 ;J∗

2 , θ∗2); θ̃∗1 − θ∗1 ∝ ε L(J̃∗
1 , θ̃∗1 ;J∗

2 , θ∗2)

where ε = ν2/ν1, and K and L are functions of order unity (Henrard and Roels 1974).
Since ε � 1, both sets of solutions are approximately the same. In other words, using
the adiabatic approximation, the new action-angle variables are determined up to order
ε, and this parameter defines the precision of the method.

The action J̃∗
1 is an invariant of the “frozen” Hamiltonian F̃ , but not of the full

Hamiltonian F . Since (J2, θ2) vary slowly with time, so does J̃∗
1 , and according to the

Adiabatic Theory, this variation is such that

dJ̃∗
1

dt
∼ ε2.

For very small values of ε, this second order variation can be neglected and the resulting
“constant” value of J̃∗

1 is called an adiabatic invariant of Hamiltonian F . It is worth
noting that these second order corrections to the adiabatic invariant are periodic with
the same period of (J2, θ2). Thus, they could be eliminated by a suitable averaging of
J̃∗

1 over a period of (J2, θ2). In most cases, averaging the corrections provides a better
approach to the adiabatic invariant than neglecting them.

Once the action-angle variables for the first degree of freedom have been determined
(up to order ε), it is possible to solve the equations for the second degree of freedom. The
idea is to introduce the solution J∗

1 = J∗
1 (J∗

2 , θ∗2) and θ∗1 = θ∗1(J∗
2 , θ∗2) into the generating

function B1 and to solve the sub-system of Eqs. (3.5) corresponding to k = 2. This is
equivalent to solve a one-degree of freedom non-autonomous Hamiltonian, since θ∗1 is a
linear function of time. Actually, this is equivalent to take the original Hamiltonian F ,
introduce the solution for the first degree of freedom J1 = J1(t, J2, θ2) , θ1 = θ1(t, J2, θ2),
and average the resulting expression with respect to θ1. The procedure leads to a new
“one degree of freedom” Hamiltonian F̂ (〈J2〉θ∗

1
, 〈θ2〉θ∗

1
), where 〈.〉θ∗

1
represents the aver-

age over θ∗1 , whose solution by Hori’s method provides the corresponding action-angle
variables (J∗

2 , θ∗2). In other words, we can average the original Hamiltonian F over a ref-
erence orbit of the first degree of freedom (which is obtained by adiabatic approximation
assuming that the second degree of freedom is fixed), and then, we can use this averaged
Hamiltonian to solve the second degree of freedom.

The whole procedure can be easily extended to the general case with N degrees of
freedom in which the unperturbed frequencies νi of each angular variable θi are finite
and large, and satisfy the condition ν1 � ν2 � .... � νN . Thus, introducing the small
parameters εi,j = νj/νi (j > i) the system can be solved in a hierarchical form, solving
one degree of freedom at a time.
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4. Resonant averaging theory
The main limitation of the B-R method is that it can be applied only under the hypoth-

esis of adiabatic invariance. Unfortunately, this situation does not hold in other mean
motion resonances, like the 3/2 with Jupiter or the 2/3 with Neptune, both associated
to large populations of minor bodies. For these cases, a generalized resonant averaging
theory has been formally introduced by Ferraz-Mello (1997, 2002), and has been recently
applied by Miloni, Ferraz-Mello and Beaugé (in preparation).

Their method can be summarized as follows: Consider the Hamiltonian of the restricted
planar three body problem

F = F0(L,L′) + m′F1(λ,�, λ′,�′, L,W,L′,W ′)

where F0 is the Keplerian part, F1 the disturbing function, and primed variables refer to
the perturber. The disturbing function is further expanded using the expansion of Beaugé
(1996), which does not have the convergence limitations of the classical expansions, nor
the phase space domain limitations of the asymmetric expansions. The Hamiltonian is
then given by a harmonic series with constant coefficients and can be manipulated in a
fully analytical way.

