A CONCAVITY PROBLEM IN NUMBER THEORY

by IAN ANDERSON

(Received 10 February, 1970)
For any fixed value of x, let $\left\{a_{i}^{(k)}\right\}$ denote the set of all positive integers with exactly k prime factors counted according to multiplicity, each prime factor being $\leqq x$. In an earlier paper [1] in this journal we posed the following problem. Let

$$
\begin{equation*}
A_{k}=\sum_{i} \frac{1}{a_{i}^{(k)}} . \tag{1}
\end{equation*}
$$

Show the existence or non-existence of an integer K such that, if

$$
k_{1}<k_{2}<K<k_{3}<k_{4}
$$

then

$$
\begin{equation*}
A_{k_{1}} \leqq A_{k_{2}} \leqq A_{K}, \quad A_{K} \geqq A_{k_{3}} \geqq A_{k_{4}} . \tag{2}
\end{equation*}
$$

We now show that such a K exists, and that in (2) there is strict inequality in each case.
A sequence $\left\{A_{k}: 1 \leqq k \leqq n\right\}$ of positive real numbers is said to have the logarithmic concavity (L.C.) property if, for $2 \leqq k \leqq n-1$,

$$
A_{k-1} A_{k+1} \leqq A_{k}^{2}
$$

Then $B_{k}=\log A_{k}$ is a concave function of k, and so the numbers A_{k} are either monotonic (increasing or decreasing) or unimodal, first increasing with k, and then eventually decreasing after perhaps remaining unchanged for several values of k. For the numbers A_{k} defined by (1), we have a monotonic decreasing sequence for $2 \leqq x \leqq 4$, where $K=1$, but we cannot have a monotonic increasing sequence, since, for any $x, A_{k} \rightarrow 0$ as $k \rightarrow \infty$. To see this, observe that the number of terms contributing to A_{k} is

$$
\frac{(l+k-1)!}{(l-1)!k!}
$$

where l denotes the number of primes $\leqq x$. Since each term is $\leqq 1 / 2^{k}$, we therefore have

$$
A_{k} \leqq \frac{(l+k-1)!}{(l-1)!k!2^{k}} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Thus the A_{k} are unimodal. We shall show that the plateau between the increasing and the decreasing phases is non-existent. Examples of numbers with L.C., which are hence unimodal, are, for fixed n, the binomial coefficients $\binom{n}{k}$, the Stirling numbers S_{n}^{k} of both the first and the second kind [3], and, for a given integer $m, N_{k}(m)$, the number of divisors of m with k prime factors [2].

The sequence $\left\{A_{k}\right\}$ given by (1) has L.C. For

$$
A_{k-1} A_{k+1}=\sum_{M} \frac{c(M)}{M}
$$

where $c(M)$ denotes the number of representations of M in the form $M=a_{i}^{(k-1)} a_{j}^{(k+1)}$, and where summation is over all such M with $2 k$ prime factors. But it is shown in the proof of Theorem 1 of [2] that, for each M,

$$
c(M) \leqq d(M)
$$

where $d(M)$ denotes the number of representations of M in the form $M=a_{i}^{(k)} a_{j}^{(k)}$. Thus

$$
A_{k-1} A_{k+1} \leqq \sum_{M} \frac{d(M)}{M}=A_{k}^{2}
$$

Thus we have unimodality. Finally, there is strict inequality everywhere in (2). For if $A_{k-1}=A_{k}$ for some k, then since

$$
A_{k-1}\left(\sum_{p \leqq x} \frac{1}{p}\right)=\sum_{i} \frac{\omega\left(a_{i}^{(k)}\right)}{a_{i}^{(k)}}
$$

where $\omega(a)$ denotes the number of distinct prime factors of a, it follows that

$$
\begin{equation*}
\left(\sum_{i} \frac{1}{a_{i}^{(k)}}\right)\left(\sum_{p \leq x} \frac{1}{p}\right)=\sum_{i} \frac{\omega\left(a_{i}^{(k)}\right)}{a_{i}^{(k)}} \tag{3}
\end{equation*}
$$

Let $P=\prod_{p \leq x} p$. Then the right-hand side of (3) can be expressed as a rational with denominator P^{k}. However, since for each prime $p \leqq x$ there is exactly one $a_{i}^{(k)}$ divisible by p^{k}, namely p^{k} itself, A_{k}, when expressed as a rational in lowest terms, has denominator P^{k}; and $\sum_{p \leq x} 1 / p$ has denominator P. Thus the left hand side of (3) has denominator P^{k+1}. Thus (3) is in fact impossible.

REFERENCES

1. I. Anderson, Primitive sequences whose elements have no large prime factors, Glasgow Math. J. 10 (1969), 10-15.
2. I. Anderson, On the divisors of a number, J. London Math. Soc. 43 (1968), 410-418.
3. E. H. Lieb, Concavity properties and a generating function for Stirling numbers, J. Combinatorial Theory, 5 (1968), 203-206.

University of Glasgow

