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1. Introduction. Let A be a C*-algebra. For each Banach ^-bimodule X, the second
continuous Hochschild cohomology group H2(A, X) of A with coefficients in A'is defined (see
[6]); there is a natural correspondence between the elements of this group and equivalence
classes of singular, admissible extensions of A by X. Specifically this means that
H2(A, X) ^ {0} for some X if and only if there exists a Banach algebra B with Jacobson
radical R such that R2 = {0}, R is complemented as a Banach space, and B/R 2* A, but B has
no strong Wedderburn decomposition; i.e., there is no closed subalgebra C of B such that
B = C© R. In turn this is equivalent to dbA^-2, where dbA is the homological bidimension
of A; i.e., the homological dimension of A#, the unitization of A, as an ,4-bimodule [6,
III.5.15]. This paper is concerned with the following basic question, which was posed in [7].

Is db /4^2 for each infinite-dimensional C*-algebra Al

A positive answer to this question has been obtained in each of the following cases.

(i) A is commutative [8];
(ii) A is separable and has a closed ideal of finite codimension that cannot be com-

plemented as a subalgebra, or A is separable and non-unital [1];
(iii) A is a CCR-algebra [11].

Actually in each case the stronger result is established that dgA~^2'\n the case where A is an
infinite-dimensional member of the specified class; here dgA is the global homological
dimension of A [6, III.5.7], and it is known that dgA^-2 if and only if there exist Banach left
^-modules Y and Z such that H2(A, B(Y, Z)) ^ {0}, where B{Y, Z) denotes the ^-bimodule
of continuous linear mappings from Y into Z.

Let A be a C*-algebra, and suppose that A admits a non-unital, closed ideal / of finite
codimension. We show in §3 of this paper that H2(A, /(§)/) ^ {0} in this case, and so in par-
ticular dbA^-2. In fact, we give an explicit formula for a cocycle ix of A with values in I®I
and show that /x does not cobound. As a corollary, we obtain the fact that dbA^2 for each
infinite-dimensional type I C*-algebra.

Finally we shall demonstrate that our methods may also be used to establish that
dgA ^ 2 in certain cases.

2. Preliminaries. Let A be a C*-algebra. If A is unital, we write \A for the identity of A.
We write A+ (respectively, Aia) for the positive (respectively, self-adjoint) elements of A, and
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we write A# for the unitization of A in the sense of [12, 1.1.3], so that A#= A if A is unital,
and A*— A © C otherwise. By an approximate unit for A we shall mean an increasing net of
elements of A+ of norm at most one that is an approximate identity for A in the usual sense.
We denote by A(^4) the set of elements a in A+ such that ||a|| < 1. By [12, 1.4.2], A(/4) is an
approximate unit for A in the partial ordering on Asa; as in [12], we shall refer to it as the
canonical approximate unit for A. We denote by S(A) the set of states on A.

Let £ be a Banach space. We denote by E* the continuous dual of E. Also, we write
E® F(respectively, E®F) for the algebraic (respectiely, projective) tensor product of Banach
spaces E and F. We write B(E, F) for the Banach space of bounded linear maps from E into
F. The (projective) tensor product of two operators S € B{E\,F\) and f e B f ^ , ^ ) is
denoted by S ® T e B(EX®E2, FX®F2).

Let A be a Banach algebra. Then A* is a Banach ,4-bimodule for the operations

(b, <p- a) = {ab, tp) a n d {b, a - cp) = (ba, cp) {<p e A*, a , b e A).

Also, the Banach space A®A is a Banach ,4-bimodule for the operations
a • (b <g> c) = ab <g> c a n d (a <S> b) • c = a <g> be (a, b, c e A).

We shall use the fact that ((<p • a) <g> V0(M) = (<P ® V0(fl • M) a n d (<P ® (fl " V0)(M) = (<P ® V0(M • fl)
for <p, ip- e A*, a e A and u e A®A; these formulae are immediate from the definitions.