Introducing the resonant angles

σ =
p + q

q
λ′ − p

q
λ − �; σ′ =

p + q

q
λ′ − p

q
λ − �′

(p, q integers) and averaging (up to first order) over the short period angle λ − λ′, the
Hamiltonian takes the form

F̄ = F0(L̄) + m′F̄1

In order to split this Hamiltonian for further averaging, the authors expand F0 around
the reference value L̄0 corresponding to the exact mean motion resonance, and assume
that L̄ − L̄0 ∼ O(m′ 1/2). This assumption is crucial since it allows to re-arrange terms
of the same order in m′ so as to write:

F̄ = m′F̃0(σ, S, S′) + m′ 3/2F̃1(σ, σ′, S, S′)

where m′F̃0 is a pendulum Hamiltonian, basically constituted by a quadratic term in
S ∼ L̄ − L̄0 plus a term m′ cos σ. The next step is to find the actions of the pendulum,
which is accomplished by expanding the solution by means of elliptic integrals. This allows
to explicitly compute the actions analytically in terms of σ, S. The resulting Hamiltonian
takes the form:

F ∗ = m′F ∗
0 (J, J ′) + m′ 3/2F ∗

1 (θ, θ′, J, J ′)

and is suitable for the application of Hori’s method to totally solve it. Note that in
this case, the perturbation equations of Hori’s method will be grouped in orders of
m′ 3/2,m′ 5/2, and so on. In practice, the averaging is carried out up to the “first” order
only. After finding the proper actions of F ∗, it is possible to analytically go back with
the transformation to compute the proper amplitude of libration S∗ and the remaining
proper elements.

The method has been successfully applied by the authors for a preliminary computation
of proper elements of the Hilda asteroids in the planar case, and at present it is being
extended to include the inclinations.
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5. Synthetic proper elements
The idea underneath the computation of synthetic proper elements is to fit the time

series of the asteroid orbital elements to some predefined function. This function usually
has the form of a harmonic series with a given number of harmonics. The fit consists
of determining the frequencies, amplitudes and phases of the different harmonics by
linear regression, which is nothing but to decompose the time series through a Fourier
transform. After this decomposition, the signal can be easily filtered to remove all the
periodic terms, leaving just the constant terms of the series which constitute the proper
elements.

At variance with the usual averaging methods, which deals with the solution of the
averaged equations of motion〈

dqi

dt

〉
=

〈
∂F

∂pi

〉
;

〈
dpi

dt

〉
= −

〈
∂F

∂qi

〉
,

the filtering deals with the average of the solution, that is (〈qi〉 , 〈pi〉). The equivalence
between both approaches is given by the condition

d 〈qi〉
dt

=
〈

dqi

dt

〉
;

d 〈pi〉
dt

=
〈

dpi

dt

〉
.

However, this equivalence is strictly valid only if the averages are made over the “per-
turbed” solution. While the filtering fulfills this condition, the usual averaging methods
don’t because they are always made over an “unperturbed” or intermediate solution (e.g.
the solution of the Hori’s kernel). Therefore, the filtering always provides a more accurate
approach to the proper elements than the usual averaging theories (both analytical and
numerical).

Knežević and Milani (2000) used a synthetic theory to compute asteroid proper ele-
ments. They numerically integrated the orbit of the asteroid over intervals of time ranging
from 2 to 10 Myr and performed a Fourier analysis of the output. The original output is
represented by the time series of the equinoctal elements

(k, h) = e(cos �, sin �) (q, p) = sin
I

2
(cos Ω, sin Ω)

These are filtered on-line in order to remove the short period variations related to the
mean anomalies, which also allows to decimate the output and to reduce the data storage
size. The filtered output is then processed in three steps:

(a) The forced secular perturbations with known frequencies (g5, g6, ...) and (s5, s6, ...)
are removed from the filtered series by identifying the corresponding harmonics in the
Fourier transform.

(b) The time series of the free angles (�f ,Ωf ) are fitted by straight lines and the
proper frequencies are determined from the slope of the fits.

(c) The components with period 2π are extracted from the data series k(�f ), h(�f )
and q(Ωf ), p(Ωf ). These constitute the proper modes and their amplitudes define the
proper elements ep and sin Ip/2.

