CHANGE OF RING AND TORSION-THEORETIC INJECTIVITY

IULIU CRIVEI, SEPTIMIU CRIVEI AND IOAN PURDEA

Let τ be a hereditary torsion theory in *R*-Mod. Then any ring homomorphism $\gamma : R \to S$ induces in *S*-Mod a torsion theory σ given by the condition that a left *S*-module is σ -torsion if and only if it is τ -torsion as a left *R*-module. We show that if $\gamma : R \to S$ is a ring epimorphism and *A* is a τ -injective left *R*-module, then $\operatorname{Ann}_A \operatorname{Ker}(\gamma)$ is σ -injective as a left *S*-module. As a consequence, we relate τ -injectivity and σ -injectivity, and we give some applications.

1. INTRODUCTION

A classical result states that if I is a two-sided ideal of a ring R and E is an injective left R-module, then $\operatorname{Ann}_E I$ is injective as a left R/I-module (for instance, see [8, Proposition 2.27]). In this note we generalise it for injectivity with respect to a hereditary torsion theory. As a consequence we are able to deal with the problem of the behaviour of torsion-theoretic injectivity under the action of a ring homomorphism $\gamma: R \to S$. Under certain conditions we pass from relative injectivity in R-Mod to relative injectivity in S-Mod and we deal with the converse. The latter was previously discussed by several authors, for instance, Golan [5], Izawa [6] and, in a more general framework, Teply and Torrecillas [10]. Some of the present results also generalise for an arbitrary hereditary torsion theory properties established in [2] in the case of the Dickson torsion theory [4].

Now let us give some basic notation and terminology. Throughout the paper we denote by R and S associative rings with non-zero identity and all modules are left unital R-modules. If B is a non-empty subset of a module A and I is a non-empty subset of R, we denote annihilators as follows:

$$\operatorname{Ann}_{R} B = \{ r \in R \mid rb = 0, \forall b \in B \} \text{ and}$$
$$\operatorname{Ann}_{A} I = \{ a \in A \mid ra = 0, \forall r \in I \}.$$

Also, τ will always be a hereditary torsion theory in the category *R*-Mod of left *R*-modules. For a left *R*-module *A* and a submodule *B* of *A*, *B* is called τ -dense (respectively τ -closed) in *A* if A/B is τ -torsion (respectively τ -torsionfree). A non-zero left *R*-module

Received 21st August, 2006

The second author acknowledges the support of the grant CEEX-ET 47/2006.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

module A is said to be τ -cocritical if A is τ -torsionfree and each of its non-zero submodules is τ -dense in A. A left R-module A is said to be τ -injective if it is injective with respect to every monomorphism having a τ -torsion cokernel or, equivalently, if it is injective with respect to every monomorphism $I \to R$ with I a τ -dense left ideal of R. Any ring homomorphism $\gamma : R \to S$ allows us to induce in the category S-Mod a torsion theory σ given by the condition that a left S-module A is σ -torsion if and only if A is τ -torsion as a left R-module. Throughout σ will always be this induced torsion theory in the corresponding category S-Mod. In the above context, τ is called compatible with γ if the following condition holds: a left S-module A is σ -torsionfree if and only if A is τ -torsionfree as a left R-module.

For additional information on torsion theories the reader is referred to [5].

2. From R to S

We begin with the torsion-theoretic generalisation of the result mentioned in the introduction.

THEOREM 2.1. Let $\gamma : R \to S$ be a ring epimorphism and let A be a τ -injective left R-module. Then Ann_A Ker(γ) is σ -injective as a left S-module.

PROOF: Denote $K = \text{Ker}(\gamma)$. Let J be a σ -dense left ideal of S and let $f : J \to \text{Ann}_A K$ be an S-homomorphism. Since τ is compatible with γ by [5, Proposition 47.4], $I = \gamma^{-1}(J)$ is a τ -dense left ideal of R [5, Proposition 47.2]. Consider the following diagram with commutative square:

where i, j, k are inclusion homomorphisms and u is the natural *R*-epimorphism induced by γ . By the τ -injectivity of *A* as a left *R*-module, there exists an *R*-homomorphism $g: R \to A$ such that gi = kfu. Note that $K \subseteq I$ and $K \subseteq \text{Ker}(g)$.

Now define the S-homomorphism

$$h: S \to \operatorname{Ann}_A K, \quad h(s) = g(r),$$

where $r \in R$ is such that $\gamma(r) = s$. If $s = \gamma(r) = \gamma(r')$ for some $r, r' \in R$, then $r - r' \in K \subseteq \text{Ker}(g)$, hence g(r) = g(r'). If $t \in K$ and $r \in R$, we have tg(r) = g(tr) = 0, hence $g(r) \in \text{Ann}_A K$. Therefore h is well-defined.

