§ 7. The following proof, by means of co-ordinates, of the general theorem of ($\$ 3$) is so simple, that it may be worth while giving it here.

Put (fig. 38)

$$
\begin{aligned}
\mathrm{AL}: \mathrm{LB} & =\mathrm{DM}: \mathrm{MC}=\lambda: \mu ; \\
\mathrm{AR}: \mathrm{RD} & =\mathrm{LP}: \mathrm{PM}=\mathrm{BS}: \mathrm{SC}=p: q .
\end{aligned}
$$

Let the co-ordinates of R, P, Q, be (ξ_{1}, η_{1}), ($\left.\xi_{2}, \eta_{2}\right),\left(\xi_{3} \eta_{3}\right)$; the co-ordinates of \mathbf{A} be (x_{1}, y_{1}), etc.

Then $\xi_{1}=\left(q x_{1}+p x_{4}\right) /(p+q)$.

$$
\begin{aligned}
\xi_{2} & =\left\{p\left(\lambda x_{3}+\mu x_{1}\right) /(\lambda+\mu)+q\left(\lambda x_{2}+\mu x_{1}\right) /(\lambda+\mu)\right\} /(v+q) \\
& =\left\{p\left(\lambda x_{3}+\mu x_{4}\right)+q\left(\lambda x_{2}+\mu x_{1}\right)\right\} /(\lambda+\mu)(p+q) . \\
\xi_{3} & =\left(p x_{3}+q x_{2}\right) /(p+q) .
\end{aligned}
$$

Now we may easily show that if we put

$$
\begin{aligned}
& \mathbf{P}=\left\{p\left(x_{4}-x_{3}\right)+q\left(x_{1}-x_{2}\right)\right\} /(\lambda+\mu)(p+q), \\
& \mathbf{Q}=\left\{p\left(y_{4}-y_{3}\right)+q\left(y_{1}-y_{2}\right)\right\} /(\lambda+\mu)(p+q),
\end{aligned}
$$

then

$$
\xi_{2}-\xi_{3}=\mu \mathrm{P} ; \xi_{3}-\xi_{1}=-(\lambda+\mu) \mathrm{P} ; \xi_{1}-\xi_{2}=\lambda \mathrm{P} .
$$

Hence

$$
\begin{aligned}
& \eta_{1}\left(\xi_{2}-\xi_{3}\right)+\eta_{2}\left(\xi_{3}-\xi_{3}\right)+\eta_{3}\left(\xi_{1}-\xi_{2}\right) \\
& =\eta_{1} \mu \mathrm{P}-\eta_{2}(\lambda+\mu) \mathrm{P}+\eta_{3} \lambda \mathrm{P} \\
& =\mathrm{P}\left\{\lambda\left(\eta_{\mathrm{s}}-\eta_{2}\right)+\mu\left(\eta_{1}-\eta_{2}\right)\right\} \\
& =\mathrm{P}\{\lambda(-\mu \mathrm{Q})+\mu(\lambda \mathrm{Q})\} \\
& =\mathrm{PQ}(-\lambda \mu+\lambda \mu)=0 .
\end{aligned}
$$

Hence R, P and S are collinear.

An Apparatus of Professor Tait's was exhibited which gives the same curve as a glissette, either of a byperbola or an ellipse.

Fourth Meeting, 28th February 1890.
R. E. Allardice, Esq., M.A., Vice-President, in the Chair.

On the Moduluses of Elasticity of an Elastic Solid according to Boscovich's Theory.
By Sir William Thomson.
The substance of this paper will be found in the Proceedings of the Royal Society of Edinburgh, Vol. xvi., pp. 693-724; and Thomson's Mathematical and Physical Papers, Vol. iii., Art. xcvii., pp. 395-498.