(d) The proper semi-major axis ap is computed as the average of the filtered semi-
major axis.
Simultaneously to the above procedure, the maximum Lyapunov Characteristic Exponent
(LCE) is also computed by numerically solving the variational equations of the orbit.
This is used as an indicator of chaos and provides an indication of the reliability of the
computed proper elements.
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The K-M procedure requires to perform a numerical integration of the orbits over long
time scales. This has an advantage in the sense that it automatically provides a stability
test for the proper elements: Indeed, with the same output it is possible to compute
proper elements over a running box with a shorter time width and to see how these
values vary with time. However, the main disadvantage is that updates of the data to
incorporate new asteroids are hard to perform, since they are very time consuming. In
spite of this, the method provides very precise values of the proper elements.

5.1. Synthetic resonant proper elements
The extension of the synthetic theory to the case of resonant orbits is straightforward. In
fact, synthetic theories for the computation of proper elements were first developed for
resonant orbits, more specifically, for the Trojan case. The origins of the method go back
to Bien and Schubart (1984) and Schubart and Bien (1987), and it was fully developed
by Milani (1993).

The idea is to consider the time series of a exp ισ, e exp ι� and sin I exp ιΩ. These time
series are first filtered on-line to remove the short period variations and then it is applied
the same kind of harmonic decomposition as explained above. However, the (filtered)
time series of a exp ισ cannot be processed as such because σ is librating rather than
circulating. Therefore, a transformation (a, σ) → (D, θ) to local variables, like Eq. (3.2),
is introduced:

D(cos θ, sin θ) =
(

σ − σc,
a − ac

γ

)
(5.1)

where (σc, ac) is the center of libration and γ is a scaling factor that relates D, i.e. the
semi-amplitude of libration in σ, with the semi-amplitude of libration in a. The angle θ is
no longer librating but circulating with a fundamental frequency equal to the frequency
of libration. The synthetic theory is then applied to the time series of D exp ιθ, and
the proper semi-amplitude of libration Dp is obtained together with the corresponding
proper frequency.

6. An application to the Trojan asteroids
The B-R method and the K-M method described above have been applied to compute

proper elements for the Trojan asteroids. Many dynamical properties of these asteroids
complicate the elaboration of an analytical model for their long-term motion, so the
application of the K-M synthetic theory seems to be a better option. The K-M procedure
involves the transformation Eq. (5.1) with σc = ±π/3 and ac = aJupiter. This is a
major limitation of their method because it is well known that, at large eccentricities
and inclinations, the true center of libration may be significantly displaced from its
“standard” location at ±π/3. Thus, the method will produce fake estimates of Dp and,
especially, of the proper frequency of libration, whenever D is smaller that the difference
between the true center of libration and π/3. Fortunately, these cases are very rare among
the real Trojan asteroids, and the K-M method can be safely applied in most cases.

On the other hand, there is a major dynamical feature that may be exploited by the
B-R method: The different degrees of freedom of the system are well separated with
respect to their periods. In fact, while the period of libration of the resonant angle σ is
typically about 150 yr, the period of oscillation of � is of the order of 3,500 yr, and the
period of Ω is even longer: 105−106 yr. In this way, it is possible to introduce the adiabatic
approach to the problem defining the small parameters ε12 = ν�/νσ, ε23 = νΩ/ν� and
ε13 = νΩ/νσ.
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Figure 2. Time evolution of σ from the full Hamiltonian F (thin curve), from the circular

planar Hamiltonian F0 (thin horizontal line), and from the frozen Hamiltonian F̃0 (thick curve).

Note that the solution of F̃0 follows the long term evolution of the center of libration while the
solution of F0 doesn’t.

The B-R method starts with the averaged restricted three body problem for the 1/1
mean motion resonance, similar to Eq. (3.1):

F = F0(σ,L,W,W ′) + εF1(σ,�,Ω,�′,Ω′, L,W,Z,W ′, Z ′)

where F0 corresponds to the circular planar problem. Then, the transformation to local
variables (Eq. 3.3) is introduced, which leads to a Hamiltonian like Eq. (3.4)

F = F0(θ, J,W,W ′) + εF1(θ,�,Ω,�′,Ω′, J,W,Z,W ′, Z ′).

