A COVERING THEOREM FOR TYPICALLY REAL FUNCTIONS

by D. A. BRANNAN and W. E. KIRWAN†

(Received 8 June, 1968)

Let T denote the class of functions

$$f(z) = z + a_2 z^2 + \dots$$

that are analytic in $U = \{ |z| < 1 \}$, and satisfy the condition

$$\operatorname{Im} f(z)$$
. $\operatorname{Im} z \ge 0$ $(z \in U)$.

Thus T denotes the class of typically real functions introduced by W. Rogosinski [5].

One of the most striking results in the theory of functions

$$g(z) = z + b_2 z^2 + \dots$$

that are analytic and univalent in U is the Koebe-Bieberbach covering theorem which states that $\{|w| < \frac{1}{4}\} \subset g(U)$. In this note we point out that the same result holds for functions in the class T, a fact which seems to have been overlooked previously. We also determine the largest subdomain of U in which every f(z) in T is univalent, extending previous results in [1] and [2].

Our basic tool is the following theorem of M. P. Remizova.

THEOREM 1. [3] If $f(z) \in T$ and $z = re^{i\theta} \in U$, then

$$|f(z)| \ge \begin{cases} \frac{r}{|1+z|^2} & \text{if } \operatorname{Re}\left(z+\frac{1}{z}\right) \ge 2, \\ \frac{r}{|1-z|^2} & \text{if } \operatorname{Re}\left(z+\frac{1}{z}\right) \le -2, \\ \frac{r(1-r^2)|\sin\theta|}{|1-z^2|^2} & \text{if } |\operatorname{Re}\left(z+\frac{1}{z}\right)| \le 2. \end{cases}$$
(1)

We shall also require the following

LEMMA. Let C_1 denote the arc of $|z+i| = \sqrt{2}$ on which Im $z \ge 0$. For z on C_1 ,

$$\left|\operatorname{Re}\left(z+\frac{1}{z}\right)\right| \leq 2.$$
(2)

Proof. Let $s = \frac{1}{2}(r+1/r)$, so that s > 1 for 0 < r < 1. If $z \in C_1$, $2r \sin \theta = 1 - r^2$, and so $\cos^2 \theta = 2 - s^2$. Now z satisfies (2) if and only if $|\cos \theta| \le 1/s$, and this is certainly true for z on C_1 , since $2 - s^2 \le s^{-2}$ for all $s \ge 1$.

† Supported in part by NSF GP 6891.

THEOREM 2. Let w = f(z) belong to T. Then $\{|w| < \frac{1}{4}\} \subset f(U)$.

Proof. We assume first that f(z) is continuous in $|z| \leq 1$. Let z be a point of C_1 not equal to ± 1 . By the Lemma and Theorem 1,

$$|f(z)| \ge \frac{r(1-r^2)\sin\theta}{|1-z^2|^2} = \frac{1}{4},$$

since $2r\sin\theta = 1 - r^2$ and $|1 - z^2|^2 = 1 + r^4 - 2r^2\cos 2\theta = 2(1 - r^2)^2$ for $z = re^{i\theta}$ on C_1 . On the other hand, it follows from (1) that, for real values of z,

$$|f(z)| \ge \frac{|z|}{(1+|z|)^2}.$$

Thus, $|f(\pm 1)| \ge \frac{1}{4}$, and hence $|f(z)| \ge \frac{1}{4}$ for z on C_1 . If C_2 denotes the arc of $|z-i| = \sqrt{2}$ on which Im $z \le 0$, then C_1 and C_2 intersect at 1 and -1. Since $f(\overline{z}) = \overline{f(z)}$ for each f(z) in T, $|f(z)| \ge \frac{1}{4}$ on C_2 . If we set $C = C_1 \cup C_2$, then we have shown that $|f(z)| \ge \frac{1}{4}$ on C; hence $\{|w| < \frac{1}{4}\} = f(U)$ by Rouché's Theorem, since f(0) = 0.

If f(z) is not continuous in $|z| \leq 1$, then we apply the above argument to the function

$$g_R(z) = \frac{1}{R} f(Rz)$$
 (0 < R < 1).

Since $\lim g_R(z) = f(z)$ for z in U, the result follows.

Let L denote the inside of the curve C of the previous theorem; i.e.,

$$L = \{ |z+i| < \sqrt{2} \} \cap \{ |z-i| < \sqrt{2} \}.$$

In [3], Remizova has shown that the largest subdomain U' of U in which every f(z) in T is univalent is contained in L. Using a result of L. Čakalov [1], we point out that U' = L.

THEOREM 3. If $f(z) \in T$, then f(z) is univalent in L. Furthermore, if $z_0 \in U-L$, there is a function in T whose derivative vanishes at z_0 .

Proof. M. S. Robertson [4] has shown that, if $f(z) \in T$, then

$$f(z) = \int_{-1}^{1} \frac{z}{1 - 2tz + z^2} d\alpha(t) = \frac{1}{2} \int_{-1}^{1} \frac{d\alpha(t)}{w - t},$$

where $\alpha(t)$ is increasing on [-1, 1], $\alpha(1) - \alpha(-1) = 1$, and $w = \frac{1}{2}(z+1/z)$. In [1], Čakalov proved that $\int_{-1}^{1} \frac{d\alpha(t)}{w-t}$ is univalent in $\{|w| > 1\}$. The curve |w| = 1 is the image of C under the transformation $w = \frac{1}{2}(z+1/z)$, and, consequently, f(z) is univalent in L.

Finally, for any λ ($0 < \lambda < 1$), the function defined by

$$f_{\lambda}(z) = \frac{\lambda z}{(1-z)^2} + \frac{(1-\lambda)z}{(1+z)^2}$$

A COVERING THEOREM FOR TYPICALLY REAL FUNCTIONS 155

is in T, since T is a convex set containing $z/(1\pm z)^2$. Now $f'_{\lambda}(z) = 0$ when

$$\frac{1+z}{1-z} = \left(-\frac{1-\lambda}{\lambda}\right)^{1/4},$$

and as z varies round C, $\{(1+z)/(1-z)\}^4$ attains all real negative values; hence, if z_0 is a point of U which lies on C, λ can be chosen so that $f'_{\lambda}(z_0) = 0$. If z_0 is any point of U-L, then, by considering the function $R^{-1}f_{\lambda}(Rz)$ (0 < R < 1), we obtain a function in T whose derivative vanishes at z_0 .

Note. In [2] it was shown that any function in T maps $\{|z| < \sqrt{2}-1\} \subset L$ univalently onto a domain starlike with respect to w = 0.

REFERENCES

1. L. Čakalov, Maximal domains of univalency of some classes of analytic functions, Ukr. Math. J. 11, no. 4 (1959), 408-412 (Russian).

2. W. E. Kirwan, Extremal problems for the typically real functions, Amer. J. Math. 88 (1966), 942-954.

3. M. P. Remizova, Extremal problems in the class of typically-real functions, *Izv. Vyss. Uc. Zaved. Mat.* (1963), no. 1 (32), 135-144.

4. M. S. Robertson, On the coefficients of typically real functions, Bull. Amer. Math. Soc. 41 (1936), 565-572.

5. W. W. Rogosinski, Über positive harmonische Entwicklungen und typische-reelle Potenzreihen, Math. Z. 35 (1932), 93–121.

UNIVERSITY OF MARYLAND COLLEGE PARK, MD., U.S.A.