Let A be a Banach algebra, and let X be a Banach ^-bimodule. We denote by Z2(A, X)
the Banach space of continuous bilinear maps /x : A x A -> X that satisfy the cocycle identity

a • fi(b, c) — ii{ab, c) + fj,(a, be) — n(a, b) • c = 0 (a, b, c e A);

the elements in Z2(A, X) are the 2-cocycles of A with coefficients in X. For T € B(A, X) we
define

( 5 1 7 ) ( a , b) = a - T{b) - T(ab) + T(a) b ( a , b € A);

the map Tt+8lT is a continuous linear map from B{A,X) into Z2(A,X) whose range is
denoted by M (A, X); the elements in A/ {A, X) are the 2-coboundaries of A with coefficients
in X. The quotient group Z2(A, X)/Af2(A, X), denoted by H2(A, X), is the second continuous
Hochschild cohomology group of A with coefficients in X. For more information on (Banach)
Hochschild cohomology see [6] and [10]; on the question of the role of second cohomology
groups and the splittings of extensions of a Banach algebra, we refer to [2].

3. Nontrivial cocycles for nonunital C*-algebras. We start this section with a general
lemma, which is inspired by [6, V.2.14],

LEMMA 1. Let A be a C*-algebra, let E be a Banach space, and let 0 : A -> E®E be a
linear map. Let h.(A) be the canonical approximate unit for A, and let U(0) denote the system of
neighbourhoods o /0 in (E*, a(E*, E)). Suppose that, for each s > 0, there exists a non-empty
subset Y of the unit ball of E* such that, for all (p\,... ,<pn e Y, a € A(A) and U 6 U(0), there
exist b € A(^) and tp e UHY with b^a and

|fa®0>)(0(6))-l| <£,forU/^«. (3.1)

Then 0 is unbounded.
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Proof. Assume that 0 is bounded. Let £ > 0, and let Y be the corresponding subset of
the unit ball of E*. First we inductively construct, for every positive integer n, elements (pn, 1/O1
of Y and a,,, bn of h(A) such that the following hold for each n.

\(<Pi ® 1rn){®{bn - an)) - 11 < 2e for i ^ n ; (3.2)

I(<Pi ® %){®{bn - an))\ < s for i^nj < n; (3.3)

\(<Pi ® tn)(®{bj - aj))\ < s for i^nj < n; (3.4)

j fl/))| < e for i,j < n; (3.5)

bn, and 6,,_i ^an if « ^ 2 . (3.6)

If n = 1, then it is immediate from the condition in the lemma that <p\,^\eY and
a\,b\e A(A) exist to satisfy (3.2) to (3.6).

Now assume that n^2, and that <pt, \j/t, a,- and b, have already been constructed for
1 < / < « — 1. It follows from the condition in the lemma that there exists q>n e Y such that
(3.5) is true; and we may then inductively choose elements p\, p2, •.. of Y and an increasing
sequence xo, x\,... of elements of A(A) such that XQ = bn-\ and

\(<Pi ® Pr)(®(bj - aj))\ < e, \(<pi ® pr)(e(xr - xr-i)) - 11 < 2e

for i^nj < n and r ^ 1. Since (xr)r is an increasing sequence bounded above, we have that
x, — xr-\ -*• 0 weakly, and so there exists r ^ 1 such that

< e

for i^n andj < n. We choose fn = pr, an = xr-\ and bn = xr. Then (3.2) to (3.6) are satis-
fied, and the induction continues. n

We now fix a positive integer n and consider the element a = XX&, — a,). Certainly we
have ||a|| ^ 1. The conditions (3.2) to (3.6) imply that '='

\{<Pi ® fj){@{a)) - 1| < 2ns for

\(<Pi ® \Jfj)(®(a))\ < ne for 1 <

We may thus deduce from [6, II.2.48] (see also [9, Lemma 3.1]) that

|| 01| 5* II ®(a) || > — log n - 2n2e,
2n

which cannot be true because £ and n were chosen arbitrarily. We have arrived at a contra-
diction, and the result follows.