This Hamiltonian is further expanded using an asymmetric expansion around the center
of libration, that is, a Taylor-Fourier expansion around J = 0, W = 0, and Z = 0†. The
secular variation of Jupiter’s orbit is introduced through the synthetic planetary theory
LONGSTOP 1B (Nobili et al. 1989). The direct gravitational effects of Saturn, Uranus
and Neptune on the asteroid are also included, assuming that these planets move on fixed
circular orbits with zero inclination.

In order to average over the libration period, the Hamiltonian is re-arranged like in
Eq. (3.6):

F = F̃0(J ;�,Ω,�′,Ω′,W,Z,W ′, Z ′) + µF̃1(θ, J ;�,Ω,�′,Ω′,W,Z,W ′, Z ′) (6.1)

where �,Ω,�′,Ω′,W,Z,W ′, Z ′ are taken as fixed parameters. Here, F̃0 is no longer the
Hamiltonian of the circular planar problem and µ is a small parameter somehow related
to the amplitude of libration. The key point is that F̃0 contains much more information
than F0, since it has embedded the slow variation of the other degrees of freedom. The
advantage of this can be appreciated in Fig. 2. The “first order” solution of Hamiltonian
Eq. (6.1) provides the proper action and angle (J∗, θ∗).

The averaging over the libration period leads to a new Hamiltonian that corresponds
to a two degrees of freedom non autonomous system. This Hamiltonian is split so that

† Note that an expansion around J = 0 is indeed asymmetric

https://doi.org/10.1017/S1743921304008580 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304008580


Asteroid proper elements 131

Figure 3. Comparison between the Trojan proper elements obtained with the B-R method (in
the ordinates) and the K-M method (in the abscissas). The straight line in each plot represents
the identity function. dp is the proper semi-amplitude of libration in a.

all the terms depending on the angles (�,Ω,�′,Ω′) are grouped in the “perturbation”,
and the “first order” solution by Hori’s method provides the proper actions and angles
(W ∗, Z∗,�∗,Ω∗). In the end, the set of proper actions (J∗,W ∗, Z∗) depend solely on the
initial conditions and on the orbital elements of the perturber, and are transformed back
to the set (Dp, ep, Ip).

A comparison between the results of the B-R method and those of the K-M synthetic
theory is shown in Fig. 3. In the case of ep, Ip, there is practically no differences between
both sets. The agreement is also very good for small values of Dp, but there is a system-
atic bias of the B-R proper elements with respect to the K-M set for large amplitudes of
libration. This bias is probably related to the early truncation of the asymmetric expan-
sion of the disturbing function. However, it may also be related to the chaotic character
of the large amplitude orbits that precludes the possibility of defining accurate proper
elements. This is clearly shown in Fig. 4. In spite of this, we have verified that the sys-
tematic character of the bias does not significantly affect the identification of asteroid
families.
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Figure 4. Trojan proper elements computed with the B-R method. The points are coded in
a gray-scale according to their LCE (computed from the K-M method): the darker, the more
stable. A circle around the dots indicates those cases for which the differences between the B-R
and K-M proper elements are larger than 1%. Most of these cases are related to chaotic orbits.

7. Proper elements for planet crossing orbits

As we already said, the application of a perturbative method based on an averaging
principle to solve the equations of motion of an asteroid under the perturbation of the
planets will fail whenever the perturbation has a singularity along the domain of the
solution. To avoid this problem, Gronchi and Milani (1999, 2001) introduced a generalized
averaging principle, that can be summarized as follows.

