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§ 7. The following proof, by means of co-ordinates, of the general
theorem of (§ 3) is so simple, that it may be worth while giving it
here.

Put (fig. 38) AL:LB = DM:MC = X-.fi;
AR:RD = LP:PM = BS:SC =p:q.

Let the co-ordinates of R, P, Q, be (£i,%), (£2,1)1), (£»%) ; the
co-ordinates of A be (x^y^, etc.

Then ^(qx^pxj/ip + q).
& = {p( Ax, + /«;<)/( A. + p) + q{^ + /«*,)/( A. + fi)}/(v + q)

= {p(\x3 + fixj

Now we may easily show that if we put
P = {p(xt - xz) + q(xl - x,)}/(A. + fi)(j> + q),
Q = {P(y4 ~ 2/3)

then &-&=/*P;
Hence i;,^, - ^3) + %(£, - ^ ) + %(^ -

Hence R, P and S are collinear.

An Apparatus of Professor Tait's was exhibited which gives the
same curve as a glissette, either of a hyperbola or an ellipse.
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