We can now state the main result of this paper.

THEOREM 1. Let A be a C*-algebra and let I be a non-unital closed ideal of A of finite
codimension. Then H2(A, 7®/) ^ 0. In particular,
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Proof. Since H2{A, I® I) and TL2{A#, 7<g>7)are isomorphic, we may suppose that A is uni-
tal and that A/I ^ 0. We shall regard A®A and /<§>/ as Banach ,4-bimodules in the usual
way, so that a • (b ® c) = ab ® c and (a ® b) • c — a ® be for a, b, c e A. Likewise, we shall
regard (A/I)®(A/I) as a Banach ,4/7-bimodule. Let {e^,: k — 1 , . . . , N; i,j = 1 , . . . , nk\ be a
*-matricial basis (in the sense of [5, p. 113]) for the finite-dimensional C*-algebra A/I, so that
E 4 = !/<//and

for A:, r = 1 , . . . , N,i,j = 1 , . . . , rik and s, t = 1 , . . . , nr. We set

i,*r

and we denote by n : {A/I)®{A/I) -> ^ / 7 , o ® bt-^-ab, the product map for ,4/7. Then A is a
diagonal for A/1; i.e., we have 7r(A) = 1 and

x • A = A • x for x € / I / / . (3.7)

Let K : ,4 ->• ^4/7 be the quotient map, and let p : A/I ->• A be a linear map such that
K°p = HA/I', note that p is continuous because A/I is finite-dimensional. We consider the
continuous linear map

T: A ->• /f<g>,4 : a^-a • (p ® p)(A) - (p ® p)(<f(a) • A).

Set yu. = <$' T, and let a, b e A. A simple calculation shows that

H(a, b) = a-(p® p ) ( A ) -b-a-(p® p)(ic(b) • A ) + ( p <8> p)(/c(aZ)) • A ) - ( p ® p)(K(a) • A) • b.

It follows that

(/c ® id^)0i(a, 6)) - 4a ) • (id,,// ® p)(A) • b - K{O) • {\&A/, <g> p)(>c(b) • A)

+ (id,!// ® p)W«*) • A) - (id,,// ® p)(«(a) • A) • b

= (K(O) • (id,,// ® p)(A) - (id^// ® p)(/c(a) • A)) • b

+ (id,*// ® p)(ic{ab) • A) - /c(a) • (id,*// (81 p)(i((b) • A)

= 0-6 + 0 = 0.

Thus fj,(a, b) e ker(* (8) id,*). But also /x(a, b) e A® A, the algebraic tensor product of A with
itself, and so /x(a, b) e ker(«-) (8>/4 = 7(8i^4bya standard piece of linear algebra. Analogously
we can show (using (3.7)) that ii(a, b) e A® I. Hence /x(a, b) lies in (7 ® A) n (A ® 7) = 7 <gi 7,
and so we have shown that /i e Z 2 ( i , 7®7).

We claim that n defines a non-trivial element of the group H2(A, I®l). To see this, let us
assume that this is not the case. Then there exists a continuous linear map f: A -+ I®I such
that
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, b) = a • f(b) - f(ab) + f(a) • b (a, be A). (3.8)

Recall that each cp e S(I) has a unique extension to a state on A, that we shall again denote
by <p. Let (ux) be an approximate unit for /, and let <p, f e S(T). From (3.8) and the definition
of ft, we see that

UX • (P ® p ) ( A ) •U,l=UX- f(uy) - fiuiU,,) + f{U)) • MM

a n d the re fo re

( )) ((cp • ux) {f{)) (f()

for all X, ix. Taking limits, first over X (for fixed /i.) and then over /x, and using the fact that
the nets (<p • ux) (respectively, (ux • if)) are norm-convergent to <p (respectively, to i/r), we
obtain that