Consider the restricted circular N -body problem, where the planets are assumed to
move in circular and coplanar orbits. The Hamiltonian can be written as

F = F0(L,Li) + εF1(λ,�, λi − Ω, L,W,Z)

where F1 is the disturbing function expanded in terms of the (modified) Delaunay vari-
ables and depends on the combination λi − Ω. The secular motion of the system, under
the absence of any mean motion resonances is given by the equations〈

d�

dt

〉
=

∂ 〈F 〉
∂W

〈
dW

dt

〉
= −∂ 〈F 〉

∂�〈
dΩ
dt

〉
=

∂ 〈F 〉
∂Z

〈
dZ

dt

〉
= −∂ 〈F 〉

∂Ω
= 0 (7.1)
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where 〈X〉 = 1
4π2

∫ 2π

0

∫ 2π

0
X dλ dλi. These expressions have embedded the property that〈

∂F

∂x

〉
=

∂ 〈F 〉
∂x

(7.2)

for any x provided that F were continuous and differentiable in all the domain of interest.
The averaged Hamiltonian is a one degree of freedom Hamiltonian usually known as the
Kozai Hamiltonian.

When the orbits of the asteroid and one planet intersect each other, F1 has a first order
pole, arising from the direct perturbation, and the ∂F1/∂x have a second order pole. In
such case 〈F1〉 is a complete improper integral, but 〈∂F1/∂x〉 is a divergent integral and
the equations for the secular motion make no sense. The strategy of Gronchi and Milani
was to realize that this is true only at the point of intersection of the orbits, where the
pole exists. At all the other points along the orbit the relation (7.2) is still valid, and so
are Eqs. (7.1).

The idea is then to numerically integrate Eqs. (7.1) until arriving very close to the
intersection point, then to suitably manipulate the jump across the singularity and to
continue the integration. In order to manipulate the singularity, the authors introduce a
method of singularity extraction proposed by Kantorovich which consists into decompose
the direct part of the disturbing function in two terms whose averages can be computed
in terms of convergent integrals. In short, they write

∂

∂x

∫ 2π

0

∫ 2π

0

1
∆i

dλ dλi =
∂

∂x

∫ 2π

0

∫ 2π

0

1
δi

dλ dλi +
∂

∂x

∫ 2π

0

∫ 2π

0

(
1

∆i
− 1

δi

)
dλ dλi

where ∆i is the actual mutual distance between the asteroid and the i-th planet, and δi

is the mutual distance computed by assuming that, close to the mutual node, the bodies
are moving along straight lines tangent to the orbits at that point (Wetherill 1967). With
this method, the principal part of the singularity of ∂

∂x
1

∆i
is removed, and the reminder

∂
∂x ( 1

∆i
− 1

δi
) has now a first order pole, so that∫ 2π

0

∫ 2π

0

∂

∂x

(
1

∆i
− 1

δi

)
dλ dλi =

∂

∂x

∫ 2π

0

∫ 2π

0

(
1

∆i
− 1

δi

)
dλ dλi

The principal term ∂
∂x

1
δi

still has a second order pole, but the computation of

∂

∂x

∫ 2π

0

∫ 2π

0

1
δi

dλ dλi

can be performed analytically, giving rise to analytical expressions for the solution of the
equations of motion close to the mutual nodes (Gronchi 2002). These expressions allow
to jump over the singularity during the numerical integration of the equations.

The proper elements are then obtained from the solution of the Eqs. (7.1) by com-
puting the average semi-major axis, the maximum and minimum eccentricity and the
maximum and minimum inclination over one period of ω = � − Ω (either if ω is circu-
lating or librating). The solution also provides the proper frequencies and the encounter
circumstances with each planet (radiant, planetocentric velocity and date). This latter
information allows to predict the occurrence of node crossings and is particularly in-
teresting in the case of Earth crossing asteroids, since it provides a way to link meteor
streams with NEAs and to evaluate potential Earth impactors.

Let’s say to close this review that these proper elements do not have the same meaning
as the usual proper elements since they are not quasi-integrals of motion in a strict sense.
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Their stability is guaranteed only over a short time scale, either of the order of the period
of a complete oscillation of ω, or until the next very close approach to a planet.
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Knežević, Z. & Milani, A. 2003, Astron. Astrophys. 403, 1165
Lemaitre, A. & Morbidelli, A. 1994, Cel. Mech. Dyn. Astron. 60, 29
Milani, A. 1993, Cel. Mech. Dyn. Astron. 57, 59
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