For every $s \in J$, we have s = u(r) for some $r \in I$ and

$$hj(s) = hju(r) = h\gamma i(r) = g(i(r)) = kfu(r) = kf(s) = f(s)$$

Therefore $\operatorname{Ann}_A K$ is σ -injective as a left S-module.

Now we can transfer torsion-theoretic injectivity from R to S under the action of a ring epimorphism $\gamma: R \to S$.

THEOREM 2.2. Let $\gamma : R \to S$ be a ring epimorphism and let A be a left R-module such that $\operatorname{Ker}(\gamma) \subseteq \operatorname{Ann}_R A$. If A is τ -injective as a left R-module, then A is σ -injective as a left S-module.

PROOF: If $\operatorname{Ker}(\gamma) \subseteq \operatorname{Ann}_R A$, then A is a left S-module and $\operatorname{Ann}_A \operatorname{Ker}(\gamma) = A$. Now the result follows by Theorem 2.1.

3. From S to R

We begin with a result in a more general setting, which slightly generalises [10, Proposition 2.7]. It has a similar proof, that we briefly give here for the sake of completeness.

THEOREM 3.1. Let C and C' be two Abelian categories, \mathcal{T} a torsion class in C and \mathcal{T}' a torsion class in C'. Also let $G: \mathcal{C} \to \mathcal{C}'$ be an additive functor and $F: \mathcal{C}' \to \mathcal{C}$ an additive functor which preserves the exactness of every short exact sequence $0 \to X$ $\to Y \to Z \to 0$ with $Z \in \mathcal{T}'$. Furthermore, assume that G is a right adjoint to F and $F(\mathcal{T}') \subseteq \mathcal{T}$. Then G(A) is a \mathcal{T}' -injective object in C' for every \mathcal{T} -injective object A in C.

PROOF: Let A be a \mathcal{T} -injective object in C and let $0 \to X \to Y \to Z \to 0$ be a short exact sequence of objects in \mathcal{C}' with $Z \in \mathcal{T}'$. Then we have an induced short exact sequence

 $0 \to \operatorname{Hom}_{\mathcal{C}}(F(Z), A) \to \operatorname{Hom}_{\mathcal{C}}(F(Y), A) \to \operatorname{Hom}_{\mathcal{C}}(F(X), A) \to 0$

and, by adjointness, a short exact sequence

 $0 \to \operatorname{Hom}_{\mathcal{C}'}(Z, G(A)) \to \operatorname{Hom}_{\mathcal{C}'}(Y, G(A)) \to \operatorname{Hom}_{\mathcal{C}'}(X, G(A)) \to 0$

Then it follows that G(A) is \mathcal{T}' -injective.

Recall that a right *R*-module *C* is called τ -flat if the left *R*-module $\text{Hom}_{\mathbb{Z}}(C, \mathbb{Q}/\mathbb{Z})$ is τ -injective or, equivalently, the functor $C \bigotimes_R -$ preserves the exactness of every short exact sequence $0 \to X \to Y \to Z \to 0$ of left *R*-modules with X a τ -dense submodule of Y (see [5, p.88] or [7]).

COROLLARY 3.2. Let $\gamma : R \to S$ be a ring homomorphism such that S is τ -flat as a right R-module. Also, assume that τ is compatible with γ . Then every σ -injective left S-module is τ -injective as a left R-module.

Π

0

PROOF: In Theorem 3.1 take $G: S - \text{Mod} \to R - \text{Mod}$ to be the forgetful functor, $F = S \bigotimes_R - : R - \text{Mod} \to S - \text{Mod}, \mathcal{T}'$ the torsion class in *R*-Mod associated to the torsion theory τ and \mathcal{T} the torsion class in *S*-Mod associated to the induced torsion theory σ . Then *G* is a right adjoint to *F*. By [5, Proposition 47.2], the compatibility of τ with γ assures that for every τ -torsion left *R*-module *Z*, $F(Z) = S \bigotimes_R Z$ is τ -torsion as a left *R*-module, hence σ -torsion as a left *S*-module. Now the conclusion follows by Theorem 3.1.

In order to establish a characterisation of the condition that every σ -injective left S-module is τ -injective as a left R-module, we use some generalisation of purity. To recall some terminology, let Ω be a class of left R-modules and let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \tag{1}$$

be a short exact sequence of right *R*-modules. If the map $f \bigotimes_R 1_D : A \bigotimes_R D \to B \bigotimes_R D$ is a monomorphism for every $D \in \Omega$, then the sequence (1) is called Ω -pure [9]. If *A* is a submodule of *B*, *f* is the inclusion monomorphism and the sequence (1) is Ω -pure, then *A* is said to be an Ω -pure submodule of *B*. The following characterisation will be useful.