)). (3.9)

Since / i s non-unital, it admits a net (<pff) of states that is weak-* convergent to 0 [4, 2.12.13].
We may suppose that ((pa) converges in the weak-* topology on A* to a state <p on A. Then
cp vanishes on /, and cpop is a state on A/I. Hence there exists a unitary element u in A/I
and 1 ^ / ^ N such that (p(p{uel

u)p(ue'u)*) = (p[p(ue'uu*)) > 0; we may suppose that
^a(p(Me'|)/o(Me/

11)*)^5 > 0, for some S independent of a. We consider the positive func-
tionals

\lra : I-• C : ah+ [<pa(p{ue\\)p{ue\,)*JJ <pa(p{ue[,)ap(ue\,)*j.

Let (w;) be an approximate identity for / which is quasi-central (see [12, 3.12.14]), so that
\\uxa — aux\\ -*• 0, for each a e A. Then it is easily checked that \imx^a(ux) = 1, and so each
\fra is a state on /. Clearly we have

ifa - • 0 (in a(r, I)) and ^(p(e ' , , )) - • 1. (3.10)

Now let 0 be the restriction of t to /, and let A(7) be the canonical approximate unit for /.
We wish to apply Lemma 1 to 0 , and so we choose s > 0. Let Y be the set of <p in S{I) such
that |^(p(e/

M)) — 1| < e. Choose q>\, ...,<pn e Y,a e A(7) and a neighbourhood U of 0 in
(/*, a(P, I)). From (3.10) we see that we can find ao such that i/ro e Yd U for each a^cto; it
also follows that the tya, considered as functionals on A, are weak-* convergent to the state
ijfoK, where if is the pure state on A/1 that satisfies iA(eii) = 1 an<3 iA(^) = 0 whenever
(k, i,j) ^ (/, 1, 1). Let <p G S(I). Then

\ima(<p ®
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Hence, by (3.9) and the definition of Y, we may choose ct\ ^CLQ and then b e A(7) such that
and

Choose <p = i]/ai. Then <p e YD U, and the condition (3.1) of Lemma 1 is satisfied. Conse-
quently 0 is unbounded. This is a contradiction.

REMARK. In the case where A is non-unital and I = A, the cocycle that we have con-
structed is the map fx : (a, b)\-+a® b, A x A -*• A<g)A. This cocycle has been considered
before in [9, Theorem 3.2], where it was shown that fj, defines a non-trivial element of
H2(A, A®A) in the case where A is a non-unital, amenable Banach function algebra. It
would be interesting to know whether the condition that A be amenable is needed here.

We shall need the fact that each infinite-dimensional type I C*-algebra contains a closed
non-unital ideal of finite codimension. A proof of this is (implicitly) contained in [1, §7]; we
shall give another, shorter, proof here for the sake of completeness.

Recall that a closed ideal / of a C*-algebra A is essential ([12, 3.12.7]) if each non-zero
closed ideal of A has non-zero intersection with /, or, equivalently, when the annihilator
IL = [a e A : al = 0} is zero. I f / i s unital, then IL = (\A» — \f)A and / © IL = A; hence i f / is
unital and essential, then I = A.

COROLLARY 1. Let A be an infinite-dimensional type 1C*-algebra. Then dbA^2.

Proof. Let C be the set of non-unital closed ideals of A. An application of Zorn's lemma
shows that the set C U {0} has a maximal element, / say. Set B — A/1. By [12, 6.2.11], B con-
tains a closed, essential ideal / which has continuous trace. The maximality of / implies that
J is unital. Thus J — B and B has continuous trace. Hence by [12, 6.1.11] the primitive ideal
space Prim(.fi) of B is a compact Hausdorff space. Let P e Prim(5), and let F = Ynm{B)\{P).
Then Fis homeomorphic to Prim(/>). But P is unital, and so (see [4, 3.1.8]) Prim(/>) is com-
pact. Hence F is a compact, and therefore closed, subset of Prim(fi). We have shown that
Prim(fi) is a discrete compact space, which must therefore be finite. Thus B = A/1 is finite-
dimensional. The result now follows from Theorem 1.

