§ 7. The following proof, by means of co-ordinates, of the general theorem of (§ 3) is so simple, that it may be worth while giving it here.

Put (fig. 38)
$$AL:LB = DM:MC = \lambda:\mu$$
;
 $AR:RD = LP:PM = BS:SC = p:q.$

Let the co-ordinates of R, P, Q, be (ξ_1,η_1) , (ξ_2,η_2) , (ξ_3,η_3) ; the co-ordinates of A be (x_1,y_1) , etc.

Then
$$\xi_1 = (qx_1 + px_4)/(p + q)$$
.
 $\xi_2 = \{p(\lambda x_3 + \mu x_4)/(\lambda + \mu) + q(\lambda x_2 + \mu x_1)/(\lambda + \mu)\}/(v + q)$
 $= \{p(\lambda x_3 + \mu x_4) + q(\lambda x_2 + \mu x_1)\}/(\lambda + \mu)(p + q)$.
 $\xi_3 = (px_3 + qx_2)/(p + q)$.
Now we may easily show that if we put
 $P = \{p(x_4 - x_3) + q(x_1 - x_2)\}/(\lambda + \mu)(p + q),$
 $Q = \{p(y_4 - y_3) + q(y_1 - y_2)\}/(\lambda + \mu)(p + q),$
then
 $\xi_2 - \xi_3 = \mu P; \ \xi_3 - \xi_1 = -(\lambda + \mu)P; \ \xi_1 - \xi_2 = \lambda P.$
Hence
 $\eta_1(\xi_2 - \xi_3) + \eta_2(\xi_3 - \xi_1) + \eta_3(\xi_1 - \xi_2)$
 $= \eta_1 \mu P - \eta_2(\lambda + \mu)P + \eta_3 \lambda P$
 $= P\{\lambda(\eta_3 - \eta_2) + \mu(\eta_1 - \eta_2)\}$
 $= P\{\lambda(-\mu Q) + \mu(\lambda Q)\}$
 $= PQ(-\lambda \mu + \lambda \mu) = 0.$

Hence R, P and S are collinear.

An Apparatus of Professor Tait's was exhibited which gives the same curve as a glissette, either of a hyperbola or an ellipse.

Fourth Meeting, 28th February 1890.

R. E. ALLARDICE, Esq., M.A., Vice-President, in the Chair.

On the Moduluses of Elasticity of an Elastic Solid according to Boscovich's Theory.

By Sir William Thomson.

The substance of this paper will be found in the *Proceedings of* the Royal Society of Edinburgh, Vol. xvi., pp. 693-724; and Thomson's Mathematical and Physical Papers, Vol. iii., Art. xcvii., pp. 395-498.