PROPOSITION 3.3. ([9, p. 170]) Let Ω be a class of cyclic left *R*-modules. The following are equivalent:

- (i) The sequence (1) is Ω -pure;
- (ii) $AJ = A \cap BJ$ for every left ideal J of R such that $R/J \in \Omega$.

Now let Ω' be the set of all left *R*-modules R/J with J a τ -dense left ideal of *R*.

THEOREM 3.4. Let $\gamma : R \to S$ be a ring epimorphism and let $K = \text{Ker}(\gamma)$. The following are equivalent:

- (i) K is an Ω' -pure right ideal of R;
- (ii) S is τ -flat as a right R-module;
- (iii) Every σ -injective left S-module is τ -injective as a left R-module.

PROOF: (i) \iff (ii) By Proposition 3.3 and [5, p.89] both conditions are equivalent to $KI = K \cap I$ for every τ -dense left ideal of R.

(ii) \implies (iii) By Corollary 3.2.

(iii) \implies (ii) Use the injective left S-module Hom_Z(S, \mathbb{Q}/\mathbb{Z}) and the definition of τ -flatness.

Now we can put together Theorems 2.2 and 3.4 to get the following result.

THEOREM 3.5. Let $\gamma : R \to S$ be a ring epimorphism and let A be a left R-module such that $\operatorname{Ker}(\gamma) \subseteq \operatorname{Ann}_R A$ is an Ω' -pure right ideal of R. Then A is τ -injective as a left R-module if and only if it is σ -injective as a left S-module.

4. Applications

For a commutative ring R, denote by $\operatorname{Spec}(R)$ the set of all prime ideals of R and let $p \in \operatorname{Spec}(R)$. Following [12, p.83], for each integer $m \ge 1$ denote $A_m = \operatorname{Ann}_{E(R/p)} p^m$, where E(R/p) is the injective hull of R/p. Note that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_m \subseteq A_{m+1} \subseteq \cdots$ and, if R is Noetherian, $E(R/p) = \bigcup_{m=1}^{\infty} A_m$ [12, p.83].

COROLLARY 4.1. Let R be commutative and let $p \in \text{Spec}(R)$ be such that R/p is τ -cocritical. Then $A_1 = E_{\tau}(R/p)$ is σ -injective as an R/p-module, where $E_{\tau}(R/p)$ is the τ -injective hull of R/p and σ is the torsion theory induced by τ in R/p-Mod via the natural ring epimorphism $R \to R/p$.

PROOF: By [3, Theorem 2.5], $A_1 = E_{\tau}(R/p)$. Since $R/p \subseteq \operatorname{Ann}_{E(R/p)} p$, we have $E_{\tau}(R/p) \subseteq \operatorname{Ann}_{E(R/p)} p$, hence $p \subseteq \operatorname{Ann}_R E_{\tau}(R/p)$. Now use Theorem 2.2.

COROLLARY 4.2. Let R be commutative Noetherian and let $p \in \text{Spec}(R)$ be τ -closed in R. Then:

- (i) Each A_m is σ_m -injective as an R/p^m -module, where σ_m is the torsion theory induced by τ in R/p^m -Mod via the natural ring epimorphism $R \to R/p^m$.
- (ii) The τ -injective hull $E_{\tau}(R/p)$ of R/p is σ -injective as an R/p-module, where σ is the torsion theory induced by τ in R/p-Mod via the natural ring epimorphism $R \to R/p$.

PROOF: (i) Since p is τ -closed in R, A_m is τ -injective as an R-module [3, Theorem 2.10]. Now use Theorem 2.1.

(ii) By [3, Theorem 2.10], $A_1 = \operatorname{Ann}_{E(R/p)} p$ is a τ -injective *R*-module. As in the proof of Corollary 4.1, we have $p \subseteq \operatorname{Ann}_R E_{\tau}(R/p)$. Now use Theorem 2.2.

Recall that a ring R is called left fully idempotent if every left ideal of R is idempotent. tent. In particular, any von Neumann regular ring is left fully idempotent.

COROLLARY 4.3. Let R be a left fully idempotent ring and let $\gamma : R \to S$ be a ring epimorphism. Then every σ -injective left S-module is τ -injective as a left R-module.

PROOF: By [11, p.320], S is flat as a right R-module. Now use Corollary 3.2.

Let us particularise Theorem 3.4 in the case of the Dickson torsion theory τ_D , which is generated by all simple left *R*-modules [4]. Then we may restrict Ω' to all simple left *R*-modules and Ω' -purity becomes *s*-purity. Recall that a short exact sequence of right *R*-modules is called *s*-pure if it stays exact when tensored by any simple left *R*-module [1]. We denote by σ_D the torsion theory induced by τ_D in *S*-Mod under the action of a ring homomorphism $\gamma: R \to S$. Thus we obtain the following result.