Let / be a closed ideal of a C*-algebra A, and let X be a Banach j4//-bimodule. Then the
quotient map K : A ->• A/I induces a Banach y4-bimodule structure on X. We have a canon-
ical map

H2(A/I, X) -> H2(A, X), ix+M2(A/I, X)H>IIO(K $ K) + M2(A, X).

We claim that this is an embedding. Indeed, let /x 6 Z2(A/I, X), and suppose that /ZO(K ®K) e
M2{A, X). Then there exists a continuous linear map T: A -> X such that

H(a + I,b + I) = (a + 1)- T{b) - T{ab) + T{a) (b + I) (a, be A).

It follows that T vanishes on I2, the set of all products of two elements of /. But I2 = / by
Cohen's factorization theorem. Thus / c kerT and T induces a continuous linear map
f:A/I-+ X. Clearly we have IM = S1T. Hence ^ € Af2(A/I, X), and our claim follows.

In particular, we see that dbA^2 if dbA/1^2. This fact together with an easy adapta-
tion of the proof of [1, Theorem 4] implies that the following theorem analogous to [1,
Theorem 4] is true.
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THEOREM 2. Suppose that dbA^2for each infinite-dimensional, unital, simple C-algebra
A. Then dbA^2, for each infinite-dimensional C*-algebra A.

Although primarily designed to give lower bounds on dbA, our methods may also be
used to establish that dgA^2 in certain cases. We shall demonstrate this in our next theo-
rem, where we give another application of Lemma 1.

For Banach left ,4-modules Y and Z, the Banach space B{Y, Z) will always be endowed
with the /(-bimodule structure given by

(a-T)(y) = a-T(y) and (T-b)(y)=T(b-y) (y e Y) (3.11)

for a,b e A and T e B(Y, Z). From the general theory it is known that dgA^-2 if and only if
H2(A, B(Y, Z)) ^ {0}, for some Y and Z. (See [6, IH.5.15].)

THEOREM 3. Let A be a C*-algebra and let I be a closed ideal of A of finite codimension.
Suppose that I admits a sequence of states that is weak-* convergent to 0. Then we have
H2(A,B(r*,I®(I-I**))) ^ {0}. In particular, dgA^2.

REMARKS, (i) Here /• /** denotes the set of all products ab, where a e / and b e /**. By
the Cohen factorization theorem, /• /** is a closed subspace of/**.

(ii) We shall regard 7** and /®(/ • /**) as left Banach ^-modules in the usual way, so that
B(J**, /<§>(/• /**)) carries the ^-bimodule structure denned in (3.11).

(iii) Clearly the condition on / in the theorem is satisfied in the case where / i s non-unital
and separable. Hence our theorem contains the main result in [1].

Proof. Suppose that /satisfies the condition in the theorem. Let fi : A x A -*• /®/be the
cocycle constructed in Theorem 1. For a,beA and c e I** we set

v(a, b)(c) = (j.(a, b) • c.

This defines a map v : A x A ->• B{T**, I®(I • /**)), and it is easily checked that v is 2-cocycle.
We claim that v defines a non-trivial element of the group H2(A, B{P*, I®{I • /**)))• To see
this, let us assume that this is not the case. Then there is a continuous linear map
T: A -> B(I**, I®(I • /**)) such that

a • T(b)(c) - T(ab)(c) + T(a)(bc) = (4a, b) • c (3.12)

for all a,b e A and c e /**. We set E = /• /**, and for a e /we set

where i : I^E is the inclusion map. Then 0 : / -+ E®E is a continuous linear map. We wish
to apply Lemma 1 to 0 . Let e > 0 be given.

As in Theorem 1, let p : A/1 —> A be a linear map that is a right inverse for the quotient
map K : A -» A/1. The condition on /implies that the construction in the proof of Theorem 1
yields a *-matrical basis {e|} of A/I and a sequence (irm) of states on / that is weak-* con-
vergent to 0 such that

i /^ej,)) {f € 5(7)), (3.13)
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where A = £ ef, ® ef,, and
k.i

(3.14)

Let Yo be the set of all <t> e S(I) such that \<p(p(e[
u)) - 1| < e. Let a : l*^-]*** be the canon-

ical embedding, and let fi: 7*** -> E* be the map that restricts an element ^ in /*** to £. We
choose Y to be the image of Yo under the mapping f}°a : /*-»•£*. Choose
<?i,..., <?„ e y, a e A(7) and a neighbourhood C/of 0 in (£*, CT(£*, £)). By the definition of F,
there are <j>\,..., <f>n e Yo such that #>,- = (/3°a) (</»,),(/= 1,... ,«). For each m we set
rm = (p°a)(\jrm). Clearly each xm is an extension of i/rm to E and it is easily checked that
xm -» 0 in the weak-* topology on E*. Hence, by (3.14) there exists mo such that xm e YD U,
for all m^niQ. Also it follows from (3.13) and the definition of Y that there exist
S e (0, e), c € A(7) and m\ ^m 0 such that

(3.15)

for all m^m\, and
(3.16)

Now let Mo = 0^«i ^«2 • • • be an increasing sequence in A(7) such that u\^a and

limj|cwm - c|| = 0 and \\mm\jrm(um) = 1.

By (3.12) and the definition of ^ we have that

c • ®(um) - @(cum) + T(c)(um) = ii(c, «„,) = c • (p

for all m. Hence by (3.15)

Pi • c) ® Tm)(0(«m)) - 11 ^ |((0, • c) O ((l/« - um) •
(3.17)

P/ ® Tm)(©(cM«))l +

for all / e {1,. . . ,«} and m^m\. We have that

\(<Pi ® Tm)(0(c«m))| ^ |fa ® Tm)(0(c))| + | |0 | | ||c«m - c\\

for all m. But 0(c) e £®£' and consequently

limJO?, ® rm)(®(cum))\ = 0 (1 < i^ / i ) . (3.18)

Also we have ||(l/» - wm) • V̂mll ^(1 - ^ ( " m ) ) 5 ^ 0 as w -»• oo and therefore

limm|((</>, • c) ® ((1/.. - um) • irm))((p ® P)(A))| = 0 (3.19)

for all / e {1, . . . ,«}.
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For X = (Xj) e co(N) we set a(X) = Yljli ^j(uj ~ uj-\)- I t ' s straightforward to check that
a is a well-defined continuous linear map from co(N) into /. Therefore a** maps l°°(N) into
I**. Fix ip e S{I). For each positive integer m we define

Xm : P°(N) - * C : X^(<p® rm)(T(c)(cr**(X))).

Then (Xm) is a sequence of continuous functionals on P°(N) that is weak-* convergent to 0.

By Phillips's lemma, we have that limm £ \Xm(?j)\ = 0> where e, is the sequence which has 1
j=\

in they'-th position and 0 elsewhere. (For a proof see [3, p.83]; note that this lemma has been
used, in similar situations, in [6, V.2.15] and also [1].) But

1)1

7=1

\((p®Tm)(T(,
m

c){uj-uM)\ = Y_
7=1

\{<P® rm)(T(c)(um))\£ (j M) ^ (j)
7=1

for all m, and so we conclude that \imm\(<p® rm)(T(c)(um))\ = 0 . This together with (3.16),
(3.17), (3.18) and (3.19) shows that there exists m2^m\ such that

We now choose q> — r,,,2 and b = umi. Then the condition (3.1) in Lemma 1 is satisfied, and so
by this lemma 0 is unbounded. This is a contradiction.
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