COROLLARY 4.4. Let $\gamma : R \to S$ be a ring epimorphism and let $K = \text{Ker}(\gamma)$. The following are equivalent:

(i) K is an s-pure right ideal of R;

[5]

[6]

- (ii) S is τ_D -flat as a right R-module;
- (iii) Every σ_D -injective left S-module is τ_D -injective as a left R-module.

COROLLARY 4.5. Let $\gamma : R \to S$ be a ring epimorphism such that $K = \text{Ker}(\gamma)$ is an idempotent ideal. Suppose that either R is commutative or K is contained in the Jacobson radical of R. Then every σ_D -injective left S-module is τ_D -injective as a left R-module.

PROOF: If either R is commutative or K is contained in the Jacobson radical of R, then K is an *s*-pure ideal of R by [1, Proposition 3.6] and [1, Corollary 2.8]. Now the result follows by Corollary 4.4.

Now assume that τ is a Jansian torsion theory, that is, it has a Gabriel filter consisting of all left ideals J of R containing an idempotent two-sided ideal K of R. Hence $\Omega' = \Omega_0$ consists of all left R-modules R/I with I a left ideal of R such that $K \subseteq I$. We may characterise idempotent ideals in terms of some purity.

LEMMA 4.6. Let K be a two-sided ideal of R. Then K is idempotent if and only if K is Ω_0 -pure as a right ideal of R.

PROOF: Assume first that K is idempotent. Let I be a left ideal of R such that $R/I \in \Omega_0$. Then $K = K^2 \subseteq KI \subseteq K \cap I = K$. Hence $KI = K \cap I$, so that K is Ω_0 -pure in R.

Conversely, if K is Ω_0 -pure in R, then we have $KI = K \cap I = K$ for every left ideal I of R such that $R/I \in \Omega_0$. In particular, $K^2 = K$.

COROLLARY 4.7. Let $\gamma : R \to S$ be a ring epimorphism and suppose that $K = \text{Ker}(\gamma)$ is an idempotent ideal. Let τ be the Jansian torsion theory having the Gabriel filter given by K. Then every σ -injective left S-module is τ -injective as a left R-module.

PROOF: From the proof of Lemma 4.6, we see that the property that K is idempotent is characterised by the condition KI = K for every left ideal I of R such that $R/I \in \Omega_0$, that is, for every τ -dense left ideal I of R. Also note that one always has $K \subseteq I$, hence $KI = K \cap I$, for any τ -dense left ideal I of R. Now use Theorem 3.4.

References

- [1] I. Crivei, 's-pure submodules', Internat. J. Math. Math. Sciences 2005 (2005), 491-497.
- S. Crivei, 'Injective modules relative to the Dickson torsion theory', Vietnam J. Math. 29 (2001), 329-338.
- [3] S. Crivei, ' τ -injective submodules of indecomposable injective modules', J. Korean Math. Soc. 43 (2006), 65-76.
- S.E. Dickson, 'A torsion theory for abelian categories', Trans. Amer. Math. Soc. 121 (1966), 223-235.

Ring and torsion-theoretic injectivity

- [5] J.S. Golan, Torsion theories (Longman Scientific and Technical, New York, 1986).
- [6] T. Izawa, 'Torsion theories and torsionless generators', Rep. Fac. Sci. Shizuoka Univ. 11 (1976), 1-8.
- [7] H. Katayama, 'Flat and projective properties of a torsion theory', Res. Rep. Ube Tech. Coll. 15 (1972), 1-4.
- [8] D.W. Sharpe and P. Vámos, *Injective modules* (Cambridge University Press, London, New York, 1972).
- [9] B. Stenström, 'Pure submodules', Ark. Math. 7 (1967), 151-171.
- [10] M. Teply and B. Torrecillas, 'Weak Baer modules over graded rings', Colloq. Math. 75 (1998), 19-31.
- [11] R. Wisbauer, Foundations of module and ring theory (Gordon and Breach, Reading, 1991).
- [12] J. Xu, Flat covers of modules (Springer-Verlag, Berlin, 1996)).

Department of Mathematics Technical University Str. C. Daicoviciu 15 400020 Cluj-Napoca Romania e-mail: crivei@math.utcluj.ro

[7]

Faculty of Mathematics and Computer Science "Babeş-Bolyai" University Str. M. Kogălniceanu 1 400084 Cluj-Napoca Romania e-mail: crivei@math.ubbcluj.ro

Faculty of Mathematics and Computer Science "Babeş-Bolyai" University Str. M. Kogălniceanu 1 400084 Cluj-Napoca Romania e-mail: purdea@math.ubbcluj.ro